Open In App

Need of Data Structures and Algorithms for Deep Learning and Machine Learning

Last Updated : 19 Jan, 2023
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Save
Share
Report
News Follow

Deep Learning is a field that is heavily based on Mathematics and you need to have a good understanding of Data Structures and Algorithms to solve the mathematical problems optimally. Data Structures and Algorithms can be used to determine how a problem is represented internally or how the actual storage pattern works & what is happening under the hood for a problem.

Data structures and algorithms play a crucial role in the field of deep learning and machine learning. They are used to efficiently store and process large amounts of data, which is essential for training and deploying machine learning models.

Data storage: Deep learning and machine learning models require large amounts of data to be trained effectively. Data structures such as arrays, lists, and dictionaries are used to store this data in an organized manner, making it easy to access and manipulate.

Data processing: Data structures such as queues, stacks, and heaps are used to process data efficiently. They are used to implement algorithms such as sorting, searching, and traversal, which are essential for data preprocessing and feature extraction.

Memory management: Deep learning and machine learning models can require a large amount of memory to be trained and deployed. Data structures such as linked lists and trees are used to manage memory efficiently, which is essential for working with large datasets.

Optimization: Many machine learning algorithms require optimization techniques such as gradient descent, which are used to find the optimal values of the model’s parameters. Data structures such as priority queues and hash tables are used to implement these optimization techniques efficiently.

Data parallelism: Data parallelism is a technique used to speed up the training process by distributing the data across multiple processors or GPUs. Data structures such as distributed arrays and matrices are used to implement data parallelism efficiently.

Model parallelism: Model parallelism is a technique used to speed up the training process by distributing the model across multiple processors or GPUs. Data structures such as shared memory and message passing are used to implement model parallelism efficiently.

What knowledge of Data Structures and Algorithms is required in the field of Deep Learning and Why is it required?

1. Algorithms (Most Important)

1.1 Dynamic Programming Algorithms (DP): 

The dynamic programming concept helps to explore every possibility and subsequently responsible to choose one aspect which is most expected at each step of the computation. In a genetic algorithm, the reinforcement learning algorithm uses the concept of dynamic programming. Generative models, specifically the Hidden Markov Model make use of the Viterbi Algorithm which is also based on dynamic programming.

1.2 Randomized and Sub-linear Algorithm:

These algorithms are helpful in Stochastic Optimization, Randomized low-rank Matrix Approximation, Dropout for deep learning, Randomized reduction for regression which are the crucial topics of the Deep Learning discipline while sub-linear optimization problems arise in deep learning, such as training linear classifiers and finding minimum enclosing balls.

1.3 More algorithms: 

  • Gradient/ Stochastic Algorithms
  • Primal-Dual Methods

2. Data Structures (Most Important)

2.1 Linked Lists:

Insertion and deletion are constant-time operations in the linked list if the node is known for which such operation needs to be done. So, linked lists can be used for the same application as in dynamic arrays as array requires shifting of elements if the new element is inserted at the start or the middle and that’s O(N) time complexity which is costly, hence linked list can be considered as a perfect cheaper option since it can also be converted to arrays.

2.2 Binary Trees and Balanced Binary Trees:

As binary trees are sorted, insertion and deletion can be done in O(log N) time complexity and like the concept on linked lists mentioned above – a binary tree can also be transformed into an array. Now coming to worst-case when data is laid out linearly insertion is O(N) and various transformation technique needs to be applied to make the tree more balanced. Moreover, the NN algorithm in Deep Learning requires the knowledge of the k-dimensional tree which uses binary search tree concepts.

2.3 Heap Data Structure:

This Data Structure is somehow similar to trees but it’s based on vertical ordering, unlike trees. Though, the same application can be applied to be in use with Heap data structure as that was applied in the case with trees above but with a different approach. Also, unlike trees, most of the heaps are stored in an array with the relationships between elements only implicit.

2.4 Dynamic Arrays: 

A very important topic when encountering Linear Algebra, to be specific it is required for Matrix Arithmetic where a person encounters One-dimensional, Two-dimensional, or even three or four Dimensional arrays. Additionally, a good grasp of Python NumPy is required if working with Python as the main programming language for implementing Deep Learning algorithms.

2.5 Stack Data Structure:

Based on the concept of “Last In First Out”, most libraries in Deep Learning uses recursive control language for generalizing binary classification which can be implemented by a stack. Also, stacks are quite easy to learn, and having a good grasp can help in many computer science aspects as well such as parsing grammar, etc.

2.6 Queue Data Structure:

It is defined as “first-in, first-out” and its approach is used in predicting a Queuing scenario, where a histogram of the people waiting in the queue vs Probability density can be drawn from the given data set. The same can be applied for recording the split time of a car in an F1 racing where there are queues of cars enter the finish line and the queue concept can be applied here to record the split time of each car passing by and also draw the corresponding histogram from the given data sets.

2.7 Set: 

The set data structure is very useful as mathematics associated with Deep Learning mainly is based on dealing with datasets, so this data structure is very helpful for a long career in Deep Learning. Moreover, Python has a set method that is very useful and much preferred.

2.8 Hashing: 

It’s a data indexing method that can be applied to reduce the computational overhead for Deep Learning. An optimal hash function is used to convert the datasets into an organizable small number called hashes and also hashing is of course heavily used in information storage and retrieval contexts. Hashing was one of the key methodologies for handling big data well before “big data” was evenly a widely used term and it shows the ability of hashing.

2.9 Graphs:

This data structure has a huge influence in the field of Machine learning. For example in Link prediction, to predict missing edges that are most likely to be formed in the future or predict missing relations between entities in a knowledge graph. Hence, you’re required to have a proficiency with the Graph data structure for Deep Learning or Machine Learning.

References:



Similar Reads

Does a Data Scientist/Machine Learning Engineer require in depth knowledge of Data Structures and Algorithms?
In today's world, data scientists and machine learning engineers play a crucial role in analyzing data and building intelligent systems. As technology continues to advance, the demand for these experts is growing rapidly. Real-world data problems are complex, requiring strong skills in handling data and creating efficient algorithms. In this articl
10 min read
Difference Between Machine Learning and Deep Learning
If you are interested in building your career in the IT industry then you must have come across the term Data Science which is a booming field in terms of technologies and job availability as well. In this article, we will explore the Difference between Machine Learning and Deep Learning, two major fields within Data Science. Understanding these di
8 min read
Artificial intelligence vs Machine Learning vs Deep Learning
Nowadays many misconceptions are there related to the words machine learning, deep learning, and artificial intelligence (AI), most people think all these things are the same whenever they hear the word AI, they directly relate that word to machine learning or vice versa, well yes, these things are related to each other but not the same. Let's see
4 min read
Difference Between Artificial Intelligence vs Machine Learning vs Deep Learning
Artificial Intelligence is basically the mechanism to incorporate human intelligence into machines through a set of rules(algorithm). AI is a combination of two words: "Artificial" meaning something made by humans or non-natural things and "Intelligence" meaning the ability to understand or think accordingly. Another definition could be that "AI is
14 min read
AI vs. Machine Learning vs. Deep Learning vs. Neural Networks
Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and Neural Networks (NN) are terms often used interchangeably. However, they represent different layers of complexity and specialization in the field of intelligent systems. This article will clarify the Difference between AI vs. machine learning vs. deep learning vs. neural n
6 min read
Deep Belief Network (DBN) in Deep Learning
Discover data creation with Deep Belief Networks (DBNs), cutting-edge generative models that make use of deep architecture. This article walks you through the concepts of DBNs, how they work, and how to implement them using practical coding. What is a Deep Belief Network?Deep Belief Networks (DBNs) are sophisticated artificial neural networks used
9 min read
Deep Boltzmann Machines (DBMs) in Deep Learning
In this article, we will discuss the Deep Boltzmann Machines concepts and their applications in the real-world scenario. What are Deep Boltzmann Machines (DBMs)?Deep Boltzmann Machines (DBMs) are a kind of artificial neural network that belongs to the family of generative models. They are designed to discover intricate structures within large datas
10 min read
Unveiling the Power of Fastai: A Deep Dive into the Versatile Deep Learning Library
Fastai is a powerful deep-learning library designed for researchers and practitioners. It offers high-level abstractions, PyTorch integration, and application-specific APIs, making it both adaptable and accessible for a wide range of deep learning tasks. In this article, we'll delve into the intricacies of Fastai, a powerful deep-learning library.
9 min read
Why Deep Learning Need GPU
In the realm of deep learning, where complex models handle massive datasets to derive insights and predictions, the role of GPUs (Graphics Processing Units) is paramount. GPUs offer substantial advantages over CPUs (Central Processing Units), particularly in terms of speed and efficiency for training deep neural networks. This article explores the
3 min read
AlphaFold: Predicting Protein Structures with Deep Learning
AlphaFold is an AI-driven system developed by DeepMind to predict protein structures with high accuracy. Its various iterations have been part of the continuous improvement in computational biology. Proteins are essential molecules in living organisms, involved in virtually every process within cells. The shape of a protein determines its function,
6 min read
Getting started with Machine Learning || Machine Learning Roadmap
Machine Learning (ML) represents a branch of artificial intelligence (AI) focused on enabling systems to learn from data, uncover patterns, and autonomously make decisions. In today's era dominated by data, ML is transforming industries ranging from healthcare to finance, offering robust tools for predictive analytics, automation, and informed deci
11 min read
Introduction to Multi-Task Learning(MTL) for Deep Learning
Multi-Task Learning (MTL) is a type of machine learning technique where a model is trained to perform multiple tasks simultaneously. In deep learning, MTL refers to training a neural network to perform multiple tasks by sharing some of the network's layers and parameters across tasks. In MTL, the goal is to improve the generalization performance of
6 min read
Zero Shot Learning in Deep Learning
As artificial intelligence (AI) continues to evolve, one of the most intriguing challenges is how to enable models to recognize new concepts without needing labeled data for every possible category. Traditionally, machine learning models rely on vast amounts of labeled data to perform well. However, this becomes impractical in real-world scenarios
8 min read
Machine Learning Algorithms for 2D Data?
Answer: Common ML algorithms for 2D data include K-Nearest Neighbours, Support Vector Machines, Decision Trees, and Convolutional Neural Networks. Machine learning algorithms have a broad range of applications, including the analysis of 2D data, which is common in fields like image processing and spatial data analysis. The choice of algorithm depen
1 min read
Top 15 Machine Learning Algorithms Every Data Scientist Should Know in 2024
Machine Learning (ML) Algorithms are the backbone of everything from Netflix recommendations to fraud detection in financial institutions. These algorithms form the core of intelligent systems, empowering organizations to analyze patterns, predict outcomes, and automate decision-making processes. With so many algorithms available, understanding the
15 min read
Support vector machine in Machine Learning
In this article, we are going to discuss the support vector machine in machine learning. We will also cover the advantages and disadvantages and application for the same. Let's discuss them one by one. Support Vector Machines : Support vector machine is a supervised learning system and is used for classification and regression problems. Support vec
9 min read
Azure Virtual Machine for Machine Learning
Prerequisites: About Microsoft Azure, Cloud Based Services Some of the Machine Learning and Deep Learning algorithms may require high computation power which may not be supported by your local machine or laptop. In that case, creating a Virtual Machine on a cloud platform can provide you the expected computation power. We can have a system with hig
4 min read
Machine Learning Model with Teachable Machine
Teachable Machine is a web-based tool developed by Google that allows users to train their own machine learning models without any coding experience. It uses a web camera to gather images or videos, and then uses those images to train a machine learning model. The user can then use the model to classify new images or videos. The process of creating
7 min read
Why Data Structures and Algorithms are "Must Have" for Developers and Where to learn them : Answered
With advancement and innovation in technology, programming is becoming a highly in-demand skill for Software Developers. Everything you see around yourself from Smart TVs, ACs, Lights, Traffic Signals uses some kind of programming for executing user commands. In order to be irreplaceable, one must always be efficient. Data Structures and Algorithms
4 min read
Data Structures and Algorithms Online Courses : Free and Paid
Data Structures and Algorithms is one of the most important skills that every computer science student must-have. It is often seen that people with good knowledge of these technologies are better programmers than others and thus, crack the interviews of almost every tech giant. Now, you must be thinking to opt for a quality DSA Course to build
7 min read
Data Structures and Algorithms | Set 36
Que - 1. The function shiftNode() which takes as input two linked lists- destination and source. It deletes front node from source and places it onto the front of destination. Choose the set of statements which replace X, Y, Z in given function. void shiftNode(struct node** destRoot, struct node** srcRoot) { // the front of source node struct node*
4 min read
Data Structures and Algorithms | Set 37
Que - 1. For 8 keys and 6 slots in a hashing table with uniform hashing and chaining, what is the expected number of items that hash to a particular location. (A) 2.33 (B) 0.75 (C) 1.33 (D) 2 Solution: Probability that key1 ends up in slot 1 = 1/6 Probability that key2 ends up in slot 1 = 1/6 Probability that key3 ends up in slot x = 1/6 Probabilit
4 min read
Difference between Data Structures and Algorithms
What are Data Structures and Algorithms? Data structures and algorithms are two interrelated concepts in computer science. Data structures refer to the organization, storage, and retrieval of data, while algorithms refer to the set of instructions used to solve a particular problem or perform a specific task. Applications of Data Structures and Alg
2 min read
Introduction to Rolling Hash - Data Structures and Algorithms
A rolling hash is a hash function that is used to efficiently compute a hash value for a sliding window of data. It is commonly used in computer science and computational biology, where it can be used to detect approximate string matches, find repeated substrings, and perform other operations on sequences of data. The idea behind a rolling hash is
15+ min read
Are Data Structures and Algorithms important for Web Developers?
Web development is constantly changing, and new languages, technologies, and tools are emerging to help developers create engaging and functional web applications. Despite these additions, some basic concepts remain the same no matter what kind of development we are talking about, what language we’re using, or what platform we’re working on. Two of
7 min read
Walk-Through DSA3 : Data Structures and Algorithms Online Course by GeeksforGeeks
This is a 10 weeks long online certification program specializing in Data Structures & Algorithms which includes pre-recorded premium Video lectures & programming questions for practice. You will learn algorithmic techniques for solving various computational problems and will implement more than 200 algorithmic coding problems. This course
5 min read
Live Classes for Data Structures and Algorithms: Interview Preparation Focused Course
Engineers have the power to change the world by solving real-world problems but underneath its DSA that plays a crucial role in solving all the problems we are surrounded with. These all are the reasons people from all age groups love to move towards programming and want to learn it. Also, all the major tech companies (Google, Microsoft, Amazon, Fa
4 min read
Best Data Structures and Algorithms Books
Data Structures and Algorithms is one of the most important skills that every Computer Science student must have. There are a number of remarkable publications on DSA in the market, with different difficulty levels, learning approaches and programming languages. In this article we're going to discuss a summary of top 10 Best Data Structures and Alg
9 min read
Is Data Structures and Algorithms Required for Android Development?
Android development is a rapidly evolving field, with new technologies and tools constantly emerging. One question that often arises is whether a solid understanding of data structures and algorithms is necessary for Android developers. In this article, we will explore the importance of data structures and algorithms in software development, their
4 min read
Understanding "Efficiency" when working with Data Structures and Algorithms
What is Efficient Programming?Efficient programming is programming in a manner that, when the program is executed, uses a low amount of overall resources pertaining to computer hardware.  Practicing to create a small file size and low resource algorithm results in an efficient program. Below are some important concepts you should know to understand
8 min read
three90RightbarBannerImg