0% found this document useful (0 votes)
88 views17 pages

Oxford Core 1 2019 Markscheme

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
88 views17 pages

Oxford Core 1 2019 Markscheme

Uploaded by

Ngai Ivan CHAN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

OXFORD UNIVERSITY PRESS

MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Compulsory Part Paper 1


Solution Marks
1. 2(3a  11) = 3a  5b
6a  22 = 3a  5b 1M
3a = 22  5b 1M
22  5b
a= 1A
3
2(3a  11) = 3a  5b
3a 5b
3a  11 =  1M
2 2
3a 22  5b
= 1M
2 2
22  5b
a= 1A
3
----------(3)

m 6 n 3
2.
( m5 n  4 ) 2
m 6 n 3
= 1M
m10 n 8
n 3  ( 8)
= 1M
m10  6
n5
= 4 1A
m
----------(3)

5 4
3. 
3k  2 2k  7
5(2k  7)  4(3k  2)
= 1M
(3k  2)(2k  7)
10k  35  12k  8
= 1M
(3k  2)(2k  7)
 2k  27
= 1A
(3k  2)(2k  7)
----------(3)

4. (a) 25x2  4
= (5x + 2)(5x  2) 1A
(b) 5x2y  17xy + 6y
= y(5x2  17x + 6)
= y(5x  2)(x  3) 1A

© Oxford University Press 2019 P.1


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
2 2
(c) 5x y  17xy + 6y  25x + 4
= 5x2y  17xy + 6y  (25x2  4)
= y(5x  2)(x  3)  (5x + 2)(5x  2) 1M
= (5x  2)[y(x  3)  (5x + 2)]
= (5x  2)(xy  3y  5x  2) 1A
----------(4)

5x  3
5. (a) 3(x  4) 
6
18(x  4)  5x + 3
18x + 72  5x + 3
23x  69 1M
x3 1A

(b) 6x + 24 > 0
6x > 24
x > 4 1A
The integers which satisfy both inequalities are 3, 2, 1, 0, 1, 2 and 3.
∴ 7 integers satisfy both inequalities. 1A
----------(4)

6. (a) Let $x be the cost of the computer.


x(1 + 40%) = 7 000 1M
1.4x = 7 000
x = 5 000
∴ The cost of the computer is $5 000. 1A

(b) Selling price of the computer


= $7 000  (1  12%) 1M
= $7 000  0.88
= $6 160
∴ Percentage profit
6 160  5 000
=  100%
5 000
= 23.2% 1A
----------(4)

© Oxford University Press 2019 P.2


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
7. Let x and y be the present ages of Peter and Irene respectively.
x 4
 y  3 ............................................ (1)

 1A+1A
 x  7  3 ...................................... (2)
 y  7 2
4
From (1), x = y ........................... (3)
3
Substitute (3) into (2).
4
y 7
3 3
= 1M
y 7 2
8
y  14 = 3y  21
3
y
 = 7
3
y = 21
∴ The present age of Irene is 21. 1A
Let 4k and 3k be the present ages of Peter and Irene respectively, where k is a
positive constant. 1A
4k  7 3
= 1M+1A
3k  7 2
8k  14 = 9k  21
k = 7
k=7
Present age of Irene
=37
= 21 1A
----------(4)

41  47  49  50  2  (50  a)  55  2  62  70  (70  a)  2
8. (a) = 57 1M
12
669 + 3a = 684
3a = 15
a=5 1A

© Oxford University Press 2019 P.3


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
(b) Range = (75  41) kg
= 34 kg 1A
49  50
Q1 = kg = 49.5 kg
2
62  70
Q3 = kg = 66 kg
2
Inter-quartile range = (66  49.5) kg
= 16.5 kg 1A
Standard deviation = 10.7 kg, cor. to 3 sig. fig. 1A
----------(5)

9. (a) ∵ AO = AE
∴ AOE = AEO
AOE
ABD = 1M
2
In △BDE,
ABD + AEO = BDC
AOE
+ AOE = 48
2
3AOE
= 48
2
AOE = 32 1A
(b) Join OB.
BOC = 2BDC
= 2  48
= 96
BOC + AOB + AOE = 180
96 + AOB + 32 = 180 1M
AOB = 52

AB = 2    OA 
AOB
360
52
= 2    AE  1M
360
 0.907 571 211AE
< AE
∴ The claim is agreed. 1A

© Oxford University Press 2019 P.4


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks

Join OB.
∵ OB = OD
∴ OBD = ODB
= 48
In △OBD,
OBD + BOD + ODB = 180
48 + AOB + 32 + 48 = 180 1M
AOB = 52

AB = 2    OA 
AOB
360
52 1M
= 2    AE 
360
 0.907 571 211AE
< AE
∴ The claim is agreed. 1A
----------(5)

10. (a) From the question, f (x) = k1 + k2x2, where k1 and k2 are non-zero constants. 1A
f (1) = 206
k1 + k2(1)2 = 206
k1 + k2 = 206 ................. (1)
1M
f (3) = 254
for either
k1 + k2(3)2 = 254 substitution
k1 + 9k2 = 254 ................... (2)
(2)  (1): 8k2 = 48
k2 = 6
Substitute k2 = 6 into (1).
k1 + 6 = 206
k1 = 200
∴ f(x) = 200 + 6x2 1A
----------(3)

(b) f (x) = 80x


200 + 6x2 = 80x 1M
6x2  80x + 200 = 0
3x2  40x + 100 = 0
(x  10)(3x  10) = 0
10
x = 10 or 1A
3
----------(2)

© Oxford University Press 2019 P.5


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
11. (a) c+1+4+a=8+ba+c 1M
b = 2a  3
Note that a > 5 and b < 11.
When a = 6, b = 2(6)  3 = 9.
When a = 7, b = 2(7)  3 = 11 (rejected).
When a  8, b must be greater than 11.
∴ a = 6 and b = 9. 1A+1A
----------(3)

(b)(i) ∵ c > 0 and the mode is greater than 2.


∴ The least possible value of c is 1. 1A
(ii) ∵ The mode is greater than 2.
∴ c+1<8
c<7
∴ The greatest possible value of c is 6. 1A
----------(2)

(c) c=1
The required probability
(9  6)  1
= 1M
(1  1)  4  6  8  (9  6)  1
1
= 1A
6
----------(2)

12. (a) ∵ x + 1 is a factor of f (x).


∴ f (1) = 0
3 2
4(1) + (a + 2)(1) + 2(1)  3b = 0
4 + a + 2  2  3b = 0
1M
a  3b = 4 ........................ (1)
for either
∵ When f (x) is divided by x  2, the remainder is 9. one
∴ f (2) = 9
4(2)3 + (a + 2)(2)2 + 2(2)  3b = 9
32 + 4a + 8 + 4  3b = 9
4a  3b = 29 ................................ (2)
(2)  (1): 3a = 33
a = 11 1A
Substitute a = 11 into (1).
11  3b = 4
3b = 15
b=5 1A
----------(3)

© Oxford University Press 2019 P.6


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
3 2
(b) f (x) = 4x + (11 + 2)x + 2x  3(5)
= 4x3 + 13x2 + 2x  15 1M
Using long division,
4x  5
 x  2 x  3  4 x 3  13 x 2  2 x  15
2

 4 x 3  8 x 2  12 x
5 x 2  10 x  15
5 x 2  10 x  15
∴ f (x) = (x2 + 2x + 3)(4x  5)
g(x) = 4x  5
kx g(x) = f (x)
kx(4x  5) = (x2 + 2x + 3)(4x  5) 1M
(4x  5)[kx  (x2 + 2x + 3)] = 0
(4x  5)[x2 + (k  2)x  3] = 0 1M
5
x= or x2 + (k  2)x  3 = 0
4
Consider the equation x2 + (k  2)x  3 = 0.
 = (k  2)2  4(1)(3)
= (k  2)2 + 12
>0
∴ The equation x2 + (k  2)x  3 = 0 has two distinct real roots.
∴ The equation kx g(x) = f (x) has more than one real root for all real values
of k.
∴ The claim is agreed. 1A
----------(4)

13. (a) Let r cm be the radius of the metal sphere.


4r2 = 144 1M
r2 = 36
r = 36
=6
4
Volume of the metal sphere = (6)3 cm3
3
= 288 cm3 1A
----------(2)

© Oxford University Press 2019 P.7


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
(b) Let h cm be the original depth of water in the container.
Volume of the metal sphere +
volume of water in the container = capacity of the container
∴ 288 + (16)2h = (16)2(14) 1M+1M
256h = 3 296
103
h=
8
103
∴ The original depth of water in the container is cm. 1A
8
----------(3)

(c) Let R cm and  cm be the base radius and the slant height of the circular
conical vessel respectively.
2R = 48
R = 24
R  = 720
(24)  = 720
 = 30
Height of the vessel = 30 2  24 2 cm 1M
= 18 cm
1
Capacity of the vessel = (24)2(18) cm3 1M
3
= 3 456 cm3
Volume of water in the circular cylindrical container
 103  3
= (16)2   cm
 8 
= 3 296 cm3
∵ 3 456 cm3 > 3 296 cm3
∴ The water will not overflow. 1A
----------(3)

14. Marking Schemes for (a)(i) and (a)(ii):


Case 1 Any correct proof with correct reasons. 2
Case 2 Any correct proof without reasons. 1
(a)(i) In △BCE and △DCE,
BC = DC (by definition)
BCE = DCE = 45 (property of square)
CE = CE (common side)
∴ △BCE  △DCE (SAS)

© Oxford University Press 2019 P.8


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
(ii) In △BEG and △FEB,
BEG = FEB (common angle)
∵ △BCE  △DCE (proved in (a)(i))
∴ EBC = EDC (corr. s,  △s)
EDC = EFB (alt. s, AF // DC)
∴ EBC = EFB
i.e. EBG = EFB
BGE = 180  BEG  EBG ( sum of △)
= 180  FEB  EFB
= FBE ( sum of △)
∴ △BEG ~ △FEB (AAA)
----------(4)

(b) ∵ △BCE  △DCE


∴ BE = DE
∵ △BEG ~ △FEB
BE EG BG
∴ = = 1M
FE EB FB
BG
∵ = tan AFD and BE = DE.
FB
DE EG
∴ = = tan AFD
FE DE
i.e. DE = FE tan AFD and EG = DE tan AFD. 1M
3
Note that when 0 < AFD < 30, 0 < tan AFD < .
3
DE = FE tan AFD
= (EG + FG) tan AFD
= (DE tan AFD + FG) tan AFD
= DE tan2 AFD + FG tan AFD
2
 3  
< DE   + FG  3  1M
 3   3 
   
1 3
DE < DE + FG
3 3
2 3
DE < FG
3 3
3
DE < FG
2
∴ The claim is agreed. 1A
----------(4)

© Oxford University Press 2019 P.9


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
15. (a) Number of teams formed = C58  C 25 1M
= 560 1A
----------(2)

(b) Number of teams formed = C38  C 45 + C 28  C55 1M


= 308 1A
----------(2)

x2 x
16. (a) f (x) =  + 11
16 2
1 2
= (x  8x) + 11
16
1  2  8  8 
2 2
=  x  8 x       + 11 1M
16   2   2  
1 2
= (x  8x + 16)  1 + 11
16
1
= (x  4)2 + 10
16
∴ The coordinates of the vertex are (4 , 10). 1A
----------(2)

(b) g(x) = f (x) 1M


1
=  (x  4)2  10
16
Note that the graph of y = h(x) is obtained by translating the graph of y = g(x)
upward by [6  (10)] units, i.e. 16 units.
h(x) = g(x) + 16
1
=  (x  4)2 + 6 1M
16
1
h(0) =  (0  4)2 + 6 = 5
16
∴ The y-intercept of the graph of y = h(x) is 5. 1A
----------(3)

17. (a) (x + 2)(x  2) = 8(x  1)


x2  4 = 8x  8
x2  8x + 4 = 0
8
∴ p=  =8 1A
1
4
q= =4 1A
1
----------(2)

© Oxford University Press 2019 P.10


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
log 8
(b) Common ratio = 1M
log 4
log 2 3
=
log 2 2
3 log 2
=
2 log 2
= 1.5
∴ The general term Tn = (log 4)1.5n  1
T + 1 + T2 + 1 < log 22 020
(log 4)1.5( + 1)  1 + (log 4)1.5(2 + 1)  1 < log 22 020 1M
(2 log 2)1.5 + (2 log 2)1.52 < 2 020 log 2
(1.5)2 + 1.5  1 010 < 0
 1  12  4(1)(1 010)   1  12  4(1)(1 010)
∴ < 1.5 <
2(1) 2(1)

∵ 1.5 > 0 for all .
  1  12  4(1)(1 010)
∴ 1.5 <
2(1)
 1  4 041
log 1.5 < log 1M
2
 1  4 041
 log 1.5 < log
2
 1  4 041
log
< 2
log1.5
 < 8.49, cor. to 2 d.p.
∴ The greatest value of  is 8. 1A
----------(4)

18. (a) In △ABD, by the sine formula,


AB AD
=
sin ADB sin ABD
AB 15 cm
= 1M
sin 65 sin 58
15 sin 65
AB = cm
sin 58
 16.030 478 54 cm
= 16.0 cm, cor. to 3 sig. fig. 1A
In △ABC, by the cosine formula,
AC2 = AB2 + BC2  2  AB  BC  cos ABC
AC  16.030 478 54 2  17 2  2  16.030 478 54  17  cos116 cm 1M
 28.016 145 65 cm
= 28.0 cm, cor. to 3 sig. fig. 1A
----------(4)
© Oxford University Press 2019 P.11
OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
(b) In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57 
16.030 478 54 cm
AK  8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2  AD 2  CD 2
cos CAD =
2  AC  AD
28.016 145 652  152  27 2
 1M
2  28.016 145 65  15
for any
CAD  70.475 050 57 one
In △ACK, by the cosine formula,
CK2 = AK2 + AC2  2  AK  AC  cos CAD
CK  (8.730 824 3632  28.016 145 652 
1
2  8.730 824 363  28.016 145 65  cos 70.475 050 57) 2 cm
 26.412 684 5 cm
CK 2  AK 2  AC 2
cos CKA =
2  CK  AK
26.412 684 52  8.730 824 3632  28.016 145 652

2  26.412 684 5  8.730 824 363
CKA  91.372 522 28
∴ CKA  90 1M
∴ BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A

© Oxford University Press 2019 P.12


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks

In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57 
16.030 478 54 cm
AK  8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2  AD 2  CD 2
cos CAD =
2  AC  AD
28.016 145 652  152  27 2
 1M
2  28.016 145 65  15 for any
CAD  70.475 050 57 one
In △ACK, by the cosine formula,
CK2 = AK2 + AC2  2  AK  AC  cos CAD
 (8.730 824 3632 + 28.016 145 652 
2  8.730 824 363  28.016 145 65  cos 70.475 050 57) cm2
 697.629 902 6 cm2
CK2 + AK2  (697.629 902 6 + 8.730 824 3632) cm2  773.857 196 7 cm2
AC2  28.016 145 652 cm2  784.904 417 1 cm2
∵ AC2  CK2 + AK2
∴ CKA  90 1M
∴ BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A

© Oxford University Press 2019 P.13


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks

In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57 
16.030 478 54 cm
AK  8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2  AD 2  CD 2
cos CAD =
2  AC  AD
28.016 145 652  152  27 2

2  28.016 145 65  15 1M
for any
CAD  70.475 050 57 one
Let N be a point on AD such that CN  AD.
In △ACN,
AN
cos CAN =
AC
AN
cos 70.475 050 57 
28.016 145 65 cm
AN  9.363 480 57 cm
∵ AN  AK
∴ CK is not perpendicular to AD. 1M
i.e. BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A
----------(3)

19. (a) ∵ G is the circumcentre of △PQR.


∴ GQ = GR
(6  h) 2  (9  3) 2 = (a  h) 2  (11  3) 2 1M
36  12h + h2 + 36 = a2  2ah + h2 + 64
2ah  12h = a2  8
(2a  12)h = a2  8
a2  8
h=
2a  12
 a2  8  1A
∴ The coordinates of G are  , 3  .
 2a  12  ----------(2)

© Oxford University Press 2019 P.14


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
4
(b)(i) Slope of RG =
3
3 11 4
=
ha 3
2 1
=
ah 3
6=ah
h=a6
a2  8
Substitute h = a  6 into h = .
2a  12
a2  8
a6= 1M
2a  12
(a  6)(2a  12) = a2  8
2a2  24a + 72 = a2  8
a2  24a + 80 = 0
(a  4)(a  20) = 0
a = 4 or 20
42  8
When a = 4, h = = 2 < 0
2(4)  12
202  8
When a = 20, h = = 14 > 0
2(20)  12
∴ a = 20 1A

(ii) Coordinates of G = (14 , 3)


Radius of C = (6  14) 2  (9  3) 2
= 10
The equation of C is
(x  14)2 + (y  3)2 = 102 1M
x2  28x + 196 + y2  6y + 9 = 100
x2 + y2  28x  6y + 105 = 0
Substitute y = kx into x2 + y2  28x  6y + 105 = 0.
x2 + (kx)2  28x  6kx + 105 = 0 1M
(1 + k2)x2  (28 + 6k)x + 105 = 0
 (28  6k )

x-coordinate of M = 1 k 2
2
14  3k
= 1
1 k2

© Oxford University Press 2019 P.15


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
k (14  3k )
(iii) y-coordinate of M =
1 k 2
Note that OMG = 90.
OM = 2 41
2 2
 14  3k   k (14  3k ) 
 2
 0   2
 0 = 2 41 1M
 1 k   1 k 

(14  3k ) 2
2
= (2 41) 2
1 k
196 + 84k + 9k2 = 164 + 164k2
155k2  84k  32 = 0
(5k  4)(31k + 8) = 0
4 8
k= or  (rejected)
5 31
  
 14  3 4  4 14  3 4  
 5, 5   5  
Coordinates of M =  2 2  = (10 , 8) 1M
 1   4  4
1   
 5 5 
     
When P is farthest from M, MGA is a straight line.
When P is nearest to the y-axis,
coordinates of B = (14  10 , 3)
= (4 , 3) 1M
Note that the area of the circle passing through A and B is the least when AB is
a diameter of the circle. Hence, AUB = 90. 1M
Slope of AM = slope of GM
83
=
10  14
5
= 
4
83
Slope of BM =
10  4
5
=
6
Slope of AM  slope of BM
5 5
=   1M
4 6
25
= 
24
 1
∴ AMB  90
∵ AUB + AMB  180
∴ A, M, B and U are not concyclic. 1A

© Oxford University Press 2019 P.16


OXFORD UNIVERSITY PRESS
MOCK 19(I) COMPULSORY PART PAPER 1 SOLUTION

Solution Marks
k (14  3k )
y-coordinate of M =
1 k 2
Note that OMG = 90.
OM = 2 41
2 2
 14  3k   k (14  3k ) 
 2
 0   2
 0 = 2 41 1M
 1  k   1 k 

(14  3k ) 2
= (2 41) 2
1 k 2
196 + 84k + 9k2 = 164 + 164k2
155k2  84k  32 = 0
(5k  4)(31k + 8) = 0
4 8
k= or  (rejected)
5 31
When P is farthest from M, MGA is a straight line.
When P is nearest to the y-axis,
coordinates of B = (14  10 , 3)
= (4 , 3) 1M
Note that the area of the circle passing through A and B is the least when AB is
a diameter of the circle. Hence, AUB = 90. 1M
4
Substitute x = 4 and y = 3 into y = x.
5
L.H.S. = 3 1M
4 16
R.H.S. = (4) =
5 5
∵ L.H.S.  R.H.S.
i.e. The ordered pair (4 , 3) does not satisfy the equation.
∴ B(4 , 3) does not lie on OM. 1M
∴ AMB  90
∵ AUB + AMB  180
∴ A, M, B and U are not concyclic. 1A
----------(11)

© Oxford University Press 2019 P.17

You might also like