Problem 1: Find the distance between the following pairs of points:
(i) (2, 3, 5) and (4, 3, 1)
Solution:
Let P be (2, 3, 5) and Q be (4, 3, 1)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 2, y1 = 3, z1 = 5
x2 = 4, y2 = 3, z2 = 1
Length of distance PQ = √[(4 – 2)2 + (3 – 3)2 + (1 – 5)2]
= √[(2)2 + (0)2 + (-4)2]
= √[4 + 0 + 16]
= √20
= 2√5
∴ The length of distance PQ is 2√5 units.
(ii) (–3, 7, 2) and (2, 4, –1)
Solution:
Let P be (– 3, 7, 2) and Q be (2, 4, – 1)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = – 3, y1 = 7, z1 = 2
x2 = 2, y2 = 4, z2 = – 1
Length of distance PQ = √[(2 – (-3))2 + (4 – 7)2 + (-1 – 2)2]
= √[(5)2 + (-3)2 + (-3)2]
= √[25 + 9 + 9]
= √43
∴ The length of distance PQ is √43 units.
(iii) (–1, 3, – 4) and (1, –3, 4)
Solution:
Let P be (– 1, 3, – 4) and Q be (1, – 3, 4)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = – 1, y1 = 3, z1 = – 4
x2 = 1, y2 = – 3, z2 = 4
Length of distance PQ = √[(1 – (-1))2 + (-3 – 3)2 + (4 – (-4))2]
= √[(2)2 + (-6)2 + (8)2]
= √[4 + 36 + 64]
= √104
= 2√26
∴ The length of distance PQ is 2√26 units.
(iv) (2, –1, 3) and (–2, 1, 3)
Solution:
Let P be (2, – 1, 3) and Q be (– 2, 1, 3)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 2, y1 = – 1, z1 = 3
x2 = – 2, y2 = 1, z2 = 3
Length of distance PQ = √[(-2 – 2)2 + (1 – (-1))2 + (3 – 3)2]
= √[(-4)2 + (2)2 + (0)2]
= √[16 + 4 + 0]
= √20
= 2√5
∴ The required distance is 2√5 units.
Problem 2: Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Solution:
If three points are collinear, then they lie on a line.
Firstly let us calculate distance between the 3 points
i.e. PQ, QR and PR
P ≡ (– 2, 3, 5) and Q ≡ (1, 2, 3)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = – 2, y1 = 3, z1 = 5
x2 = 1, y2 = 2, z2 = 3
Length of distance PQ = √[(1 – (-2))2 + (2 – 3)2 + (3 – 5)2]
= √[(3)2 + (-1)2 + (-2)2]
= √[9 + 1 + 4]
= √14
Length of distance PQ is √14
Q ≡ (1, 2, 3) and R ≡ (7, 0, – 1)
Now, by using the distance formula,
Length of distance QR = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 1, y1 = 2, z1 = 3
x2 = 7, y2 = 0, z2 = – 1
Length of distance QR = √[(7 – 1)2 + (0 – 2)2 + (-1 – 3)2]
= √[(6)2 + (-2)2 + (-4)2]
= √[36 + 4 + 16]
= √56
= 2√14
Length of distance QR is 2√14
P ≡ (– 2, 3, 5) and R ≡ (7, 0, – 1)
Now, by using the distance formula,
Length of distance PR= √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = – 2, y1 = 3, z1 = 5
x2 = 7, y2 = 0, z2 = – 1
Length of distance PR = √[(7 – (-2))2 + (0 – 3)2 + (-1 – 5)2]
= √[(9)2 + (-3)2 + (-6)2]
= √[81 + 9 + 36]
= √126
= 3√14
Length of distance PR is 3√14
Thus, PQ = √14, QR = 2√14 and PR = 3√14
So, PQ + QR = √14 + 2√14
= 3√14
= PR
∴ The points P, Q and R are collinear.
Problem 3: Verify the following:
(i) (0, 7, –10), (1, 6, – 6) and (4, 9, – 6) are the vertices of an isosceles triangle.
Solution:
(0, 7, –10), (1, 6, – 6) and (4, 9, – 6) are the vertices of an isosceles triangle.
Let us consider the points be
P(0, 7, –10), Q(1, 6, – 6) and R(4, 9, – 6)
If any 2 sides are equal, hence it will be an isosceles triangle
So firstly let us calculate the distance of PQ, QR
P ≡ (0, 7, – 10) and Q ≡ (1, 6, – 6)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 0, y1 = 7, z1 = – 10
x2 = 1, y2 = 6, z2 = – 6
Length of distance PQ = √[(1 – 0)2 + (6 – 7)2 + (-6 – (-10))2]
= √[(1)2 + (-1)2 + (4)2]
= √[1 + 1 + 16]
= √18
Calculating QR
Q ≡ (1, 6, – 6) and R ≡ (4, 9, – 6)
Now, by using the distance formula,
Length of distance QR = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 1, y1 = 6, z1 = – 6
x2 = 4, y2 = 9, z2 = – 6
Length of distance QR = √[(4 – 1)2 + (9 – 6)2 + (-6 – (-6))2]
= √[(3)2 + (3)2 + (-6+6)2]
= √[9 + 9 + 0]
= √18
Hence,
Length of distance PQ = Length of distance QR i.e
√18 = √18
∴ Length of 2 sides are equal
∴ PQR is an isosceles triangle.
(ii) (0, 7, 10), (–1, 6, 6) and (– 4, 9, 6) are the vertices of a right-angled triangle.
Solution:
(0, 7, 10), (–1, 6, 6) and (– 4, 9, 6) are the vertices of a right-angled triangle.
Let the points be
P(0, 7, 10), Q(– 1, 6, 6) & R(– 4, 9, 6)
Firstly let us calculate the distance of PQ, OR and PR
Calculating PQ
P ≡ (0, 7, 10) and Q ≡ (– 1, 6, 6)
Now, by using the distance formula,
Length of distance PQ = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 0, y1 = 7, z1 = 10
x2 = – 1, y2 = 6, z2 = 6
Length of distance PQ = √[(-1 – 0)2 + (6 – 7)2 + (6 – 10)2]
= √[(-1)2 + (-1)2 + (-4)2]
= √[1 + 1 + 16]
= √18
Length of distance PQ is √18cm
Q ≡ (1, 6, – 6) and R ≡ (4, 9, – 6)
Now, by using the distance formula,
Length of distance QR = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 1, y1 = 6, z1 = – 6
x2 = 4, y2 = 9, z2 = – 6
Length of distance QR = √[(4 – 1)2 + (9 – 6)2 + (-6 – (-6))2]
= √[(3)2 + (3)2 + (-6+6)2]
= √[9 + 9 + 0]
= √18
Length of distance QR is √18cm
P ≡ (0, 7, 10) and R ≡ (– 4, 9, 6)
Now, by using the distance formula,
Length of distance PR = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 0, y1 = 7, z1 = 10
x2 = – 4, y2 = 9, z2 = 6
Length of distance PR = √[(-4 – 0)2 + (9 – 7)2 + (6 – 10)2]
= √[(-4)2 + (2)2 + (-4)2]
= √[16 + 4 + 16]
= √36
Length of distance PR is √36cm
Now,
PQ2 + QR2 = 18 + 18
= 36
= PR2
By using converse of Pythagoras theorem,
∴ The given vertices P, Q & R are the vertices of a right-angled triangle at Q
(iii) (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Solution :
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Let the points be: A(–1, 2, 1), B(1, –2, 5), C(4, –7, 8) & D(2, –3, 4)
ABCD can be vertices of parallelogram only if opposite sides are equal.
i.e. AB = CD and BC = AD
Firstly let us calculate the distance
A ≡ (– 1, 2, 1) and B ≡ (1, – 2, 5)
Now, by using the distance formula,
Length of distance AB = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = – 1, y1 = 2, z1 = 1
x2 = 1, y2 = – 2, z2 = 5
Length of distance AB = √[(1 – (-1))2 + (-2 – 2)2 + (5 – 1)2]
= √[(2)2 + (-4)2 + (4)2]
= √[4 + 16 + 16]
= √36
= 6
Length of distance AB is 6cm
B ≡ (1, – 2, 5) and C ≡ (4, – 7, 8)
Now, by using the distance formula,
Length of distance BC = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 1, y1 = – 2, z1 = 5
x2 = 4, y2 = – 7, z2 = 8
Length of distance BC = √[(4 – 1)2 + (-7 – (-2))2 + (8 – 5)2]
= √[(3)2
+ (-5)2 + (3)2]
= √[9 + 25 + 9]
= √43
Length of distance BC is √43cm
C ≡ (4, – 7, 8) and D ≡ (2, – 3, 4)
Now, by using the distance formula,
Length of distance CD = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 4, y1 = – 7, z1 = 8
x2 = 2, y2 = – 3, z2 = 4
Length of distance CD = √[(2 – 4)2 + (-3 – (-7))2 + (4 – 8)2]
= √[(-2)2 + (4)2 + (-4)2]
= √[4 + 16 + 16]
= √36
= 6
Length of distance CD is 6cm
D ≡ (2, – 3, 4) and A ≡ (– 1, 2, 1)
By using the formula,
Length of distance DA = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = 2, y1 = – 3, z1 = 4
x2 = – 1, y2 = 2, z2 = 1
Length of distance DA = √[(-1 – 2)2 + (2 – (-3))2 + (1 – 4)2]
= √[(-3)2 + (5)2 + (-3)2]
= √[9 + 25 + 9]
= √43
Length of distance DA is √43cm
Since AB = CD and BC = DA (given)
So, In ABCD both pairs of opposite sides are equal
∴ ABCD is a parallelogram
Problem 4: Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Solution:
Let A (1, 2, 3) & B (3, 2, – 1)
Let point P be (x, y, z)
Since it is given that point P(x, y, z) is equal distance from point A(1, 2, 3) & B(3, 2, – 1) i.e. PA = PB
P ≡ (x, y, z) and A ≡ (1, 2, 3)
Now, by using the distance formula,
Now, by using the distance formula, PA = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = x, y1 = y, z1 = z
x2 = 1, y2 = 2, z2 = 3
Length of distance PA = √[(1 – x)2 + (2 – y)2 + (3 – z)2]
P ≡ (x, y, z) and B ≡ (3, 2, – 1)
Now, by using the distance formula,
Length of distance PB = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = x, y1 = y, z1 = z
x2 = 3, y2 = 2, z2 = – 1
Length of distance PB = √[(3 – x)2 + (2 – y)2 + (-1 – z)2]
Since PA = PB
Square on both the sides, we get
PA2 = PB2
(1 – x)2 + (2 – y)2 + (3 – z)2 = (3 – x)2 + (2 – y)2 + (– 1 – z)2
(1 + x2 – 2x) + (4 + y2 – 4y) + (9 + z2 – 6z)
(9 + x2 – 6x) + (4 + y2 – 4y) + (1 + z2 + 2z)
– 2x – 4y – 6z + 14 = – 6x – 4y + 2z + 14
4x – 8z = 0
x – 2z = 0
∴ The required equation is x – 2z = 0
Problem 5: Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (– 4, 0, 0) is equal to 10.
Solution:
Let A (4, 0, 0) & B (– 4, 0, 0)
Let the coordinates of point P be (x, y, z)
Calculating PA
P ≡ (x, y, z) and A ≡ (4, 0, 0)
Now, by using the distance formula,
Length of distance PA = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = x, y1 = y, z1 = z
x2 = 4, y2 = 0, z2 = 0
Length of distance PA = √[(4– x)2 + (0 – y)2 + (0 – z)2]
Calculating PB
P ≡ (x, y, z) and B ≡ (– 4, 0, 0)
Now, by using the distance formula,
Length of distance PB = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]
So here,
x1 = x, y1 = y, z1 = z
x2 = – 4, y2 = 0, z2 = 0
Length of distance PB = √[(-4– x)2 + (0 – y)2 + (0 – z)2]
Now it is given that:
PA + PB = 10
PA = 10 – PB
Square on both the sides, we get
PA2 = (10 – PB)2
PA2 = 100 + PB2 – 20 PB
(4 – x)2 + (0 – y)2 + (0 – z)2
100 + (– 4 – x)2 + (0 – y)2 + (0 – z)2 – 20 PB
(16 + x2 – 8x) + (y2) + (z2)
100 + (16 + x2 + 8x) + (y2) + (z2) – 20 PB
20 PB = 16x + 100
5 PB = (4x + 25)
Square on both the sides again, we get
25 PB2 = 16x2 + 200x + 625
25 [(– 4 – x)2 + (0 – y)2 + (0 – z)2] = 16x2 + 200x + 625
25 [x2 + y2 + z2 + 8x + 16] = 16x2 + 200x + 625
25x2 + 25y2 + 25z2 + 200x + 400 = 16x2 + 200x + 625
9x2 + 25y2 + 25z2 – 225 = 0
∴ The required equation is 9x2 + 25y2 + 25z2 – 225 = 0
Similar Reads
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1)Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = â[(x2 â x1)2 + (y2 â y1)2 + (z2 â z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Len
14 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.1
Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates? Solution: If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0) Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate? Solution: If a point is in XZ plan
2 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Exercise 11.1
Problem 1: A point is on the x-axis. What are its y coordinate and z-coordinates?Solution: If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0) Problem 2: A point is in the XZ-plane. What can you say about its y-coordinate?Solution: If a point is in XZ plane,
2 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.2
Problem 1: Find the distance between the following pairs of points:(i) (2, 3, 5) and (4, 3, 1) Solution: Let P be (2, 3, 5) and Q be (4, 3, 1) Now, by using the distance formula, Length of distance PQ = â[(x2 â x1)2 + (y2 â y1)2 + (z2 â z1)2] So here, x1 = 2, y1 = 3, z1 = 5 x2 = 4, y2 = 3, z2 = 1 Le
14 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Exercise 12.3
Chapter 12 of the Class 11 NCERT Mathematics textbook, titled "Introduction to Three-Dimensional Geometry," provides an essential foundation for understanding the spatial relationships between points, lines, and planes in three dimensions. This chapter introduces the concepts of coordinates in three
9 min read
NCERT Solutions Class 11 - Chapter 11 Introduction to three dimensional Geometry - Miscellaneous Exercise
Question 1: Three vertices of a parallelogram ABCD are A(3, â 1, 2), B (1, 2, â 4), and C (â 1, 1, 2). Find the coordinates of the fourth vertex.Solution:Â ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z). Using the property: The diagonals of a parallel
4 min read
Class 12 NCERT Mathematics Solutionsâ Chapter 11 â Three Dimensional Geometry Exercise 11.2
Chapter 11 of the Class 12 NCERT Mathematics Part II textbook, titled "Three Dimensional Geometry," explores the concepts and techniques used to analyze and solve problems in three-dimensional space. Exercise 11.2 focuses on applying these concepts to specific problems involving three-dimensional co
14 min read
Class 11 NCERT Solutions- Chapter 12 Introduction to three dimensional Geometry - Miscellaneous Exercise on Chapter 12
Question 1: Three vertices of a parallelogram ABCD are A(3, â 1, 2), B (1, 2, â 4), and C (â 1, 1, 2). Find the coordinates of the fourth vertex. Solution: ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2) and D (x, y, z). Using the property: The diagonals of a parallel
7 min read
Class 12 NCERT Solutions- Mathematics Part II â Chapter 11 â Three Dimensional Geometry Exercise 11.1
Question 1: If a line makes angles 90°, 135°, and 45° with x, y, and z-axes respectively, find its direction cosines.Solution: Let the direction cosines of the lines be l, m, and n. l = cos 90° = 0 m = cos 135° = - 1/â2 n = cos 45° = 1/â2 Therefore , the direction cosines of the lines are 0, - 1/â2,
3 min read
Class 12 NCERT Solutions â Mathematics Part ii â Chapter 11 â Three Dimensional Geometry â Miscellaneous Exercise
1. Find the angle between the lines whose direction ratios are a, b, c and b â c, c â a, a â b.Solution: The angle θ between the lines with direction cosines a, b, c and b â c, c â a, a â b is given by: [Tex]cosθ=|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}.\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}|\\ θ=co
2 min read