0% found this document useful (0 votes)
319 views11 pages

Oxford Core 2 2016 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
319 views11 pages

Oxford Core 2 2016 Solution

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

OXFORD UNIVERSITY PRESS

MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

Compulsory Part Paper 2


Question No. Key Question No. Key
1. B 31. A
2. D 32. C
3. A 33. C
4. D 34. B
5. C 35. B

6. A 36. D
7. C 37. C
8. B 38. B
9. C 39. D
10. A 40. A

11. D 41. D
12. A 42. C
13. A 43. C
14. D 44. D
15. B 45. A

16. A
17. B
18. B
19. D
20. B

21. D
22. B
23. B
24. A
25. A

26. C
27. B
28. C
29. C
30. B

© Oxford University Press 2016 P.1


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

Solutions to Paper 2
1. B 6. A
6 648 (2  3) 648 ∵ a<0
= ∴ The graph opens downward.
16162 (2 4 )162
y-intercept of the graph = b < 0
2 648  3648 ∴ The answer is A.
=
2 648
= 3648 7. C
Alternative method: Rewrite the compound inequality as
6 648 6 648 2x  5  5x + 1 and 5x + 1 < 16.
=
16162 (2 4 )162 Solving 2x  5  5x + 1:
3x  6
6 648
= x  2 ................ (1)
2 648 Solving 5x + 1 < 16:
648
6 5x < 15
=  x < 3 .................. (2)
2
= 3648 ∵ x must satisfy (1) and (2).
∴ The solutions are 2  x < 3.
2. D
a b3 8. B
 =2 f(k) = 0
c b 2
(k + k)(k + 1) = 0
a 3
 1 = 2 k(k + 1)(k + 1) = 0
c b k = 0 (rejected) or 1
a 3 2
∴ f(x) = (x  1)(x + 1)
3=
c b Remainder = f(2)
a  3c 3 = [(2)2  1](2 + 1)
=
c b = 3
3c
b=
a  3c 9. C
Let x and y be the numbers of boys and girls in
the class respectively.
3. A x  75% + y  50% = (x + y)  65%
a2 + 8ab + 16b2  9a2b2 0.75x + 0.5y = 0.65x + 0.65y
= (a + 4b)2  (3ab)2 0.1x = 0.15y
= [(a + 4b) + 3ab][(a + 4b)  3ab] x 3
=
= (a + 3ab + 4b)(a  3ab + 4b) y 2
∴ The ratio of the number of boys to the
4. D number of girls is 3 : 2.

5. C 10. A
Rewrite the given equation as: Cost = $[70(1  40%) + 8]
 3r  5s  22  1 .......................... (1) = $50
 Profit = $(70  50)
4r  3s  1 ................................. (2)
= $20
(1)  4: 12r  20s + 88 = 4
12r  20s = 84 ...... (3)
(2)  3: 12r + 9s = 3 .................... (4)
(4)  (3): 29s = 87
s=3

© Oxford University Press 2016 P.2


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

11. D 13. A
a:b=3:1 Maximum error of the measurement
1 1
b= a =  1 cm
3 2
b:c =2:3 = 0.5 cm
3 Least possible volume of the sphere
c= b
2 4
= (5  0.5)3 cm3
31  3
=  a 243
23  = π cm 3
1 2
= a
2
a + 2b  3 c = 3 14. D
Let T(n) be the number of dots in the nth
1  1  pattern.
a + 2 a  3 a = 3
3  2  T(1) = 11
1 T(2) = T(1) + 6 = 11 + 6 = 17
a =3
6 T(3) = T(2) + 6 = 17 + 6 = 23
a = 18 T(4) = T(3) + 6 = 23 + 6 = 29
T(5) = T(4) + 6 = 29 + 6 = 35
12. A T(6) = T(5) + 6 = 35 + 6 = 41
k2 T(7) = T(6) + 6 = 41 + 6 = 47
From the question, f(x) = k1x + , where k1 T(8) = T(7) + 6 = 47 + 6 = 53
x2
∴ The number of dots in the 8th pattern is
and k2 are non-zero constants.
53.
f(2) = 5
k 15. B
k1(2) + 22 = 5
2 In △ABC, by Pythagoras’ theorem,
8k1 + k2 = 20 .................. (1) AC2 = AB2 + BC2
f(3) = 2
AC = 16 2  30 2 cm
k
k1(3) + 22 = 2 = 34 cm
3 ∵ △ABC ~ △CDE (AAA)
27k1 + k2 = 18 .................... (2)
AB AC
(2)  (1): 19k1 = 38 ∴ =
k1 = 2 CD CE
Substitute k1 = 2 into (1). 16 cm 34 cm
=
8(2) + k2 = 20 12 cm CE
k2 = 36 CE = 25.5 cm
36 Perimeter of ACEF
∴ f(x) = 2x  2 = 2(AC + CE)
x
= 2(34 + 25.5) cm
36 = 119 cm
f(1) = 2(1)  2
1
= 34

© Oxford University Press 2016 P.3


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

16. A Area of AEF  AF 


2

Join AE. = 
Area of CED  CD 
B E C 2
Area of AEF 2
2
= 
36 cm 3
10 cm Area of △ AEF = 16 cm2
Area of AEF AE
=
Area of CEF CE
A D
20 cm 16 cm 2 2
=
AE = AD = 20 cm Area of CEF 3
In △ ABE, Area of △ CEF = 24 cm2
AB Area of △ BCF
sin AEB =
AE = area of △ ACF
1 = (16 + 24) cm2
= = 40 cm2
2
∴ Area of ABCD
AEB = 30
By Pythagoras’ theorem, = area of △ ADE + area of △ CDE +
AE2 = AB2 + BE2 area of △ ACF + area of △ BCF
= (24 + 36 + 40 + 40) cm2
BE = 20 2  10 2 cm = 140 cm2
= 300 cm Alternative method:
DAE = AEB = 30 ∵ △AEF ~ △ CED (AAA)
Area of the shaded region 1
AB
= area of trapezium ADCE  AE AF 14 2
∴ = = 2 =   =
area of sector ADE CE CD CD 23 3
( EC  AD)CD DAE Area of ADE AE
=   (AD)2 =
2 360 Area of CDE CE
 (20  300  20)(10) 30  24 cm 2
2
=    π(20) 2  cm2 =
 2 360  Area of CDE 3
= 8.68 cm2, cor. to 3 sig. fig. Area of △ CDE = 36 cm2
Let G be a point on AB such that DG  AB and
17. B DG  DC.
∵ △AEF ~ △ CED (AAA) D C
1
AB
AE AF 14 2 E
∴ = = 2 =   =
CE CD CD 23 3
Area of ADE AE A B
= G F
Area of CDE CE
1
24 cm 2
2  AB  DG
Area of ABC
= = 2
Area of CDE 3 Area of ACD 1
Area of △ CDE = 36 cm2  DC  DG
2
Join CF. Area of ABC AB
D C =
Area of ACD DC
E Area of ABC 4
=
(24  36) cm 2 3
Area of △ ABC = 80 cm2
A B
F ∴ Area of ABCD
= area of △ ACD + area of △ ABC
= (24 + 36 + 80) cm2
= 140 cm2
© Oxford University Press 2016 P.4
OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

18. B 20. B
Total surface area of the solid I. Sum of the interior angles = 2 520
1  (n  2)  180 = 2 520
=  [4 π(2) 2 ]  2 π (2)(10  2)  π(2) 2  cm2
2  n  2 = 14
= 44 cm 2 n = 16
∴ The number of diagonals of the
19. D
  
∵ AB : BC : AC = 13 : 11 : 12
polygon is not 14.
∴ I is not true.
360
∴ ACB : BAC : ABC = 13 : 11 : 12 II. Each exterior angle = = 22.5
16
DEF = ABC and DFE = BAC. ∴ II is true.
In △DEF, 2 520
EDF + DEF + DFE = 180 III. Each interior angle =
16
EDF + ABC + BAC = 180 = 157.5
EDF = 180  ABC  BAC  140
= ACB ∴ III is not true.
13
= 180  ∴ Only II is true.
13  11  12
= 65 21. D
Alternative method: With the notation in the figure, F is a point on
DE and DF are produced to meet AC and BC at BC such that DF  BC.
G and H respectively. C
C

D
G F
H
E F
A B

D A E B
∵ DG // BC and DH // AC. In △ ADE,
∴ DGCH is a parallelogram. AE
cos  =
  
∴ EDF = ACB
∵ AB : BC : AC = 13 : 11 : 12
AD
AE = AD cos 
In △ CDF,
∴ ACB : BAC : ABC = 13 : 11 : 12
DF
13 sin  =
ACB = 180  CD
13  11  12 DF = CD sin 
= 65 BE = DF = CD sin 
∴ EDF = 65 AE AD cos
=
BE CD sin 
AD
=
sin 
CD 
cos
AD
=
CD tan 

22. B

© Oxford University Press 2016 P.5


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

23. B 25. A
Rectangular coordinates of the image of P  12
y-intercept of L1 =  =3
= ( 3 , 1) 4
With the notation in the figure, 6 6
y y-intercept of L2 =  =
b b
∵ L1 and L2 intersect at a point on the y-axis.
Q 6
x ∴ 3=
O  b
b=2
R( 3 , 1) a
Slope of L1 = 
4
OQ = 3 2
QR = 1 Slope of L2 = 
b
OR = OQ 2  QR 2 ∵ L1  L2
∴ Slope of L1  slope of L2 = 1
= ( 3 ) 2  12
 a  2 
=2      = 1
QR  4  b 
tan  = a = 2b
OQ
= 2(2)
1
= = 4
3
 = 30 26. C
The required polar coordinates Coordinates of the centre of the circle
= (OR , 360  )  k  12 
= (2 , 360  30) =  ,  
 2 2 
= (2 , 330)
 k 
=   , 6
24. A  2 
I. Let (x , y) be the coordinates of P. The equation of L is
∵ PA = PB y0 12  0
=
∴ [ x  (1)]2  ( y  4) 2 x 8 08
2y = 3x + 24
= [ x  ( 5)]2  ( y  2) 2 3
y =  x + 12
(x + 1)2 + (y  4)2 = (x + 5)2 + (y  2)2 2
x2 + 2x + 1 + Since L divides the circle into two equal parts,
y2  8y + 16 = x2 + 10x + 25 + L passes through the centre of the circle.
y2  4y + 4 k
Substitute x =  and y = 6 into the equation
8x  4y  12 = 0 2
2x + y + 3 = 0 of L.
∴ I must not be true. 3 k 
II must be true. 6 =     + 12
2 2
III. △PAB is an equilateral triangle only when
3k
PA = PB = AB. Otherwise, △PAB is an 6 =
isosceles triangle or APB is a straight line. 4
∴ III may not be true. k = 8
∴ Only II must be true.

© Oxford University Press 2016 P.6


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

27. B 30. B
The 1st number ∵ Mode = 8
Sum
1 2 3 4 5 6 7 8 ∴ x=8
1 3 4 5 6 7 8 9 Mean = 7
2 3 5 6 7 8 9 10 358888 y
The 2nd number

3 4 5 7 8 9 10 11 =7
7
4 5 6 7 9 10 11 12 40 + y = 49
5 6 7 8 9 11 12 13 y=9
6 7 8 9 10 11 13 14 Standard deviation
7 8 9 10 11 12 13 15
(3  7) 2  (5  7) 2  4(8  7) 2  (9  7) 2
8 9 10 11 12 13 14 15 =
The required probability 7
8 =2
=
56
31. A
1
= 1 x
7 2
 3
x  2x  3 x  27
1 x
28. C = 
Total number of banknotes in the cash box ( x  1)( x  3) 2
( x  3)( x  3x  9)
= 15 + 20 + 10 + 5 x 2  3x  9  x( x  1)
= 50 =
( x  1)( x  3)( x 2  3x  9)
Expected face value
2x  9
 15 20 10 5  =
= $ 10   20   50   100   ( x  1)( x  3)( x 2  3 x  9)
 50 50 50 50 
= $31
32. C
29. C Intercept on the vertical axis of the graph
Median = 27 =a<0
20  a  28 Slope of the graph = b > 0
= 27 log5 y = a + bx
2
y = 5a + bx
a + 48 = 54
y = 5a(5b)x
a=6
∵ a<0
Q1 = 21
Q3 = 30 + b ∴ 0 < 5a < 1 ........................ (1)
Inter-quartile range = 14 ∵ b>0
(30 + b)  21 = 14 ∴ 5b > 1 .............................. (2)
b=5 5x
Only y = satisfies (1) and (2).
3
∴ The answer is C.

33. C
250  1610 + 192  165 + 29
= (15  16 + 10)  1610 + (12  16)  165 +
16 + 13
= 15  1611 + 10  1610 + 12  166 + 1  16 +
13
= FA000C00001D16

© Oxford University Press 2016 P.7


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

34. B II. When z is a purely imaginary number,


Substitute y = 6 into x + y = 9. a2  2
x+6=9  0 and
a2  1
x=3
∴ The coordinates of P are ( , 6). a 3  2a
=0
Substitute x = 8 into x + y = 9. a2 1
8+y=9 a3 + 2a = 0
y=1 a(a2 + 2) = 0
∴ The coordinates of Q are ( , 1). a = 0 or a2 = 2 (rejected)
Let (4 , r) be the coordinates of R. When a = 0,
r 64 02  2
= z= 2 i
6 6 0 1
r=2 = 2i
∴ The coordinates of R are ( , 2). ∴ II must be true.
Let (s , 5) be the coordinates of S. a 3  2a
s 65 Real part of z 2
= III. = a2  1
6 6 Imaginary part of z a 2
s=1 a2 1
∴ The coordinates of S are ( , 5).
a ( a 2  2)
At P(3 , 6), 18 + x  4y = 18 + 3  4(6) = 3. =
At Q(8 , 1), 18 + x  4y = 18 + 8  4(1) = . a2  2
=a
At R(4 , 2), 18 + x  4y = 18 + 4  4(2) = .
∵ a can be a rational number or an
At S(1 , 5), 18 + x  4y = 18 + 1  4(5) = .
irrational number.
∴ The required minimum value = 3
∴ III is not necessarily true.
35. B ∴ Only II must be true.
1
I. z=a+i+ 36. D
a i
I. Let Sn = a1 + a2 + a3 + … + an.
ai
=a+i+ a1  a2  a3    an
(a  i )(a  i ) = bn
n
ai Sn = n(3n  8)
=a+i+ 2 2
a i = 3n2  8n
ai For n  2,
=a+i+ 2
a  (1) an = Sn  Sn  1
a 1 = 3n2  8n  [3(n  1)2  8(n  1)]
=a+i+ 2 + 2 i = 3n2  8n  (3n2  6n + 3  8n + 8)
a 1 a 1
= 6n  11
a (a 2  1)  a a2  1  1 a2 = 6(2)  11 = 1
= + i
a2 1 a2 1 a1 = S1 = 3(1)2  8(1) = 5
a 3  2a a2  2 a2  a1 = 1  (5) = 6
= 2 + 2 i
a 1 a 1 For n  3,
∵ a is a real number and a2  0. an  an  1 = 6n  11  [6(n  1)  11]
= 6n  11  (6n  6  11)
a2  2 =6
∴ 0
a2  1 ∵ a2  a1 = 6 and an  an  1 = 6 for n  3.
∴ z is not a real number. ∴ a1, a2, a3, …, an is an arithmetic
∴ I must not be true. sequence.
∴ I is true.

© Oxford University Press 2016 P.8


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

II. Let the kth term of the sequence 38. B


b1, b2, b3, … be 79. Let HM = CM = x cm.
bk = 79 Join AC.
3k  8 = 79 E
3k = 87 F H
k = 29 G
∵ k is a positive integer.
∴ 79 is a term of the sequence M
D
b1, b2, b3, ….
∴ II is true. A C
III. bn  bn  1 = 3n  8  [3(n  1)  8] 6 cm 3 cm
B
= 3n  8  (3n  3  8) In △ ABC, by Pythagoras’ theorem,
=3 AC2 = AB2 + BC2
∴ b1, b2, b3, … is an arithmetic
AC = 6 2  32 cm
sequence.
b1 + b2 + b3 + … + bn = 45 cm
n In △ ACM, by Pythagoras’ theorem,
= [3(1)  8 + (3n  8)] AM2 = AC2 + CM2
2
3n 2  13n AM = ( 45 ) 2  x 2 cm
=
2 = 45  x 2 cm
∴ III is true.
Similarly, FM = 45  x 2 cm.
∴ I, II and III are true.
AF = CH = CM + HM = (x + x) cm = 2x cm
In △ AFM, by the cosine formula,
37. C
sin2  = sin  cos  AM 2  FM 2  AF 2
cos AMF =
sin   sin  cos  = 0
2 2  AM  FM
sin  (sin   cos ) = 0 1 ( 45  x 2 ) 2  ( 45  x 2 ) 2  (2 x) 2
sin  = 0 or sin  = cos  =
9 2 45  x 2 45  x 2
When sin  = 0,
 = 0 or 180 1 45  x 2  45  x 2  4 x 2
=
When sin  = cos , 9 2(45  x 2 )
sin  1 45  x 2
= 1 (where cos   0) =
cos 9 45  x 2
tan  = 1 45 + x2 = 405  9x2
 = 45 or 225 10x2 = 360
∴ For 0   < 360, the equation has x2 = 36
4 roots. x = 6 or 6 (rejected)
CH = 2(6) cm = 12 cm
Volume of the cuboid
= AB  BC  CH
= 6  3  12 cm3
= 216 cm3

© Oxford University Press 2016 P.9


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

39. D 41. D
From the figure, the graph of y = h  sin kx is  x  2 y  k  0 .................................. (1)
obtained by reducing the graph of y = sin x  2 2
1  x  y  8 x  12 y  48  0 ............. (2)
to of the original along the x-axis and then From (1), x = k  2y .......................... (3)
2
Substitute (3) into (2).
translating upward by 1 unit.
(k  2y)2 + y2  8(k  2y) + 12y  48 = 0
∴ y = 1  sin 2x
k  4ky + 4y2 + y2  8k + 16y + 12y  48 = 0
2
∴ h = 1 and k = 2
5y2 + (28  4k)y + k2  8k  48 = 0
Let (x1 , y1) and (x2 , y2) be the coordinates of A
40. A and B respectively.
I. ∵ BD // PQ y1 and y2 are the roots of the equation
∴ BCP = CBD 5y2 + (28  4k)y + k2  8k  48 = 0.
BAC = BCP 28  4k
∴ BAC = CBD y1 + y2 = 
5
CAD = CBD ∴ y-coordinate of the mid-point of AB
∴ BAC = CAD y  y2
i.e. CA bisects BAD. = 1
2
∴ I must be true. 1  28  4k 
II. ∵ FB bisects ABD. =  
2 5 
∴ ABF = DBF
2k  14
In △ ABF, =
CFB = BAC + ABF 5
= CBD + DBF
= CBF 42. C
∴ FC = BC Coordinates of the mid-point of the line
∴ II must be true. segment joining (7 , 0) and (5 , 4)
III. With the notation in the figure,  7  5 0  (4) 
= , 
 2 2 
A
= (6 , 2)
Slope of the straight line passing through (7 , 0)
a a
and (5 , 4)
F 0  (4)
b =
75
b
B a E a D =2
2b Slope of the perpendicular bisector of the line
a a
P
C
Q segment joining (7 , 0) and (5 , 4)
FBC + BCD 1
= 
= b + a + BCA + 2b 2
= 3b + a + (180  2b  2a) Let (2 , a) be the coordinates of the
= 180 + b  a circumcentre.
FBC + BCD = 180 only when a = b. a  (2) 1
= 
∴ III is not necessarily true. 26 2
∴ Only I and II must be true. a+2=2
a=0
∴ The y-coordinate of the circumcentre is 0.

© Oxford University Press 2016 P.10


OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION

Alternative method: 45. A


Let (2 , a) be the coordinates of the I. Let m be the mean of {a, b, c, d, e}.
circumcentre. Mean of P = x + m
Distance between (2 , a) and (7 , 0) Mean of Q = y + m
= distance between (2 , a) and (5 , 4) ∵ x>y
(2  7) 2  (a  0) 2 = (2  5) 2  [a  (4)]2 ∴ x+m>y+m
i.e. Mean of P > mean of Q
25 + a2 = 9 + (a + 4)2
25 + a2 = 9 + a2 + 8a + 16 ∴ I is true.
8a = 0 II. Let r be the range of {a, b, c, d, e}.
a=0 Range of P = r
∴ The y-coordinate of the circumcentre is 0. Range of Q = r
∴ II is true.
43. C III. Let s be the standard deviation of
The required probability {a, b, c, d, e}.
Standard deviation of P = s
C 4C 5
= 1 93 Variance of P = s2
C4 Standard deviation of Q = s
20 Variance of Q = s2
= ∴ III is not true.
63
∴ Only I and II are true.

44. D
Consider the books of the same subject as one
unit.
Since there are 3 subjects, there are 3 units.
The number of ways of arranging these 3 units
is 3!.
Number of ways of arranging the
6 Mathematics books
= 6!
Number of ways of arranging the 2 Economics
books
= 2!
Number of ways of arranging the 3 Geography
books
= 3!
The required number of ways
= 3!  6!  2!  3!
= 51 840

© Oxford University Press 2016 P.11

You might also like