Oxford Core 2 2016 Solution
Oxford Core 2 2016 Solution
                            6.    A               36.      D
                            7.    C               37.      C
                            8.    B               38.      B
                            9.    C               39.      D
                            10.   A               40.      A
                            11.   D               41.      D
                            12.   A               42.      C
                            13.   A               43.      C
                            14.   D               44.      D
                            15.   B               45.      A
                            16.   A
                            17.   B
                            18.   B
                            19.   D
                            20.   B
                            21.   D
                            22.   B
                            23.   B
                            24.   A
                            25.   A
                            26.   C
                            27.   B
                            28.   C
                            29.   C
                            30.   B
Solutions to Paper 2
1. B                                                             6.   A
      6 648   (2  3) 648                                             ∵ a<0
            =                                                         ∴ The graph opens downward.
     16162     (2 4 )162
                                                                      y-intercept of the graph = b < 0
               2 648  3648                                           ∴ The answer is A.
             =
                   2 648
            = 3648                                               7.   C
     Alternative method:                                              Rewrite the compound inequality as
      6 648      6 648                                                2x  5  5x + 1 and 5x + 1 < 16.
            =
     16162 (2 4 )162                                                  Solving 2x  5  5x + 1:
                                                                                 3x  6
                 6 648
             =                                                                     x  2 ................ (1)
                 2 648                                                Solving 5x + 1 < 16:
                         648
               6                                                                5x < 15
             =                                                                   x < 3 .................. (2)
               2
             = 3648                                                   ∵ x must satisfy (1) and (2).
                                                                      ∴ The solutions are 2  x < 3.
2.   D
     a b3                                                       8.   B
                =2                                                              f(k) = 0
     c       b                                                            2
                                                                      (k + k)(k + 1) = 0
     a         3
         1 = 2                                                      k(k + 1)(k + 1) = 0
      c        b                                                                    k = 0 (rejected) or 1
          a        3                                                               2
                                                                      ∴ f(x) = (x  1)(x + 1)
             3=
          c        b                                                  Remainder = f(2)
         a  3c    3                                                              = [(2)2  1](2 + 1)
                 =
            c      b                                                              = 3
                           3c
                 b=
                         a  3c                                  9.   C
                                                                      Let x and y be the numbers of boys and girls in
                                                                      the class respectively.
3.   A                                                                x  75% + y  50% = (x + y)  65%
       a2 + 8ab + 16b2  9a2b2                                               0.75x + 0.5y = 0.65x + 0.65y
     = (a + 4b)2  (3ab)2                                                             0.1x = 0.15y
     = [(a + 4b) + 3ab][(a + 4b)  3ab]                                                 x     3
                                                                                           =
     = (a + 3ab + 4b)(a  3ab + 4b)                                                     y     2
                                                                      ∴ The ratio of the number of boys to the
4.   D                                                                     number of girls is 3 : 2.
5.   C                                                           10. A
     Rewrite the given equation as:                                  Cost = $[70(1  40%) + 8]
       3r  5s  22  1 .......................... (1)                    = $50
                                                                    Profit = $(70  50)
      4r  3s  1 ................................. (2)
                                                                            = $20
     (1)  4: 12r  20s + 88 = 4
                    12r  20s = 84 ...... (3)
     (2)  3: 12r + 9s = 3 .................... (4)
     (4)  (3): 29s = 87
                   s=3
11. D                                                             13. A
    a:b=3:1                                                           Maximum error of the measurement
           1                                                            1
       b= a                                                           =  1 cm
           3                                                             2
    b:c =2:3                                                          = 0.5 cm
           3                                                          Least possible volume of the sphere
       c= b
           2                                                             4
                                                                      = (5  0.5)3 cm3
           31                                                          3
         =  a                                                          243
           23                                                       =      π cm 3
           1                                                              2
         = a
           2
             a + 2b  3 c = 3                                     14. D
                                                                      Let T(n) be the number of dots in the nth
         1      1                                                 pattern.
    a + 2 a  3 a = 3
         3      2                                                 T(1) = 11
                     1                                                T(2) = T(1) + 6 = 11 + 6 = 17
                       a =3
                     6                                                T(3) = T(2) + 6 = 17 + 6 = 23
                       a = 18                                         T(4) = T(3) + 6 = 23 + 6 = 29
                                                                      T(5) = T(4) + 6 = 29 + 6 = 35
12. A                                                                 T(6) = T(5) + 6 = 35 + 6 = 41
                                            k2                        T(7) = T(6) + 6 = 41 + 6 = 47
    From the question, f(x) = k1x +            , where k1             T(8) = T(7) + 6 = 47 + 6 = 53
                                            x2
                                                                      ∴ The number of dots in the 8th pattern is
    and k2 are non-zero constants.
                                                                           53.
             f(2) = 5
              k                                                   15. B
     k1(2) + 22 = 5
              2                                                       In △ABC, by Pythagoras’ theorem,
         8k1 + k2 = 20 .................. (1)                        AC2 = AB2 + BC2
             f(3) = 2
                                                                       AC = 16 2  30 2 cm
              k
     k1(3) + 22 = 2                                                       = 34 cm
              3                                                       ∵ △ABC ~ △CDE (AAA)
        27k1 + k2 = 18 .................... (2)
                                                                              AB     AC
    (2)  (1): 19k1 = 38                                              ∴           =
                  k1 = 2                                                     CD      CE
    Substitute k1 = 2 into (1).                                            16 cm     34 cm
                                                                                  =
    8(2) + k2 = 20                                                        12 cm      CE
            k2 = 36                                                           CE = 25.5 cm
                      36                                              Perimeter of ACEF
    ∴ f(x) = 2x  2                                                   = 2(AC + CE)
                      x
                                                                      = 2(34 + 25.5) cm
                   36                                                 = 119 cm
    f(1) = 2(1)  2
                   1
         = 34
    Join AE.                                                              =    
                                                             Area of CED   CD 
           B                            E     C                                        2
                                                             Area of AEF       2
                                                                        2
                                                                              = 
                                                                 36 cm          3
      10 cm                                                   Area of △ AEF = 16 cm2
                                                             Area of AEF        AE
                                                                              =
                                                             Area of CEF       CE
            A                                 D
                               20 cm                             16 cm 2        2
                                                                              =
    AE = AD = 20 cm                                          Area of CEF       3
    In △ ABE,                                                 Area of △ CEF = 24 cm2
                AB                                          Area of △ BCF
    sin AEB =
                AE                                          = area of △ ACF
                1                                           = (16 + 24) cm2
              =                                             = 40 cm2
                2
                                                            ∴ Area of ABCD
        AEB = 30
    By Pythagoras’ theorem,                                      = area of △ ADE + area of △ CDE +
    AE2 = AB2 + BE2                                                area of △ ACF + area of △ BCF
                                                                 = (24 + 36 + 40 + 40) cm2
     BE =     20 2  10 2 cm                                     = 140 cm2
          = 300 cm                                          Alternative method:
    DAE = AEB = 30                                       ∵ △AEF ~ △ CED (AAA)
    Area of the shaded region                                                   1
                                                                                  AB
    = area of trapezium ADCE                                     AE      AF             14 2
                                                            ∴         =       = 2      =   =
      area of sector ADE                                         CE       CD     CD      23 3
       ( EC  AD)CD      DAE                                Area of ADE       AE
    =                            (AD)2                                     =
              2           360                               Area of CDE       CE
       (20  300  20)(10) 30                                 24 cm 2
                                                                                2
    =                              π(20) 2  cm2                           =
                2            360                        Area of CDE       3
    = 8.68 cm2, cor. to 3 sig. fig.                          Area of △ CDE = 36 cm2
                                                            Let G be a point on AB such that DG  AB and
17. B                                                       DG  DC.
    ∵ △AEF ~ △ CED (AAA)                                                    D                  C
                       1
                         AB
          AE     AF          14 2                                            E
    ∴         =      = 2    =   =
         CE      CD     CD   23 3
     Area of ADE      AE                                          A                           B
                     =                                                     G       F
     Area of CDE      CE
                                                                                1
         24 cm 2
                       2                                                           AB  DG
                                                            Area of ABC
                     =                                                       = 2
     Area of CDE      3                                    Area of ACD       1
     Area of △ CDE = 36 cm2                                                        DC  DG
                                                                               2
    Join CF.                                                Area of ABC        AB
                   D              C                                          =
                                                            Area of ACD       DC
                          E                                  Area of ABC      4
                                                                             =
                                                             (24  36) cm 2    3
                                                             Area of △ ABC = 80 cm2
             A                          B
                               F                            ∴ Area of ABCD
                                                                = area of △ ACD + area of △ ABC
                                                                = (24 + 36 + 80) cm2
                                                                = 140 cm2
© Oxford University Press 2016                        P.4
OXFORD UNIVERSITY PRESS
MOCK 16(I) COMPULSORY PART PAPER 2 SOLUTION
18. B                                                        20. B
    Total surface area of the solid                              I.   Sum of the interior angles = 2 520
      1                                                                         (n  2)  180 = 2 520
    =  [4 π(2) 2 ]  2 π (2)(10  2)  π(2) 2  cm2
      2                                                                                  n  2 = 14
    = 44 cm  2                                                                                 n = 16
                                                                      ∴ The number of diagonals of the
19. D
             
     ∵ AB : BC : AC = 13 : 11 : 12
                                                                          polygon is not 14.
                                                                      ∴ I is not true.
                                                                                             360
     ∴ ACB : BAC : ABC = 13 : 11 : 12                         II. Each exterior angle =          = 22.5
                                                                                              16
     DEF = ABC and DFE = BAC.                                     ∴ II is true.
     In △DEF,                                                                                2 520
     EDF + DEF + DFE = 180                                   III. Each interior angle =
                                                                                               16
     EDF + ABC + BAC = 180                                                            = 157.5
     EDF = 180  ABC  BAC                                                             140
            = ACB                                                    ∴ III is not true.
                           13
            = 180                                              ∴ Only II is true.
                      13  11  12
            = 65                                            21. D
     Alternative method:                                         With the notation in the figure, F is a point on
     DE and DF are produced to meet AC and BC at                 BC such that DF  BC.
     G and H respectively.                                                                         C
                            C
                                                                                                
                                                                                 D
                     G                                                                              F
                                       H
                           E       F
                A                          B
                                                                             
                        D                                               A         E                 B
     ∵ DG // BC and DH // AC.                                    In △ ADE,
     ∴ DGCH is a parallelogram.                                          AE
                                                                 cos  =
             
     ∴ EDF = ACB
     ∵ AB : BC : AC = 13 : 11 : 12
                                                                         AD
                                                                   AE = AD cos 
                                                                 In △ CDF,
     ∴ ACB : BAC : ABC = 13 : 11 : 12
                                                                         DF
                        13                                       sin  =
     ACB = 180                                                        CD
                   13  11  12                                    DF = CD sin 
          = 65                                                  BE = DF = CD sin 
     ∴ EDF = 65                                                 AE     AD cos
                                                                       =
                                                                  BE     CD sin 
                                                                            AD
                                                                       =
                                                                              sin 
                                                                         CD 
                                                                              cos
                                                                           AD
                                                                       =
                                                                         CD tan 
22. B
23. B                                                       25. A
    Rectangular coordinates of the image of P                                          12
                                                                y-intercept of L1 =        =3
    = ( 3 , 1)                                                                        4
    With the notation in the figure,                                                  6     6
                 y                                              y-intercept of L2 =       =
                                                                                       b     b
                                                                ∵ L1 and L2 intersect at a point on the y-axis.
                                     Q                                    6
                                               x                ∴ 3=
                  O                                                      b
                                                                     b=2
                                      R( 3 , 1)                                 a
                                                                Slope of L1 = 
                                                                                 4
    OQ = 3                                                                       2
    QR = 1                                                      Slope of L2 = 
                                                                                 b
    OR =     OQ 2  QR 2                                        ∵ L1  L2
                                                                ∴ Slope of L1  slope of L2 = 1
        = ( 3 ) 2  12
                                                                                   a  2 
        =2                                                                             = 1
             QR                                                                    4  b 
    tan  =                                                                                  a = 2b
             OQ
                                                                                               = 2(2)
              1
          =                                                                                    = 4
               3
         = 30                                             26. C
    The required polar coordinates                              Coordinates of the centre of the circle
    = (OR , 360  )                                               k      12 
    = (2 , 360  30)                                          =  ,         
                                                                    2       2 
    = (2 , 330)
                                                                    k 
                                                                =   , 6
24. A                                                               2 
    I.   Let (x , y) be the coordinates of P.                   The equation of L is
         ∵ PA = PB                                               y0      12  0
                                                                        =
         ∴            [ x  (1)]2  ( y  4) 2                  x 8      08
                                                                    2y = 3x + 24
              =       [ x  ( 5)]2  ( y  2) 2                            3
                                                                      y =  x + 12
              (x + 1)2 + (y  4)2 = (x + 5)2 + (y  2)2                     2
                    x2 + 2x + 1 +                               Since L divides the circle into two equal parts,
                     y2  8y + 16 = x2 + 10x + 25 +             L passes through the centre of the circle.
                                    y2  4y + 4                                   k
                                                                Substitute x =  and y = 6 into the equation
                  8x  4y  12 = 0                                               2
                       2x + y + 3 = 0                           of L.
         ∴ I must not be true.                                           3 k 
    II must be true.                                             6 =     + 12
                                                                         2 2
    III. △PAB is an equilateral triangle only when
                                                                       3k
         PA = PB = AB. Otherwise, △PAB is an                    6 =
         isosceles triangle or APB is a straight line.                  4
         ∴ III may not be true.                                   k = 8
    ∴ Only II must be true.
27. B                                                         30. B
                          The 1st number                          ∵ Mode = 8
      Sum
              1     2    3     4   5    6      7    8             ∴    x=8
          1         3    4     5   6    7      8    9                              Mean = 7
          2   3          5     6   7    8      9   10             358888 y
 The 2nd number
          3   4     5          7   8    9     10   11                                    =7
                                                                            7
          4   5     6    7         9 10       11   12                             40 + y = 49
          5   6     7    8     9       11     12   13                                  y=9
          6   7     8    9 10 11              13   14             Standard deviation
          7   8     9 10 11 12 13                  15
                                                                       (3  7) 2  (5  7) 2  4(8  7) 2  (9  7) 2
          8   9 10 11 12 13 14                15                  =
        The required probability                                                              7
            8                                                     =2
        =
           56
                                                              31. A
           1
        =                                                                  1             x
           7                                                           2
                                                                                    3
                                                                    x  2x  3        x  27
                                                                            1                     x
28. C                                                             =                  
    Total number of banknotes in the cash box                       ( x  1)( x  3)              2
                                                                                       ( x  3)( x  3x  9)
    = 15 + 20 + 10 + 5                                                  x 2  3x  9  x( x  1)
    = 50                                                          =
                                                                    ( x  1)( x  3)( x 2  3x  9)
    Expected face value
                                                                                 2x  9
            15        20       10          5                    =
    = $ 10   20        50   100                            ( x  1)( x  3)( x 2  3 x  9)
            50        50       50         50 
    = $31
                                                              32. C
29. C                                                             Intercept on the vertical axis of the graph
                      Median = 27                                 =a<0
                  20  a  28                                     Slope of the graph = b > 0
                               = 27                               log5 y = a + bx
                       2
                                                                       y = 5a + bx
                        a + 48 = 54
                                                                       y = 5a(5b)x
                             a=6
                                                                  ∵ a<0
                  Q1 = 21
                  Q3 = 30 + b                                     ∴ 0 < 5a < 1 ........................ (1)
                  Inter-quartile range = 14                       ∵ b>0
                         (30 + b)  21 = 14                       ∴ 5b > 1 .............................. (2)
                                     b=5                                 5x
                                                                  Only y =  satisfies (1) and (2).
                                                                         3
                                                                  ∴ The answer is C.
                                                              33. C
                                                                    250  1610 + 192  165 + 29
                                                                  = (15  16 + 10)  1610 + (12  16)  165 +
                                                                    16 + 13
                                                                  = 15  1611 + 10  1610 + 12  166 + 1  16 +
                                                                    13
                                                                  = FA000C00001D16
39. D                                                         41. D
    From the figure, the graph of y = h  sin kx is               x  2 y  k  0 .................................. (1)
    obtained by reducing the graph of y = sin x                  2       2
        1                                                          x  y  8 x  12 y  48  0 ............. (2)
    to     of the original along the x-axis and then              From (1), x = k  2y .......................... (3)
        2
                                                                  Substitute (3) into (2).
    translating upward by 1 unit.
                                                                       (k  2y)2 + y2  8(k  2y) + 12y  48 = 0
    ∴ y = 1  sin 2x
                                                                  k  4ky + 4y2 + y2  8k + 16y + 12y  48 = 0
                                                                   2
    ∴ h = 1 and k = 2
                                                                              5y2 + (28  4k)y + k2  8k  48 = 0
                                                                  Let (x1 , y1) and (x2 , y2) be the coordinates of A
40. A                                                             and B respectively.
    I.   ∵ BD // PQ                                               y1 and y2 are the roots of the equation
         ∴ BCP = CBD                                            5y2 + (28  4k)y + k2  8k  48 = 0.
         BAC = BCP                                                           28  4k
         ∴ BAC = CBD                                            y1 + y2 = 
                                                                                  5
         CAD = CBD                                              ∴ y-coordinate of the mid-point of AB
         ∴ BAC = CAD                                                     y  y2
         i.e. CA bisects BAD.                                         = 1
                                                                              2
         ∴ I must be true.                                                 1  28  4k 
    II. ∵ FB bisects ABD.                                             =                   
                                                                           2        5 
         ∴ ABF = DBF
                                                                           2k  14
         In △ ABF,                                                     =
         CFB = BAC + ABF                                                   5
                = CBD + DBF
                = CBF                                        42. C
         ∴ FC = BC                                                Coordinates of the mid-point of the line
         ∴ II must be true.                                       segment joining (7 , 0) and (5 , 4)
    III. With the notation in the figure,                             7  5 0  (4) 
                                                                  =        ,         
                                                                      2         2    
                                A
                                                                  = (6 , 2)
                                                                  Slope of the straight line passing through (7 , 0)
                             a a
                                                                  and (5 , 4)
                           F                                         0  (4)
                    b                                             =
                                                                       75
                    b
              B    a E        a   D                               =2
                          2b                                      Slope of the perpendicular bisector of the line
                    a        a
            P
                       C
                                    Q                             segment joining (7 , 0) and (5 , 4)
        FBC + BCD                                                     1
                                                                  = 
      = b + a + BCA + 2b                                               2
      = 3b + a + (180  2b  2a)                                 Let (2 , a) be the coordinates of the
      = 180 + b  a                                              circumcentre.
      FBC + BCD = 180 only when a = b.                         a  (2)        1
                                                                             = 
      ∴ III is not necessarily true.                                26           2
    ∴ Only I and II must be true.                                      a+2=2
                                                                           a=0
                                                                  ∴ The y-coordinate of the circumcentre is 0.
44. D
    Consider the books of the same subject as one
    unit.
    Since there are 3 subjects, there are 3 units.
    The number of ways of arranging these 3 units
    is 3!.
    Number of ways of arranging the
    6 Mathematics books
    = 6!
    Number of ways of arranging the 2 Economics
    books
    = 2!
    Number of ways of arranging the 3 Geography
    books
    = 3!
    The required number of ways
    = 3!  6!  2!  3!
    = 51 840