0% found this document useful (0 votes)
192 views31 pages

Atlas-1 PDF

The document describes different types of Nyquist diagrams that can be produced from equivalent electrical circuits. It discusses diagrams with one straight line and one semicircle, as well as combinations of the two. For diagrams with one straight line, a capacitive straight line can result from circuits containing a capacitor (C), constant phase element (Q) or Warburg impedance (W). An inductive straight line requires an inductor (L) or Q element with a negative exponent. Circuits giving rise to semicircles involve resistors (R) and capacitors or inductors. The document provides examples of equivalent circuits that generate different Nyquist diagram shapes.

Uploaded by

R.Subramanian
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
192 views31 pages

Atlas-1 PDF

The document describes different types of Nyquist diagrams that can be produced from equivalent electrical circuits. It discusses diagrams with one straight line and one semicircle, as well as combinations of the two. For diagrams with one straight line, a capacitive straight line can result from circuits containing a capacitor (C), constant phase element (Q) or Warburg impedance (W). An inductive straight line requires an inductor (L) or Q element with a negative exponent. Circuits giving rise to semicircles involve resistors (R) and capacitors or inductors. The document provides examples of equivalent circuits that generate different Nyquist diagram shapes.

Uploaded by

R.Subramanian
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 31

Atlas

of Electrochemical Nyquist Diagrams.


I. One semicircle and straight line
A guide to select equivalent circuits

-А4 -А4
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0

0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Bio-Logic @ www.bio-logic.info

September 28, 2011


2
Contents

1 Nyquist diagrams made of one straight line 5


1.1 Capacitive straight line . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 C1 element . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 R1+C1 circuit . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Q1 element . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 R1+Q1 circuit . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 Q1 element, α1 = 1/2 . . . . . . . . . . . . . . . . . . . . 6
1.1.6 W1 element . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.7 R1+Q1 circuit, α1 = 1/2 . . . . . . . . . . . . . . . . . . 6
1.1.8 R1+W1 circuit . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Inductive straight line . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 L1 element . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 R1+L1 circuit . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Q1 element, α1 < 0 . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 R1+Q1 element, α1 < 0 . . . . . . . . . . . . . . . . . . . 8
1.2.5 L1+C1 circuit . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.6 R1+L1+C1 circuit . . . . . . . . . . . . . . . . . . . . . . 8

2 Nyquist diagrams made of one semicircle 9


2.1 One capacitive semicircle . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 R1/C1 circuit . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 R1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 R1/(R2+C2) circuit . . . . . . . . . . . . . . . . . . . . . 12
2.2 One inductive semicircle . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 R1/L1 circuit . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 R1/L1 circuit, R1 < 0 . . . . . . . . . . . . . . . . . . . . 13
2.2.3 R1+R2/L2 circuit . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 R1+R2/L2 circuit, R2 < 0 . . . . . . . . . . . . . . . . . 14

3 Nyquist diagrams made of one semicircle and straight line 15


3.1 Capacitive semicircle and straight line . . . . . . . . . . . . . . . 15
3.1.1 C1/(C2+R2) circuit . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 C1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 R1+C1/(C2+R2) circuit . . . . . . . . . . . . . . . . . . . 16
3.1.4 R1+C1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . 17
3.1.5 C1/(Q2+R2) circuit . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Q1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . . . 17
3.1.7 R1+C1/(Q2+R2) circuit . . . . . . . . . . . . . . . . . . 17

3
4 CONTENTS

3.1.8 R1+Q1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . 17


3.1.9 C1/(R2+W2) circuit . . . . . . . . . . . . . . . . . . . . . 18
3.1.10 R1+C1/(R2+W2) circuit . . . . . . . . . . . . . . . . . . 18
3.1.11 W1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . . . 18
3.1.12 R1+W1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . 19
3.2 Capacitive semicircle and inductive straight line . . . . . . . . . . 21
3.2.1 L1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 R1+L1+R2/C2 circuit . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Q1+R2/C2 circuit, α1 < 0 . . . . . . . . . . . . . . . . . 21
3.2.4 R1+Q1+R2/C2 circuit, α1 < 0 . . . . . . . . . . . . . . . 22
3.3 Inductive semicircle and straight line . . . . . . . . . . . . . . . . 24
3.3.1 R1/L1+L2 circuit . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 L1/(R1+L2) circuit . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 R1+R2/L2+L3 circuit . . . . . . . . . . . . . . . . . . . . 24
3.3.4 R1+L2/(R2+L3) circuit . . . . . . . . . . . . . . . . . . . 25
3.3.5 R1/L1+Q1 circuit, α1 < 0 . . . . . . . . . . . . . . . . . . 25
3.3.6 R1+R2/L2+Q1 circuit, α1 < 0 . . . . . . . . . . . . . . . 25
3.4 Inductive semicircle and capacitive straight line . . . . . . . . . . 27
3.4.1 R1/L1+C1 circuit . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 R1+R2/L2+C1 circuit . . . . . . . . . . . . . . . . . . . . 27
3.4.3 R1/L1+Q1 circuit . . . . . . . . . . . . . . . . . . . . . . 27
3.4.4 R1+R2/L2+Q1 circuit . . . . . . . . . . . . . . . . . . . . 27
3.4.5 R1/L1+W1 circuit . . . . . . . . . . . . . . . . . . . . . . 28
3.4.6 R1+R2/L2+W1 circuit . . . . . . . . . . . . . . . . . . . 28
Chapter 1

Nyquist diagrams made of


one straight line

1.1 Capacitive straight line

Table 1.1: Six different Nyquist diagrams made of one capacitive straight line.

-А4 -А4
0 0 0 0 0 0
0 0 0 0 0 0

cf. 1.1.1, p. 5 cf. 1.1.2, p. 6 cf. 1.1.3, p. 6 cf. 1.1.4, p. 6 cf. 1.1.5, p. 6 cf. 1.1.7, p. 6
cf. 1.1.6, p. 6 cf. 1.1.8, p. 7

(1 )

1.1.1 C1 element
Fig. 1.1.

C1

Figure 1.1: C1 element. For an electrochemical system C1 denotes the electrochemical


double layer capacity Cdl .

1 Nyquist diagrams are always plotted using convention of electrochemists: orthonormal

parametric plot −Im Z vs. Re Z. The arrows always indicate the increasing frequency
direction.

5
6 CHAPTER 1. NYQUIST DIAGRAMS MADE OF ONE STRAIGHT LINE

1.1.2 R1+C1 circuit


Fig. 1.2.

C1

R1

Figure 1.2: R1+C1 circuit. For an ideally polarized electrode C1 denotes the elec-
trochemical double layer capacity Cdl and R1 the ohmic (RΩ ) or uncompensated re-
sistance (Ru ) [1].

1.1.3 Q1 element
Fig. 1.3.

Q1

Figure 1.3: Q1 element (CPE element, cf. Handbook of Electro-


chemical Impedance Spectroscopy. Electrical circuits containing CPEs:
http://www.bio-logic.info/potentiostat/notesheis.html)

1.1.4 R1+Q1 circuit


Fig. 1.4 [1, 2].

Q1

R1

Figure 1.4: R1+Q1 circuit [1, 2].

1.1.5 Q1 element, α1 = 1/2


Fig. 1.3 with α1 = 1/2.

1.1.6 W1 element
Fig. 1.5.

1.1.7 R1+Q1 circuit, α1 = 1/2


Fig. 1.4 with α1 = 1/2.
1.2. INDUCTIVE STRAIGHT LINE 7

W1

Figure 1.5: W1 element (Warburg impedance, cf. Handbook


of Electrochemical Impedance Spectroscopy. Diffusion impedances:
http://www.bio-logic.info/potentiostat/notesheis.html).

1.1.8 R1+W1 circuit


Fig. 1.6.

W1
R1

Figure 1.6: R1+W1 circuit.

1.2 Inductive straight line

Table 1.2: Four different Nyquist diagrams made of one inductive straight line and
two diagrams made of one capacitive and one inductive straight line.

0 0 0 0

0 0

0 0 0 0 0 0

cf. 1.2.1, p. 7 cf. 1.2.2, p. 8 cf. 1.2.3, p. 8 cf. 1.2.4, p. 8 cf. 1.2.5, p. 8 cf. 1.2.6, p. 8

1.2.1 L1 element
Fig. 1.7.

L1

Figure 1.7: L1 element.


8 CHAPTER 1. NYQUIST DIAGRAMS MADE OF ONE STRAIGHT LINE

1.2.2 R1+L1 circuit


Fig. 1.8.

L1
R1

Figure 1.8: R1+L1 circuit.

1.2.3 Q1 element, α1 < 0


Fig. 1.3 with α1 < 0.

1.2.4 R1+Q1 element, α1 < 0


Fig. 1.4 with α1 < 0.

1.2.5 L1+C1 circuit


Fig. 1.9.

C1
L1

L1+C1

Figure 1.9: L1+C1 circuit.

1.2.6 R1+L1+C1 circuit


Fig. 1.10.

C1
L1
R1

R1+L1+C1

Figure 1.10: R1+L1+C1 circuit.


Chapter 2

Nyquist diagrams made of


one semicircle

2.1 One capacitive semicircle

Table 2.1: Four different Nyquist diagrams made of one capacitive semicircle.

0 0 0 0
0 0 0 0
cf. 2.1.1, p. 9 cf. 2.1.1, p. 9 cf. 2.1.2, p. 11 cf. 2.1.2, p. 11
cf. 2.1.1, p. 10

2.1.1 R1/C1 circuit


Figs. 2.1, 2.2 (1 ).

R1, C1 > 0

Fig. 2.2.

R1 < 0, C1 > 0

Fig. 2.2.

1 Replacing C by Q (CPE element) in a parallel RC circuit changes a semicircle in a ”de-

pressed” semicircle arc, cf. Handbook of Electrochemical Impedance Spectroscopy. Electrical


circuits containing CPEs: http://www.bio-logic.info/potentiostat/notesheis.html

9
10 CHAPTER 2. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE

C1

R1

Figure 2.1: R1/C1 circuit. For an electrochemical system C1 denotes the electro-
chemical double layer capacity and R1 the charge transfer resistance Rct .

Ωc = 1HR1C1L Ωc = - 1HR1C1L

0 0
0 R1 R1 0

Figure 2.2: Nyquist diagrams of the impedance for the R1/C1 circuit. Left: R1, C1 >
0, right R1 < 0, C1 > 0.

Voigt circuit with one time constant


Figs. 2.3, 2.4.


n ∑n
Ri Ri
Z(ω) = = i=1 , τ = Ri Ci
i=1
1 + iωτ 1 + iωτ

C1 C2 C3 Cn

R1 R2 R3 Rn

Figure 2.3: Voigt circuit.

2.1.2 R1+R2/C2 circuit


Figs. 2.5 (2 ).
2 The R1+R2/C2 and R1/(R2+C2) circuits are non-distinguishable, i.e. these circuits can

be interchanged (cf. Handbook of Electrochemical Impedance Spectroscopy. Circuits made


of resistors and capacitors: http://www.bio-logic.info/potentiostat/notesheis.html).
2.1. ONE CAPACITIVE SEMICIRCLE 11

Ωc = 1HRiCiL

0
0 Ú Ri

Figure 2.4: Nyquist diagram of the impedance for Voigt circuit with one time con-
stant.

C2

R1

R2

R1+R2C2

Figure 2.5: R1+R2/C2 circuit. For an electrochemical system C2 denotes the electro-
chemical double layer capacity Cdl , R1 the ohmic (RΩ ) or uncompensated resistance
(Ru ) and R2 the charge transfer resistance Rct .

R1, R2, C2 > 0


Fig. 2.6.

Ωc = - 1HR2C2L
Ωc = 1HR2C2L

0 0
0 R1 R1+R2 R1+R2 0 R1

Figure 2.6: Nyquist impedance diagrams for the R1+R2/C2 circuit. Left:
R1, R2, C1 > 0, right: R1 < 0, R2 > 0, C1 > 0.

R1 > 0, R2 < 0, C2 > 0


Fig. 2.6.
12 CHAPTER 2. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE

2.1.3 R1/(R2+C2) circuit


Figs. 2.7.

Ωc = 1HHR1+R2LC2L

R1

C2

R2 0
0 R1 R2 R1
R1 + R2
R1HR2+C2L

Figure 2.7: R1/(R2+C2) circuit and Nyquist impedance diagram. R1, R2, C1 > 0
2.2. ONE INDUCTIVE SEMICIRCLE 13

2.2 One inductive semicircle

Table 2.2: Four different Nyquist diagrams made of one inductive semicircle.

0 0 0 0

0 0 0 0

cf. 2.2.1, p. 13 cf. 2.2.2, p. 13 cf. 2.2.3, p. 14 cf. 2.2.4, p. 14

2.2.1 R1/L1 circuit


Figs. 2.8, 2.9.

L1

R1

Figure 2.8: R1/L1 circuit.

R1 R1
0 0

Ωc = R1L1
Ωc = - R1L1
0 0

Figure 2.9: Nyquist impedance diagram for the R1/L1 circuit. Left: R1 > 0, right:
R1 < 0.

2.2.2 R1/L1 circuit, R1 < 0


Fig. 2.8, R1 < 0.
14 CHAPTER 2. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE

2.2.3 R1+R2/L2 circuit


Figs. 2.10, 2.11.

L2

R1

R2

R1+R2L2

Figure 2.10: R1+ R2/L2 circuit.

R1 R1+R2 R1+R2 R1
0 0

Ωc = R2L2 Ωc = - R2L2

0 0

Figure 2.11: Nyquist impedance diagrams for the R1+R2/L2 circuit. Left: R2 > 0,
right: R2 < 0.

2.2.4 R1+R2/L2 circuit, R2 < 0


Figs. 2.10, 2.11.
Chapter 3

Nyquist diagrams made of


one semicircle and one
straight line

3.1 Capacitive semicircle and straight line

Table 3.1: Six different Nyquist diagrams made of one capacitive semicircle and one
straight line (limiting cases).

0 0 0 0 0 0
0 0 0 0 0 0
cf. 3.1.1, p. 15 cf. 3.1.3, p. 16 cf. 3.1.5, p. 17 cf. 3.1.7, p. 17 cf. 3.1.9, p. 18 cf. 3.1.12, p. 19
cf. 3.1.2, p. 15 cf. 3.1.4, p. 17 cf. 3.1.6, p. 17 cf. 3.1.8, p. 17 cf. 3.1.11, p. 18 cf. 3.1.12, p. 19

3.1.1 C1/(C2+R2) circuit


Fig. 3.1 (1 ).

3.1.2 C1+R2/C2 circuit


Fig. 3.2.
1 C1/(C2+R2) and C1+R2/C2 circuits are non-distinguishable, i.e. these circuits can be

interchanged (cf. Handbook of Electrochemical Impedance Spectroscopy. Circuits made of


resistors and capacitors: http://www.bio-logic.info/potentiostat/notesheis.html).

15
16CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

C1

C2

R2
0
C1HC2+R2L 0

Figure 3.1: C1/(C2+R2) circuit and Nyquist impedance diagrams.

C2

C1

R2

C1+R2C2

Figure 3.2: C1+R2/C2 circuit.

3.1.3 R1+C1/(C2+R2) circuit


Fig. 3.3.

C1

C2

R1 R2
0
R1+C1HC2+R2L 0

Figure 3.3: R1+C1/(C2+R2) circuit and Nyquist impedance diagrams.


3.1. CAPACITIVE SEMICIRCLE AND STRAIGHT LINE 17

3.1.4 R1+C1+R2/C2 circuit


Fig. 3.4.

C2

C1

R1

R2

R1+C1+R2C2

Figure 3.4: R1+C1+R2/C2 circuit.

3.1.5 C1/(Q2+R2) circuit


Fig. 3.5.

C1

Q2

R2
0
C1HQ2+R2L 0

Figure 3.5: C1/(Q2+R2) circuit.

3.1.6 Q1+R2/C2 circuit


Fig. 3.6.

3.1.7 R1+C1/(Q2+R2) circuit


Fig. 3.7.

3.1.8 R1+Q1+R2/C2 circuit


Fig. 3.8.
18CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

C2

Q1

R2

Q1+R2C2

Figure 3.6: Q1+R2/C2 circuit and Nyquist impedance diagrams.

C1

Q2
R1 R2
0
R1+C1HQ2+R2L 0

Figure 3.7: R1+C1/(Q2+R2) circuit and Nyquist impedance diagrams.

C2
Q1
R1
R2
R1+Q1+R2C2

Figure 3.8: R1+Q1+R2/C2 circuit.

3.1.9 C1/(R2+W2) circuit


Fig. 3.9.

3.1.10 R1+C1/(R2+W2) circuit


Fig. 3.10.

3.1.11 W1+R2/C2 circuit


Fig. 3.11.
3.1. CAPACITIVE SEMICIRCLE AND STRAIGHT LINE 19

C1

W2

R2
0
C1HW2+R2L 0

Figure 3.9: C1/(R2+W2) circuit (Randles circuit) and Nyquist impedance diagrams.
(cf. Handbook of Electrochemical Impedance Spectroscopy. Diffusion impedances:
http://www.bio-logic.info/potentiostat/notesheis.html)

C1

W2

R1 R2
0
R1+C1HW2+R2L 0

Figure 3.10: R1+C1/(R2+W2) circuit and Nyquist impedance diagrams.

3.1.12 R1+W1+R2/C2 circuit


Fig. 3.12.
20CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

C2

W1

R2 0
0
W1+R2C2

Figure 3.11: W1+C2/R2 and Nyquist impedance diagrams.

C2
W1
R1
R2 0
0
R1+W1+R2C2

Figure 3.12: R1+W1+R2/C2 circuit and Nyquist impedance diagrams.


3.2. CAPACITIVE SEMICIRCLE AND INDUCTIVE STRAIGHT LINE 21

3.2 Capacitive semicircle and inductive straight


line

Table 3.2: Four different Nyquist diagrams made of one capacitive semicircle and one
inductive straight line (limiting cases).

0 0 0
0

0 0 0 0
cf. 3.2.1, p. 21 cf. 3.2.2, p. 21 cf. 3.2.3, p. 21 cf. 3.2.4, p. 22

3.2.1 L1+R2/C2 circuit


Fig. 3.13.

C2

L1

R2
0
L1+R2C2

Figure 3.13: L1+R2/C2 circuit and Nyquist impedance diagrams.

3.2.2 R1+L1+R2/C2 circuit


Fig. 3.14.

3.2.3 Q1+R2/C2 circuit, α1 < 0


Fig. 3.15.
22CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

C2

L1

R1

R2
0
R1+L1+R2C2

Figure 3.14: R1+L1+R2/C2 circuit and Nyquist impedance diagrams.

C2

Q1, Α1 < 0

R2
0
Q1+R2C2

Figure 3.15: Q1+R2/C2 circuit. α1 < 0.

3.2.4 R1+Q1+R2/C2 circuit, α1 < 0


Fig. 3.16.
3.2. CAPACITIVE SEMICIRCLE AND INDUCTIVE STRAIGHT LINE 23

C2
Q1, Α1 < 0
R1
R2
0
R1+Q1+R2C2

Figure 3.16: R1+Q1+R2/C2 circuit and Nyquist impedance diagrams. α1 < 0.


24CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

3.3 Inductive semicircle and straight line

Table 3.3: Four different Nyquist diagrams made of one inductive semicircle and one
inductive straight line (limiting cases).

0 0 0 0

0 0 0 0
cf. 3.3.1, p. 24 cf. 3.3.3, p. 24 cf. 3.3.5, p. 25 cf. 3.3.6, p. 25
cf. 3.3.2, p. 24 cf. 3.3.4, p. 25

3.3.1 R1/L1+L2 circuit


Fig. 3.17.

L1

L2

R1
0
R1L1+L2

Figure 3.17: R1/L1+L2 circuit and Nyquist impedance diagrams.

3.3.2 L1/(R1+L2) circuit


Fig. 3.18 (2 ).

3.3.3 R1+R2/L2+L3 circuit


Fig. 3.19.
2 The R1/L1+L2 and L1/(R2+L2) circuits are non-distinguishable, cf. Handbook
of Electrochemical Impedance Spectroscopy. Circuits made of resistors and inductors:
http://www.bio-logic.info/potentiostat/notesheis.html
3.3. INDUCTIVE SEMICIRCLE AND STRAIGHT LINE 25

L1

L2
R1
0
L1HR1+L2L

Figure 3.18: L1/(R1+L2) circuit and Nyquist impedance diagrams.

L2

L3
R1

R2

R1+R2L2+L3

Figure 3.19: R1+R2/L2+L3 circuit and Nyquist impedance diagrams.

3.3.4 R1+L2/(R2+L3) circuit


Fig. 3.20.

3.3.5 R1/L1+Q1 circuit, α1 < 0


Fig. 3.21.

3.3.6 R1+R2/L2+Q1 circuit, α1 < 0


Fig. 3.22.
26CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

L2

L3
R1 R2
0
R1+L2HR2+L3L

Figure 3.20: R1+L2/(R2+L3) circuit and Nyquist impedance diagrams.

L1
Q1, Α1 < 0

R1
0
R1L1+Q1

Figure 3.21: R1/L1+Q1 circuit (α1 < 0) and Nyquist impedance diagrams.

L2
Q1, Α1 < 0

R1

R2

R1+R2L2+Q1

Figure 3.22: R1+R2/L2+Q1 circuit (α1 < 0) and Nyquist impedance diagrams.
3.4. INDUCTIVE SEMICIRCLE AND CAPACITIVE STRAIGHT LINE 27

3.4 Inductive semicircle and capacitive straight


line

Table 3.4: Six different Nyquist diagrams made of one inductive semicircle and one
capacitive straight line.

0 0 0 0 0 0

0 0 0 0 0 0

cf. 3.4.1, p. 27 cf. 3.4.2, p. 27 cf. 3.4.3, p. 27 cf. 3.4.4, p. 27 cf. 3.4.5, p. 28 cf. 3.4.6, p. 28

3.4.1 R1/L1+C1 circuit


Fig. 3.23.

L1

C1

R1
0
R1L1+C1

Figure 3.23: R1/L1+C1 and Nyquist impedance diagrams.

3.4.2 R1+R2/L2+C1 circuit


Fig. 3.24.

3.4.3 R1/L1+Q1 circuit


Fig. 3.25.

3.4.4 R1+R2/L2+Q1 circuit


Fig. 3.26.
28CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE

L2
C1
0
R1
R2
0
R1+R2L2+C1

Figure 3.24: R1+R2/L2+C1 and Nyquist impedance diagrams.

L1

Q1

R1
0
R1L1+Q1

Figure 3.25: R1/L1+Q1 circuit and Nyquist impedance diagrams.

L2
Q1
0
R1
R2
0
R1+R2L2+Q1

Figure 3.26: R1+R2/L2+Q1.

3.4.5 R1/L1+W1 circuit


Fig. 3.27.

3.4.6 R1+R2/L2+W1 circuit


Fig. 3.28.
3.4. INDUCTIVE SEMICIRCLE AND CAPACITIVE STRAIGHT LINE 29

L1

W1

R1
0
R1L1+W1

Figure 3.27: R1/L1+W1 circuit and Nyquist impedance diagrams.

L2
W1
0
R1
R2
0
R1+R2L2+W1

Figure 3.28: R1+R2/L2+W1 and Nyquist impedance diagrams.


30CHAPTER 3. NYQUIST DIAGRAMS MADE OF ONE SEMICIRCLE AND STRAIGHT LINE
Bibliography

[1] Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., and
Sluyters, J. H. The analysis of electrode impedance complicated by the
presence of a constant phase element. J. Electroanal. Chem. 176 (1984),
275–295.
[2] Lonné, Q., Glandut, N., Labbe, J.-C., and Lefort, P. Fabrication
and characterization of ZrB2 -SiC ceramic electrodes coated with a proton
conducting, SiO2 -rich glass layer. Electrochimica Acta In Press, Corrected
Proof (2011), –.

31

You might also like