Menu

Blog

Archive for the ‘neuroscience’ category: Page 3

Jan 7, 2025

How electrical synapses fine-tune sensory information for better decisions

Posted by in category: neuroscience

Scientists at Yale and the University of Connecticut have taken a major step in understanding how animal brains make decisions, revealing a crucial role for electrical synapses in “filtering” sensory information.

The new research, published in the journal Cell, demonstrates how a specific configuration of electrical synapses enables animals to make context-appropriate choices, even when faced with similar sensory inputs.

Animal brains are constantly bombarded with sensory information—sights, sounds, smells, and more. Making sense of this information, scientists say, requires a sophisticated filtering system that focuses on relevant details and enables an animal to act accordingly. Such a filtering system doesn’t simply block out “noise”—it actively prioritizes information depending on the situation. Focusing on certain sensory information and deploying a context-specific behavior is known as “action selection.”

Jan 7, 2025

Jellyfish Protein Shines Bright in Quantum Sensor for Biomedical Applications

Posted by in categories: biotech/medical, chemistry, computing, engineering, neuroscience, quantum physics

While most of us are familiar with magnets from childhood games of marveling at the power of their repulsion or attraction, fewer realize the magnetic fields that surround us—and the ones inside us. Magnetic fields are not just external curiosities; they play essential roles in our bodies and beyond, influencing biological processes and technological systems alike. A recent arXiv publication from the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory highlights how magnetic fields in the body may be analyzed using quantum-enabled fluorescent proteins, with hopes of applying to cell formation or early disease detection.

Detecting subtle changes in magnetic fields may equate to beyond subtle impacts in certain fields. For instance, quantum sensors could be applied to the detection of electromagnetic anomalies in data centers, potentially revealing evidence of malicious tampering. Similarly, they might be used to study changes in the brain’s electromagnetic signals, offering insights into neurological diseases such as the onset of dementia. However, these applications demand sensors that are not only sensitive but also capable of operating reliably in real-world conditions.

Spin qubits, known for their notable sensitivity to magnetic fields, are introduced in the study as a compelling solution. Traditionally, spin qubits have been formed from nitrogen-vacancy centers in diamonds. While these systems have demonstrated remarkable precision, the diamonds’ bulky size in relation to molecules and complex surface chemistry limit their usability in biological environments. This creates a need for a more adaptable and biologically compatible sensor.

Jan 7, 2025

The mind-body problem in the philosophy of mind and cognitive neuroscience: a physicalist naturalist solution

Posted by in category: neuroscience

Using an analysis of a voluntary action caused by a visual perception, I suggest that the three fundamental characteristics of this perception (being conscious, self-conscious, and provided with a content) are neurologically implemented by three distinct higher order properties of brain dynamics. This hypothesis allows me to sketch out a physicalist naturalist solution to the mind-body problem. According to this solution, primary phenomenal consciousness is neither a non-physical substance, nor a non-physical property but simply the “format” that the brain gives to a part of its dynamics in order to obtain a fine tuning with its environment when the body acts on it.

Jan 7, 2025

Your Brain Is Like a Computer: Function, Analogy, Simplification

Posted by in categories: computing, mathematics, neuroscience

The relationship between brain and computer is a perennial theme in theoretical neuroscience, but it has received relatively little attention in the philosophy of neuroscience. This paper argues that much of the popularity of the brain-computer comparison (e.g. circuit models of neurons and brain areas since McCulloch and Pitts, Bull Math Biophys 5: 115–33, 1943) can be explained by their utility as ways of simplifying the brain. More specifically, by justifying a sharp distinction between aspects of neural anatomy and physiology that serve information-processing, and those that are ‘mere metabolic support,’ the computational framework provides a means of abstracting away from the complexities of cellular neurobiology, as those details come to be classified as irrelevant to the (computational) functions of the system.

Jan 7, 2025

Snap judgments: How first impressions of faces shape inferences of mental states

Posted by in categories: biotech/medical, neuroscience

When we first meet another person, we typically form an initial impression of them based on their facial features and appearance. These first impressions of others could potentially influence our subsequent cognitive processes, such as what mental states we believe that the people we meet are experiencing at a given time.

Researchers at the University of California San Diego (UCSD), the California Institute of Technology and Dartmouth College carried out a study investigating the potential relationship between first impressions of faces and the inference of mental states. Their findings, published in Nature Human Behavior, suggest that first impressions of faces influence the inference of other people’s mental states.

“Over the years there have been a lot of surprising findings showing how first impressions from faces can predict important outcomes, such as which candidates would win an election, which politicians would be convicted of corruption, and which offenders would be sentenced to death,” Chujun Lin, first author of the paper, told Medical Xpress.

Jan 7, 2025

Scientists identify 11 genes affected by PFAS, shedding light on neurotoxicity

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Per-and polyfluorinated alkyl substances (PFAS) earn their “forever chemical” moniker by persisting in water, soil and even the human brain. This unique ability to cross the blood-brain barrier and accumulate in brain tissue makes PFAS particularly concerning, but the underlying mechanism of their neurotoxicity must be studied further.

To that end, a new study by University at Buffalo researchers has identified 11 genes that may hold the key to understanding the brain’s response to these pervasive chemicals commonly found in everyday items. The paper is published in the journal ACS Chemical Neuroscience.

These genes, some involved in processes vital for neuronal health, were found to be consistently affected by PFAS exposure, either expressing more or less, regardless of the type of PFAS compounds tested. For example, all compounds caused a gene key for neuronal cell survival to express less, and another gene linked to neuronal cell death to express more.

Jan 7, 2025

Genetic discovery offers hope for personalized epilepsy treatments

Posted by in categories: biotech/medical, genetics, neuroscience

Recent research led by UTHealth Houston scientists has uncovered two genes associated with variants linked to epilepsy, which showed specific traits that make them promising diagnostic biomarkers.

The study is published in Nature Communications.

Led by Dennis Lal, Ph.D., director of the Center for Neurogenetics and associate professor of neurology at McGovern Medical School at UTHealth Houston, the research team analyzed data from 1,386 human brain tissues for somatic variants in the of individuals undergoing . Somatic variants are DNA changes that occur after conception and can only be identified in the brain tissue.

Jan 7, 2025

Open-World Games’ Affordance of Cognitive Escapism, Relaxation, and Mental Well-Being Among Postgraduate Students: Mixed Methods Study

Posted by in categories: entertainment, neuroscience

Background: Open-world games, characterized by their expansive and interactive environments, may offer unique cognitive escapism opportunities, potentially leading to relaxation and enhanced well-being. These games, such as “The Legend of Zelda: Breath of the Wild” and “The Legend of Zelda: Tears of the Kingdom,” allow players to experience a sense of freedom and autonomy, which can reduce stress and improve mental health. While previous research has examined the general impact of video games on mental well-being, specific studies on the effects of open-world games among postgraduate students are limited.

Objective: This study aims to investigate the relationships between cognitive escapism provided by open-world games and their effects on relaxation and well-being. The goal was to understand how the immersive nature of these games contributes to stress reduction and overall mental health improvement among postgraduate students.

Methods: A mixed methods approach was used, which involved in-depth exploratory qualitative interviews and a survey of 609 players of popular open-world games. Quantitative data were collected using standardized questionnaires to measure open-world games’ affordance of cognitive escapism, relaxation, and well-being. Qualitative data were obtained through 32 in-depth interviews that explored players’ experiences and perceptions of cognitive escapism, relaxation, and mental well-being.

Jan 7, 2025

Controlling Human Body Temperature to Mimic Hibernation

Posted by in categories: biotech/medical, neuroscience

Summary: Researchers have discovered a way to control human body temperature, mimicking the hibernation process of animals like bears. By manipulating the brain’s temperature regulation system, they can induce a state of “thermoregulatory inversion” (TI) in rats, reducing heat production even in cold environments.

This breakthrough could lead to controlled hypothermia in humans, improving survival rates in life-threatening situations like heart attacks and strokes. The discovery opens the door to therapeutic hypothermia, which can protect tissues from damage by lowering metabolism and oxygen demand.

Jan 6, 2025

This Tiny “Molecular Flashlight” Could Transform Brain Disease Detection

Posted by in categories: biotech/medical, neuroscience

A new “molecular flashlight” technique allows non-invasive insight into brain pathologies, lighting up the future of neurological research. The probe can reach deep into the brain with minimal damage, earning its designation as a minimally invasive device. It emits an ultra-thin beam of light.

Page 3 of 1,04412345678Last