Más Información Sobre Plataformas de MLOps
¿Cuáles son las alternativas a las plataformas de MLOps?
Las alternativas a las plataformas de MLOps pueden reemplazar este tipo de software, ya sea parcial o completamente:
Plataformas de ciencia de datos y aprendizaje automático: Dependiendo del caso de uso, las empresas podrían considerar plataformas de ciencia de datos y aprendizaje automático. Este software proporciona una plataforma para el desarrollo completo de modelos de aprendizaje automático y puede proporcionar características más robustas en torno a la operacionalización de estos algoritmos.
Software de aprendizaje automático: Las plataformas de MLOps son excelentes para el monitoreo y gestión a gran escala de modelos, ya sea para visión por computadora, procesamiento de lenguaje natural (NLP) y más. Sin embargo, en algunos casos, las empresas pueden querer una solución que esté más disponible de inmediato, que puedan usar de manera plug-and-play. En tal caso, pueden considerar el software de aprendizaje automático, que implicará menos tiempo de configuración y costos de desarrollo.
Muchos tipos diferentes de algoritmos de aprendizaje automático realizan varias tareas y funciones. Estos algoritmos pueden consistir en algoritmos de aprendizaje automático más específicos, como aprendizaje de reglas de asociación, redes bayesianas, agrupamiento, aprendizaje de árboles de decisión, algoritmos genéticos, sistemas de clasificación de aprendizaje y máquinas de vectores de soporte, entre otros. Esto ayuda a las organizaciones que buscan soluciones puntuales.
Software relacionado con las plataformas de MLOps
Las soluciones relacionadas que pueden usarse junto con las plataformas de MLOps incluyen:
Software de preparación de datos: El software de preparación de datos ayuda a las empresas con su gestión de datos. Estas soluciones permiten a los usuarios descubrir, combinar, limpiar y enriquecer datos para un análisis simple. Aunque las plataformas de MLOps ofrecen características de preparación de datos, las empresas podrían optar por una herramienta de preparación dedicada.
Software de almacén de datos: La mayoría de las empresas tienen una gran cantidad de fuentes de datos dispares, y para integrar mejor todos sus datos, implementan un almacén de datos. Los almacenes de datos albergan datos de múltiples bases de datos y aplicaciones empresariales, permitiendo que las herramientas de inteligencia empresarial y análisis extraigan todos los datos de la empresa desde un único repositorio.
Software de etiquetado de datos: Para lograr el aprendizaje supervisado desde el principio, es clave tener datos etiquetados. Implementar un esfuerzo de etiquetado sistemático y sostenido puede ser ayudado por el software de etiquetado de datos, que proporciona un conjunto de herramientas para que las empresas conviertan datos no etiquetados en datos etiquetados y construyan algoritmos de IA correspondientes.
Software de procesamiento de lenguaje natural (NLP): NLP permite a las aplicaciones interactuar con el lenguaje humano utilizando un algoritmo de aprendizaje profundo. Los algoritmos de NLP ingresan lenguaje y dan una variedad de salidas basadas en la tarea aprendida. Los algoritmos de NLP proporcionan reconocimiento de voz y generación de lenguaje natural (NLG), que convierte datos en lenguaje humano comprensible. Algunos ejemplos de usos de NLP incluyen chatbots, aplicaciones de traducción y herramientas de monitoreo de redes sociales que escanean redes sociales en busca de menciones.
Cómo comprar plataformas de MLOps
Recolección de requisitos (RFI/RFP) para plataformas de MLOps
Si una empresa está comenzando y busca comprar su primera plataforma de ciencia de datos y aprendizaje automático, o donde sea que una empresa esté en su proceso de compra, g2.com puede ayudar a seleccionar la mejor opción.
El primer paso en el proceso de compra debe involucrar un examen cuidadoso de los datos de la empresa. Como parte fundamental del viaje de la ciencia de datos implica la ingeniería de datos (es decir, la recolección y análisis de datos), las empresas deben asegurarse de que la calidad de sus datos sea alta y que la plataforma en cuestión pueda manejar adecuadamente sus datos, tanto en términos de formato como de volumen. Si la empresa ha acumulado muchos datos, deben buscar una solución que pueda crecer con la organización. Los usuarios deben pensar en los puntos de dolor y anotarlos; estos deben usarse para ayudar a crear una lista de criterios. Además, el comprador debe determinar el número de empleados que necesitarán usar este software, ya que esto impulsa el número de licencias que probablemente comprarán.
Tomar una visión holística del negocio e identificar puntos de dolor puede ayudar al equipo a lanzarse a crear una lista de criterios. La lista sirve como una guía detallada que incluye tanto características necesarias como agradables de tener, incluyendo presupuesto, características, número de usuarios, integraciones, requisitos de seguridad, soluciones en la nube o en las instalaciones, y más.
Dependiendo del alcance del despliegue, podría ser útil producir un RFI, una lista de una página con algunos puntos clave que describan lo que se necesita de una plataforma de ciencia de datos.
Comparar plataformas de MLOps
Crear una lista larga
Desde satisfacer las necesidades de funcionalidad empresarial hasta la implementación, las evaluaciones de proveedores son una parte esencial del proceso de compra de software. Para facilitar la comparación, después de que todas las demostraciones estén completas, ayuda a preparar una lista consistente de preguntas sobre necesidades y preocupaciones específicas para hacer a cada proveedor.
Crear una lista corta
De la lista larga de proveedores, es útil reducir la lista de proveedores y llegar a una lista más corta de contendientes, preferiblemente no más de tres a cinco. Con esta lista en mano, las empresas pueden producir una matriz para comparar las características y precios de las diversas soluciones.
Realizar demostraciones
Para asegurar que la comparación sea exhaustiva, el usuario debe demostrar cada solución en la lista corta con el mismo caso de uso y conjuntos de datos. Esto permitirá a la empresa evaluar de manera similar y ver cómo cada proveedor se compara con la competencia.
Selección de plataformas de MLOps
Elegir un equipo de selección
Antes de comenzar, crear un equipo ganador que trabajará junto durante todo el proceso, desde identificar puntos de dolor hasta la implementación, es crucial. El equipo de selección de software debe consistir en miembros de la organización con el interés, habilidades y tiempo adecuados para participar en este proceso. Un buen punto de partida es apuntar a tres a cinco personas que ocupen roles como el principal tomador de decisiones, gerente de proyecto, propietario del proceso, propietario del sistema o experto en materia de personal, así como un líder técnico, administrador de TI o administrador de seguridad. En empresas más pequeñas, el equipo de selección de proveedores puede ser más pequeño, con menos participantes multitarea y asumiendo más responsabilidades.
Negociación
El hecho de que algo esté escrito en la página de precios de una empresa no significa que sea fijo (aunque algunas empresas no cederán). Es imperativo abrir una conversación sobre precios y licencias. Por ejemplo, el proveedor puede estar dispuesto a dar un descuento por contratos de varios años o por recomendar el producto a otros.
Decisión final
Después de esta etapa, y antes de comprometerse por completo, se recomienda realizar una prueba piloto o programa piloto para probar la adopción con una pequeña muestra de usuarios. Si la herramienta es bien utilizada y bien recibida, el comprador puede estar seguro de que la selección fue correcta. Si no, podría ser el momento de volver a la mesa de dibujo.
Implementación de plataformas de MLOps
¿Cómo se implementan las plataformas de MLOps?
La implementación difiere drásticamente dependiendo de la complejidad y escala de los datos. En organizaciones con grandes cantidades de datos en fuentes dispares (por ejemplo, aplicaciones, bases de datos, etc.), a menudo es prudente utilizar una parte externa, ya sea un especialista en implementación del proveedor o una consultoría externa. Con vasta experiencia bajo su cinturón, pueden ayudar a las empresas a entender cómo conectar y consolidar sus fuentes de datos y cómo usar el software de manera eficiente y efectiva.
¿Quién es responsable de la implementación de las plataformas de MLOps?
Puede requerir muchas personas, o muchos equipos, para desplegar adecuadamente una plataforma de ciencia de datos, incluyendo ingenieros de datos, científicos de datos e ingenieros de software. Esto se debe a que, como se mencionó, los datos pueden atravesar equipos y funciones. Como resultado, es raro que una persona o incluso un equipo tenga una comprensión completa de todos los activos de datos de una empresa. Con un equipo multifuncional en su lugar, una empresa puede comenzar a juntar sus datos y comenzar el viaje de la ciencia de datos, comenzando con la preparación y gestión adecuada de los datos.
¿Cómo es el proceso de implementación para las plataformas de MLOps?
En términos de implementación, es típico que el despliegue de la plataforma comience de manera limitada y posteriormente se extienda de manera más amplia. Por ejemplo, una marca minorista podría decidir realizar una prueba A/B de su uso de un algoritmo de personalización para un número limitado de visitantes a su sitio para entender mejor cómo está funcionando. Si el despliegue es exitoso, el equipo de ciencia de datos puede presentar sus hallazgos a su equipo de liderazgo (que podría ser el CTO, dependiendo de la estructura del negocio).
Si el despliegue no fue exitoso, el equipo podría volver a la mesa de dibujo, intentando averiguar qué salió mal. Esto implicará examinar los datos de entrenamiento, así como los algoritmos utilizados. Si intentan de nuevo, pero nada parece ser exitoso (es decir, el resultado es defectuoso o no hay mejora en las predicciones), la empresa podría necesitar volver a lo básico y revisar sus datos en su conjunto.
¿Cuándo deberías implementar plataformas de MLOps?
Como se mencionó anteriormente, la ingeniería de datos, que implica preparar y recopilar datos, es una característica fundamental de los proyectos de ciencia de datos. Por lo tanto, las empresas deben priorizar poner sus datos en orden, asegurándose de que no haya registros duplicados o campos desalineados. Aunque esto suena básico, no lo es. Datos defectuosos como entrada resultarán en datos defectuosos como salida.
Tendencias de las plataformas de MLOps
AutoML
AutoML ayuda a automatizar muchas tareas necesarias para desarrollar aplicaciones de IA y aprendizaje automático. Los usos incluyen preparación automática de datos, ingeniería de características automatizada, proporcionar explicabilidad para modelos, y más.
IA embebida
La funcionalidad de aprendizaje automático y profundo se está integrando cada vez más en casi todos los tipos de software, independientemente de si el usuario es consciente de ello o no. Usar IA embebida dentro de software como CRM, automatización de marketing y soluciones de análisis permite a los usuarios agilizar procesos, automatizar ciertas tareas y obtener una ventaja competitiva con capacidades predictivas. La IA embebida puede aumentar gradualmente en los próximos años y puede hacerlo de la manera en que el despliegue en la nube y las capacidades móviles lo han hecho en la última década más o menos. Eventualmente, los proveedores pueden no necesitar resaltar los beneficios de su producto del aprendizaje automático, ya que puede ser simplemente asumido y esperado.
Aprendizaje automático como servicio (MLaaS)
El entorno de software se ha movido a una estructura más granular, de microservicios, particularmente para las necesidades de operaciones de desarrollo. Además, el auge de los servicios de infraestructura en la nube pública ha permitido a las grandes empresas ofrecer servicios de desarrollo e infraestructura a otras empresas con un modelo de pago por uso. El software de IA no es diferente, ya que las mismas empresas ofrecen MLaaS a otras empresas.
Los desarrolladores aprovechan fácilmente estos algoritmos y soluciones preconstruidos alimentándolos con sus propios datos para obtener conocimientos. Usar sistemas construidos por empresas empresariales ayuda a las pequeñas empresas a ahorrar tiempo, recursos y dinero al eliminar la necesidad de contratar desarrolladores de aprendizaje automático capacitados. MLaaS crecerá aún más a medida que las empresas continúen confiando en estos microservicios y a medida que aumente la necesidad de IA.
Explicabilidad
Cuando se trata de algoritmos de aprendizaje automático, especialmente el aprendizaje profundo, puede ser particularmente difícil explicar cómo llegaron a ciertas conclusiones. La IA explicable, también conocida como XAI, es el proceso mediante el cual el proceso de toma de decisiones de los algoritmos se hace transparente y comprensible para los humanos. La transparencia es el principio más prevalente en la literatura actual sobre ética de la IA, y por lo tanto la explicabilidad, un subconjunto de la transparencia, se vuelve crucial. Las plataformas de MLOps están incluyendo cada vez más herramientas para la explicabilidad, ayudando a los usuarios a construir explicabilidad en sus modelos y cumplir con los requisitos de explicabilidad de datos en legislaciones como la ley de privacidad de la Unión Europea, el GDPR.