Open In App

Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry – Miscellaneous Exercise on Chapter 12

Last Updated : 12 Mar, 2021
Comments
Improve
Suggest changes
Like Article
Like
Save
Share
Report
News Follow

Question 1: Three vertices of a parallelogram ABCD are A(3, – 1, 2), B (1, 2, – 4), and C (– 1, 1, 2). Find the coordinates of the fourth vertex.

Solution: 

ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z).

Using the property:

The diagonals of a parallelogram bisect each other

Midpoint of AC = Midpoint of BD = Point O

Now, by using Midpoint section formula

Coordinates of O for the line segment joining (x1,y1,z1) and (x2,y2,z2) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})

So, Coordinates of O for the line segment joining AC = (\frac{3+(-1)}{2}, \frac{-1+1}{2}, \frac{2+2}{2})

(\frac{2}{2}, 0, \frac{4}{2})

= (1, 0, 2) ……………………….(1)

and, Coordinates of O for the line segment joining BD = (\frac{1+x}{2}, \frac{2+y}{2}, \frac{-4+z}{2})  ………….(2)

Using the Eq(1) and Eq(2), we get

\frac{1+x}{2}  = 1

x = 1

\frac{2+y}{2}  = 0

y = -2

\frac{z-4}{2}  = 2

z = 8

Hence, the coordinates of the fourth vertex is D (1, -2, 8).

Question 2: Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0,4, 0), and (6, 0, 0).

Solution: 

The vertices of the triangle are A (0, 0, 6), B (0, 4, 0) and C (6, 0, 0).

So, let the medians be AD, BE and CF corresponding to the vertices A, B and C respectively.

D, E and F are the midpoints of the sides BC, AC and AB respectively.

Coordinates of mid-point for the line segment joining (x1,y1,z1) and (x2,y2,z2) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})

So, Coordinates of D for the line segment joining BC = (\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2})

Coordinates of D = (3, 2, 0)

and, Coordinates of E for the line segment joining AC = (\frac{6+0}{2}, \frac{0+0}{2}, \frac{0+6}{2})

Coordinates of E = (3, 0, 3)

and, Coordinates of F for the line segment joining AB = (\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2})

Coordinates of F = (0, 2, 3)

By using the distance formula for two points, P(x1,y1,z1) and Q(x2,y2,z2)

PQ = \mathbf{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}}

So, AD = \sqrt{(0-3)^2+(0-2)^2+(6-0)^2}

AD = \sqrt{9+4+36} = 7

and, BE = \sqrt{(0-3)^2+(4-0)^2+(0-3)^2}

BE = \sqrt{9+16+9} = \sqrt{34}

and, CF = \sqrt{(6-0)^2+(0-2)^2+(0-3)^2}

CF = \sqrt{36+4+9}  = 7

Hence, the lengths of the medians are 7, √34 and 7.

Question 3: If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (– 4, 3b, –10), and R(8, 14, 2c), then find the values of a, b and c.

Solution: 

The vertices of the triangle are P (2a, 2, 6), Q (-4, 3b, -10) and R (8, 14, 2c).

Coordinates of centroid(0, 0, 0) of the triangle having vertices (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3) = (\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3})

(0, 0, 0) = (\frac{2a-4+8}{3}, \frac{2+3b+14}{3}, \frac{6-10+2c}{3})

(0, 0, 0) = (\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3})

So, \frac{2a+4}{3}  = 0

a = -2

and, \frac{3b+16}{3}  = 0

b = \mathbf{\frac{-16}{3}}

and, \frac{2c-4}{3}  = 0

c = 2

Hence, the values of a, b and c are a = -2, b = \mathbf{\frac{-16}{3}}  and c = 2

Question 4: Find the coordinates of a point on y-axis which are at a distance of 5√2 from the point P (3, –2, 5).

Solution: 

Point on y-axis = A (0, y, 0).

Distance between the points A (0, y, 0) and P (3, -2, 5) = 5√2.

Now, by using distance formula,

Distance of PQ = \mathbf{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}}

So, the distance between the points A (0, y, 0) and P (3, -2, 5) will be

Distance of AP = √[(3-0)2 + (-2-y)2 + (5-0)2]

= √[32 + (-2-y)2 + 52]

= √[(-2-y)2 + 9 + 25]

5√2 = √[(-2-y)2 + 34]

Squaring on both the sides, we get

(-2 -y)2 + 34 = 25 × 2

(-2 -y)2 = 50 – 34

4 + y2 + (2 × -2 × -y) = 16

y2 + 4y + 4 -16 = 0

y2 + 4y – 12 = 0

y2 + 6y – 2y – 12 = 0

y (y + 6) – 2 (y + 6) = 0

(y + 6) (y – 2) = 0

y = -6, y = 2

Hence, the points (0, 2, 0) and (0, -6, 0) are the required points on the y-axis.

Question 5: A point R with x-coordinate 4 lies on the line segment joining the points P(2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint: Suppose R divides PQ in the ratio k : 1. The coordinates of the point R are given by (\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1})]

Solution: 

Let the coordinates of the required point be (4, y, z).

So now, let the point R (4, y, z) divides the line segment joining the points P (2, -3, 4) and Q (8, 0, 10) in the ratio k: 1.

Coordinates of the point which divides PQ in the ratio k : 1 = (\frac{kx_2+x_1}{k+1}, \frac{ky_2+y_1}{k+1}, \frac{kz_2+z_1}{k+1})

So, we have

(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1})  = (4, y, z)

\frac{8k+2}{k+1}  = 4

8k + 2 = 4 (k + 1)

8k + 2 = 4k + 4

8k – 4k = 4 – 2

4k = 2

k = \frac{2}{4}

k = \mathbf{\frac{1}{2}}

Now, substituting the value we get,

y = \frac{-3}{\frac{1}{2}+1} = \frac{-3}{\frac{3}{2}}  = -2

z = \frac{10(\frac{1}{2})+4}{\frac{1}{2}+1} = \frac{5+4}{\frac{3}{2}}  = 6

Hence, the coordinates of the required point are (4, -2, 6).

Question 6: If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant. 

Solution: 

The points A (3, 4, 5) and B (-1, 3, -7)

Let the point be P (x, y, z).

Now by using distance formula,

Distance of point (x1, y1, z1) and (x2, y2, z2) = \mathbf{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}}

So, the distance between the points A (3, 4, 5) and P (x,y,z)) will be

Distance of PA = √[(3-x)2 + (4-y)2 + (5-z)2]

Distance of PB = √[(-1-x)2 + (3-y)2 + (-7-z)2]

As, PA2 + PB2 = k2

[(3 – x)2 + (4 – y)2 + (5 – z)2] + [(-1 – x)2 + (3 – y)2 + (-7 – z)2] = k2

[(9 + x2 – 6x) + (16 + y2 – 8y) + (25 + z2 – 10z)] + [(1 + x2 + 2x) + (9 + y2 – 6y) + (49 + z2 + 14z)] = k2

9 + x2 – 6x + 16 + y2 – 8y + 25 + z2 – 10z + 1 + x2 + 2x + 9 + y2 – 6y + 49 + z2 + 14z = k2

2x2 + 2y2 + 2z2 – 4x – 14y + 4z + 109 = k2

2x2 + 2y2 + 2z2 – 4x – 14y + 4z = k2 – 109

2 (x2 + y2 + z2 – 2x – 7y + 2z) = k2 – 109

(x2 + y2 + z2 – 2x – 7y + 2z) = \frac{(k^2 - 109)}{2}

Hence, the required equation is (x2 + y2 + z2 – 2x – 7y + 2z) = \mathbf{\frac{(k^2 - 109)}{2}}



Previous Article
Next Article

Similar Reads

NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Miscellaneous Exercise
Question 1: Three vertices of a parallelogram ABCD are A(3, – 1, 2), B (1, 2, – 4), and C (– 1, 1, 2). Find the coordinates of the fourth vertex.Solution:  ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z). Using the property: The diagonals of a parallelogram bisect each other,  Midpoint of AC = Midpoin
4 min read
Class 12 NCERT Solutions – Mathematics Part ii – Chapter 11 – Three Dimensional Geometry – Miscellaneous Exercise
1. Find the angle between the lines whose direction ratios are a, b, c and b – c, c – a, a – b.Solution: The angle θ between the lines with direction cosines a, b, c and b – c, c – a, a – b is given by: [Tex]cosθ=|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}.\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}|\\ θ=cos^{-1}|\frac{ab-ac+bc-ab+ac-bc}{\sqrt{a^2+b^2+c^2}
2 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.1
Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates? Solution: If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0) Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate? Solution: If a point is in XZ plane, So its y-coordinate is 0 Problem 3: Name the oc
2 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1) Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Length of distance PQ = √[(4 – 2)2 + (3 – 3)2 + (1 –
14 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1)Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Length of distance PQ = √[(4 – 2)2 + (3 – 3)2 + (1 –
14 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.1
Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates?Solution: If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0) Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate?Solution: If a point is in XZ plane, So its y-coordinate is 0 Problem 3: Name the octa
2 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.3
Chapter 12 of the Class 11 NCERT Mathematics textbook, titled "Introduction to Three-Dimensional Geometry," provides an essential foundation for understanding the spatial relationships between points, lines, and planes in three dimensions. This chapter introduces the concepts of coordinates in three-dimensional space, the distance between points, a
9 min read
Class 12 NCERT Solutions- Mathematics Part II – Chapter 11 – Three Dimensional Geometry Exercise 11.1
Question 1: If a line makes angles 90°, 135°, and 45° with x, y, and z-axes respectively, find its direction cosines.Solution: Let the direction cosines of the lines be l, m, and n. l = cos 90° = 0 m = cos 135° = - 1/√2 n = cos 45° = 1/√2 Therefore , the direction cosines of the lines are 0, - 1/√2, 1/√2 Question 2: Find the direction cosines of a
3 min read
Class 12 NCERT Mathematics Solutions– Chapter 11 – Three Dimensional Geometry Exercise 11.2
Chapter 11 of the Class 12 NCERT Mathematics Part II textbook, titled "Three Dimensional Geometry," explores the concepts and techniques used to analyze and solve problems in three-dimensional space. Exercise 11.2 focuses on applying these concepts to specific problems involving three-dimensional coordinates and geometric calculations. This section
14 min read
Class 11 NCERT Solutions- Chapter 1 Sets - Miscellaneous Exercise on Chapter 1 | Set 2
Chapter 1 Sets - Miscellaneous Exercise on Chapter 1 | Set 1Question 11: Let A and B be sets. If A ∩ X = B ∩ X = φ and A ∪ X = B ∪ X for some set X, show that A = B Solution: A = A ∩ (A ∪ X) //absorption law A = A ∩ (B ∪ X) //given that A ∩ X = B ∩ X = (A ∩ B) ∪ (A ∩ X) //distributive law = (A ∩ B) ∪ φ //given that A ∩ X = φ A = (A ∩ B) ...(1) Repe
6 min read
Class 11 NCERT Solutions- Chapter 9 Sequences And Series - Miscellaneous Exercise On Chapter 9 | Set 1
Question 1. Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term. Solution: Let the first term and common difference of the A.P. be a and d respectively. (m+n)th term of the A.P. = a+(m+n−1)d (m−n)th term of the A.P. = a+(m−n−1)d Thus, L.H.S = a+(m+n−1)d + a+(m−n−1)d = 2a+(m+n−1+m−n−1)d = 2a+(2m−2)d = 2[a+(m−
11 min read
Class 11 NCERT Solutions- Chapter 9 Sequences And Series - Miscellaneous Exercise On Chapter 9 | Set 2
Question 17. If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P. Solution: We are given, a, b, c and d are in G.P. Therefore, we have b2 = ac … (1) c2 = bd … (2) ad = bc … (3) We need to prove (an + bn), (bn + cn), (cn + dn) are in G.P. i.e., => (bn+ cn)2 = (an + bn) (cn + dn) Solving L.H.S., we get = b2n + 2bncn + c
14 min read
Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Miscellaneous Exercise on Chapter 13 | Set 2
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): Question 16: [Tex]\frac{cos x}{1+sin x}[/Tex] Solution: [Tex]f(x) = \frac{cos x}{1+sin x}[/Tex] Taking derivative both sides, [Tex]\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{cos x}{1+sin x})[/Tex
15 min read
Class 11 NCERT Solutions- Chapter 10 Straight Lines - Miscellaneous Exercise on Chapter 10 | Set 1
Question 1. Find the values of k for which the line (k – 3)x – (4 – k2)y + k2 – 7k + 6 = 0 is (a) Parallel to the x-axis (b) Parallel to the y-axis (c) Passing through the origin. Solution: We are given the line, (k – 3)x – (4 – k2)y + k2 – 7k + 6 = 0 => (4 – k2)y = (k – 3)x + k2 – 7k + 6 => y =[Tex]\frac{(k–3)x}{4–k^2} [/Tex]+[Tex]\frac{k^2–
12 min read
Class 11 NCERT Solutions- Chapter 10 Straight Lines - Miscellaneous Exercise on Chapter 10 | Set 2
Question 13. Show that the equation of the line passing through the origin and making an angle θ with the line y = mx + c is[Tex]\frac{y}{x}=\frac{m\pm tanθ}{1\mp tanθ}[/Tex]. Solution: Suppose y = m1x is the equation of the line passing through the origin. Hence, slope of this line is, m1 =[Tex]\frac{y}{x}[/Tex] Given line is y = mx + c whose slop
10 min read
Class 12 NCERT Solutions- Mathematics Part I - Chapter 1 Relations And Functions -Miscellaneous Exercise on Chapter 1 | Set 1
Question 1. Let f : R → R be defined as f(x) = 10x + 7. Find the function g : R → R such that g o f = f o g = 1R. Solution: As, it is mentioned here f : R → R be defined as f(x) = 10x + 7 To, prove the function one-one Let's take f(x) = f(y) 10x + 7 = 10y + 7 x = y Hence f is one-one. To, prove the function onto y ∈ R, y = 10x+7 [Tex]x = \frac{y-7}
9 min read
NCERT Solutions Class 12- Mathematics Part I – Chapter 1 Relations And Functions -Miscellaneous Exercise on Chapter 1
Question 1. Show that the function f : R → {x ∈ R : – 1 < x < 1} defined by f(x) = [Tex]\frac{x}{1+|x|} [/Tex], x ∈ R is one one and onto function.Solution: As, it is mentioned here f : R → {x ∈ R : – 1 < x < 1} defined by [Tex]f(x) = \frac{x}{1+|x|} [/Tex], x ∈ R As, we know f is invertible, if and only if f is one-one and onto. ONE-ON
5 min read
Class 12 NCERT Solutions- Mathematics Part I - Chapter 2 Inverse Trigonometric Functions - Miscellaneous Exercise on Chapter 2 | Set 1
Question 1. Find the value of [Tex]{\cos }^{-1}(\cos \frac {13\pi} {6})[/Tex] Solution: We know that [Tex]\cos^{-1} (\cos x)=x [/Tex] Here, [Tex]\frac {13\pi} {6} \notin [0,\pi].[/Tex] Now, [Tex]{\cos }^{-1}(\cos \frac {13\pi} {6}) [/Tex] can be written as : [Tex]{\cos }^{-1}(\cos \frac {13\pi} {6})={\cos }^{-1}[\cos( 2\pi+\frac {\pi} {6})] [/Tex],
5 min read
NCERT Solutions Class 12 - Mathematics Part I - Chapter 3 Matrices - Miscellaneous Exercise on Chapter 3
Question 1. If A and B are symmetric matrices, prove that AB – BA is a skew-symmetric matrix.Solution: As, it is mentioned that A and B are symmetric matrices, A' = A and B' = B (AB – BA)' = (AB)' - (BA)' (using, (A-B)' = A' - B') = B'A' - A'B' (using, (AB)' = B'A') = BA - AB (AB – BA)' = - (AB - BA) Hence, AB – BA is a skew symmetric matrix Questi
8 min read
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 13 – Probability Miscellaneous Exercise on Chapter 13
Question 1. A and B are two events such that P (A) ≠ 0. Find P (B|A), if:(i) A is a subset of B ​(ii) A ∩ B = φSolution: It is given that, A and B are two events such that P (A) ≠ 0 We have, A ∩ B = A P( A ∩ B) = P(B ∩ A) = P(A) Hence , P(B | A)= P(B ∩ A) /P(A) P(A) /P(A) = 1 (ii) We have, P (A ∩ B) = 0 P(B | A) = P(A ∩ B) /P(A) = 0 Question 2. A c
9 min read
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Miscellaneous Exercise on Chapter 10
In the article, we will solve Miscellaneous Exercise from Chapter 10, “Vector Algebra” in the NCERT. This exercise covers the basics of vectors like scalar and vector components of vectors, section formulas, Multiplication of a Vector by a scalar, etc. Question 1: Write down a unit vector in XY-plan, making an angle of 30 degree with the positive d
7 min read
Class 11 NCERT Solutions- Chapter 8 Binomial Theorem - Miscellaneous Exercise on Chapter 8
Question 1. Find a, b, and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290, and 30375, respectively.Solutions: As, we know that (r+1)th term of (a+b)n is denoted by, Tr+1 = nCr an-r br Here, it is given that first three terms of the expansion are 729, 7290 and 30375. When, T1 = 729, T2 = 7290 and T3 = 30375 T0
11 min read
Class 11 NCERT Solutions- Chapter 16 Probability - Miscellaneous Exercise on Chapter 16
Question 1: A box contains 10 red marbles, 20 blue marbles, and 30 green marbles. 5 marbles are drawn from the box, what is the probability that(i) all will be blue? (ii) at least one will be green?Solution: The total number of marbles in the box = 10 + 20 + 30 = 60 marbles As 5 marbles are drawn from the box at a time, the number of ways drawing t
12 min read
Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Miscellaneous Exercise on Chapter 13 | Set 1
Chapter 13 of the NCERT Class 11 Mathematics textbook titled "Limits and Derivatives" introduces fundamental concepts in calculus focusing on the behavior of functions as they approach specific points and the concept of the derivatives. This chapter lays the groundwork for understanding the rate of the change of the functions and forms the basis fo
8 min read
Class 11 NCERT Solutions- Chapter 11 Conic Section - Miscellaneous Exercise on Chapter 11
The chapter on Conic Sections in Class 11 NCERT introduces students to various conic shapes like circles, ellipses, parabolas, and hyperbolas. This miscellaneous exercise covers a variety of problems that help reinforce the concepts learned in the chapter. This section provides solutions to the miscellaneous exercises in Chapter 11, Conic Sections.
7 min read
Class 11 NCERT Solutions- Chapter 3 Trigonometric Function - Miscellaneous Exercise on Chapter 3
Chapter 3 of Class 11 NCERT Mathematics titled "Trigonometric Functions" delves into the fundamental trigonometric functions and their applications. This chapter provides an in-depth understanding of the angles trigonometric ratios and functions which are essential for solving various mathematical problems. Trigonometric Functions - Miscellaneous E
10 min read
Class 11 NCERT Solutions- Chapter 1 Sets - Miscellaneous Exercise on Chapter 1 | Set 1
In Class 11 Mathematics, Chapter 1 focuses on "Sets" a fundamental topic in modern mathematics. The Sets form the foundation for the various branches of mathematics including algebra, probability, and statistics. The Miscellaneous Exercise of Chapter 1 provides a diverse set of problems designed to test and reinforce understanding of set theory con
8 min read
Class 12 NCERT Solutions- Mathematics Part I - Chapter 6 Application of Derivatives - Miscellaneous Exercise on Chapter 6 | Set 2
Content of this article has been merged with Chapter 6 Application of Derivatives - Miscellaneous Exercise as per the revised syllabus of NCERT. Chapter 6 of the Class 12 NCERT Mathematics textbook, titled "Application of Derivatives," is essential for understanding how derivatives are applied in real-world scenarios and various mathematical proble
13 min read
Class 11 NCERT Solutions- Chapter 2 Relation And Functions - Miscellaneous Exercise on Chapter 2
In this article, we will be going to solve the entire Miscellaneous Exercise of Chapter 2 of the NCERT textbook. Relations and functions are fundamental concepts in mathematics, particularly in algebra and calculus. They describe how elements from one set can be associated with elements from another set. What is Relation and Function?To learn more
11 min read
Class 12 NCERT Solutions- Mathematics Part I - Chapter 3 Matrices - Miscellaneous Exercise on Chapter 3
Chapter 3 of the Class 12 NCERT Mathematics textbook, titled "Matrices," covers fundamental concepts related to matrices, including operations such as addition, multiplication, and finding determinants and inverses. The Miscellaneous Exercise in this chapter provides a range of problems that integrate these concepts, helping students apply their un
13 min read
three90RightbarBannerImg