Oxford Core 1 2019 Markscheme
Oxford Core 1 2019 Markscheme
m 6 n 3
2.
( m5 n 4 ) 2
m 6 n 3
= 1M
m10 n 8
n 3 ( 8)
= 1M
m10 6
n5
= 4 1A
m
----------(3)
5 4
3.
3k 2 2k 7
5(2k 7) 4(3k 2)
= 1M
(3k 2)(2k 7)
10k 35 12k 8
= 1M
(3k 2)(2k 7)
2k 27
= 1A
(3k 2)(2k 7)
----------(3)
4. (a) 25x2 4
= (5x + 2)(5x 2) 1A
(b) 5x2y 17xy + 6y
= y(5x2 17x + 6)
= y(5x 2)(x 3) 1A
Solution Marks
2 2
(c) 5x y 17xy + 6y 25x + 4
= 5x2y 17xy + 6y (25x2 4)
= y(5x 2)(x 3) (5x + 2)(5x 2) 1M
= (5x 2)[y(x 3) (5x + 2)]
= (5x 2)(xy 3y 5x 2) 1A
----------(4)
5x 3
5. (a) 3(x 4)
6
18(x 4) 5x + 3
18x + 72 5x + 3
23x 69 1M
x3 1A
(b) 6x + 24 > 0
6x > 24
x > 4 1A
The integers which satisfy both inequalities are 3, 2, 1, 0, 1, 2 and 3.
∴ 7 integers satisfy both inequalities. 1A
----------(4)
Solution Marks
7. Let x and y be the present ages of Peter and Irene respectively.
x 4
y 3 ............................................ (1)
1A+1A
x 7 3 ...................................... (2)
y 7 2
4
From (1), x = y ........................... (3)
3
Substitute (3) into (2).
4
y 7
3 3
= 1M
y 7 2
8
y 14 = 3y 21
3
y
= 7
3
y = 21
∴ The present age of Irene is 21. 1A
Let 4k and 3k be the present ages of Peter and Irene respectively, where k is a
positive constant. 1A
4k 7 3
= 1M+1A
3k 7 2
8k 14 = 9k 21
k = 7
k=7
Present age of Irene
=37
= 21 1A
----------(4)
41 47 49 50 2 (50 a) 55 2 62 70 (70 a) 2
8. (a) = 57 1M
12
669 + 3a = 684
3a = 15
a=5 1A
Solution Marks
(b) Range = (75 41) kg
= 34 kg 1A
49 50
Q1 = kg = 49.5 kg
2
62 70
Q3 = kg = 66 kg
2
Inter-quartile range = (66 49.5) kg
= 16.5 kg 1A
Standard deviation = 10.7 kg, cor. to 3 sig. fig. 1A
----------(5)
9. (a) ∵ AO = AE
∴ AOE = AEO
AOE
ABD = 1M
2
In △BDE,
ABD + AEO = BDC
AOE
+ AOE = 48
2
3AOE
= 48
2
AOE = 32 1A
(b) Join OB.
BOC = 2BDC
= 2 48
= 96
BOC + AOB + AOE = 180
96 + AOB + 32 = 180 1M
AOB = 52
AB = 2 OA
AOB
360
52
= 2 AE 1M
360
0.907 571 211AE
< AE
∴ The claim is agreed. 1A
Solution Marks
Join OB.
∵ OB = OD
∴ OBD = ODB
= 48
In △OBD,
OBD + BOD + ODB = 180
48 + AOB + 32 + 48 = 180 1M
AOB = 52
AB = 2 OA
AOB
360
52 1M
= 2 AE
360
0.907 571 211AE
< AE
∴ The claim is agreed. 1A
----------(5)
10. (a) From the question, f (x) = k1 + k2x2, where k1 and k2 are non-zero constants. 1A
f (1) = 206
k1 + k2(1)2 = 206
k1 + k2 = 206 ................. (1)
1M
f (3) = 254
for either
k1 + k2(3)2 = 254 substitution
k1 + 9k2 = 254 ................... (2)
(2) (1): 8k2 = 48
k2 = 6
Substitute k2 = 6 into (1).
k1 + 6 = 206
k1 = 200
∴ f(x) = 200 + 6x2 1A
----------(3)
Solution Marks
11. (a) c+1+4+a=8+ba+c 1M
b = 2a 3
Note that a > 5 and b < 11.
When a = 6, b = 2(6) 3 = 9.
When a = 7, b = 2(7) 3 = 11 (rejected).
When a 8, b must be greater than 11.
∴ a = 6 and b = 9. 1A+1A
----------(3)
(c) c=1
The required probability
(9 6) 1
= 1M
(1 1) 4 6 8 (9 6) 1
1
= 1A
6
----------(2)
Solution Marks
3 2
(b) f (x) = 4x + (11 + 2)x + 2x 3(5)
= 4x3 + 13x2 + 2x 15 1M
Using long division,
4x 5
x 2 x 3 4 x 3 13 x 2 2 x 15
2
4 x 3 8 x 2 12 x
5 x 2 10 x 15
5 x 2 10 x 15
∴ f (x) = (x2 + 2x + 3)(4x 5)
g(x) = 4x 5
kx g(x) = f (x)
kx(4x 5) = (x2 + 2x + 3)(4x 5) 1M
(4x 5)[kx (x2 + 2x + 3)] = 0
(4x 5)[x2 + (k 2)x 3] = 0 1M
5
x= or x2 + (k 2)x 3 = 0
4
Consider the equation x2 + (k 2)x 3 = 0.
= (k 2)2 4(1)(3)
= (k 2)2 + 12
>0
∴ The equation x2 + (k 2)x 3 = 0 has two distinct real roots.
∴ The equation kx g(x) = f (x) has more than one real root for all real values
of k.
∴ The claim is agreed. 1A
----------(4)
Solution Marks
(b) Let h cm be the original depth of water in the container.
Volume of the metal sphere +
volume of water in the container = capacity of the container
∴ 288 + (16)2h = (16)2(14) 1M+1M
256h = 3 296
103
h=
8
103
∴ The original depth of water in the container is cm. 1A
8
----------(3)
(c) Let R cm and cm be the base radius and the slant height of the circular
conical vessel respectively.
2R = 48
R = 24
R = 720
(24) = 720
= 30
Height of the vessel = 30 2 24 2 cm 1M
= 18 cm
1
Capacity of the vessel = (24)2(18) cm3 1M
3
= 3 456 cm3
Volume of water in the circular cylindrical container
103 3
= (16)2 cm
8
= 3 296 cm3
∵ 3 456 cm3 > 3 296 cm3
∴ The water will not overflow. 1A
----------(3)
Solution Marks
(ii) In △BEG and △FEB,
BEG = FEB (common angle)
∵ △BCE △DCE (proved in (a)(i))
∴ EBC = EDC (corr. s, △s)
EDC = EFB (alt. s, AF // DC)
∴ EBC = EFB
i.e. EBG = EFB
BGE = 180 BEG EBG ( sum of △)
= 180 FEB EFB
= FBE ( sum of △)
∴ △BEG ~ △FEB (AAA)
----------(4)
Solution Marks
15. (a) Number of teams formed = C58 C 25 1M
= 560 1A
----------(2)
x2 x
16. (a) f (x) = + 11
16 2
1 2
= (x 8x) + 11
16
1 2 8 8
2 2
= x 8 x + 11 1M
16 2 2
1 2
= (x 8x + 16) 1 + 11
16
1
= (x 4)2 + 10
16
∴ The coordinates of the vertex are (4 , 10). 1A
----------(2)
Solution Marks
log 8
(b) Common ratio = 1M
log 4
log 2 3
=
log 2 2
3 log 2
=
2 log 2
= 1.5
∴ The general term Tn = (log 4)1.5n 1
T + 1 + T2 + 1 < log 22 020
(log 4)1.5( + 1) 1 + (log 4)1.5(2 + 1) 1 < log 22 020 1M
(2 log 2)1.5 + (2 log 2)1.52 < 2 020 log 2
(1.5)2 + 1.5 1 010 < 0
1 12 4(1)(1 010) 1 12 4(1)(1 010)
∴ < 1.5 <
2(1) 2(1)
∵ 1.5 > 0 for all .
1 12 4(1)(1 010)
∴ 1.5 <
2(1)
1 4 041
log 1.5 < log 1M
2
1 4 041
log 1.5 < log
2
1 4 041
log
< 2
log1.5
< 8.49, cor. to 2 d.p.
∴ The greatest value of is 8. 1A
----------(4)
Solution Marks
(b) In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57
16.030 478 54 cm
AK 8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2 AD 2 CD 2
cos CAD =
2 AC AD
28.016 145 652 152 27 2
1M
2 28.016 145 65 15
for any
CAD 70.475 050 57 one
In △ACK, by the cosine formula,
CK2 = AK2 + AC2 2 AK AC cos CAD
CK (8.730 824 3632 28.016 145 652
1
2 8.730 824 363 28.016 145 65 cos 70.475 050 57) 2 cm
26.412 684 5 cm
CK 2 AK 2 AC 2
cos CKA =
2 CK AK
26.412 684 52 8.730 824 3632 28.016 145 652
2 26.412 684 5 8.730 824 363
CKA 91.372 522 28
∴ CKA 90 1M
∴ BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A
Solution Marks
In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57
16.030 478 54 cm
AK 8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2 AD 2 CD 2
cos CAD =
2 AC AD
28.016 145 652 152 27 2
1M
2 28.016 145 65 15 for any
CAD 70.475 050 57 one
In △ACK, by the cosine formula,
CK2 = AK2 + AC2 2 AK AC cos CAD
(8.730 824 3632 + 28.016 145 652
2 8.730 824 363 28.016 145 65 cos 70.475 050 57) cm2
697.629 902 6 cm2
CK2 + AK2 (697.629 902 6 + 8.730 824 3632) cm2 773.857 196 7 cm2
AC2 28.016 145 652 cm2 784.904 417 1 cm2
∵ AC2 CK2 + AK2
∴ CKA 90 1M
∴ BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A
Solution Marks
In △ABD,
BAD + ABD + ADB = 180
BAD + 58 + 65 = 180
BAD = 57
In △ABK,
AK
cos BAK =
AB
AK
cos 57
16.030 478 54 cm
AK 8.730 824 363 cm
In △ACD, by the cosine formula,
AC 2 AD 2 CD 2
cos CAD =
2 AC AD
28.016 145 652 152 27 2
2 28.016 145 65 15 1M
for any
CAD 70.475 050 57 one
Let N be a point on AD such that CN AD.
In △ACN,
AN
cos CAN =
AC
AN
cos 70.475 050 57
28.016 145 65 cm
AN 9.363 480 57 cm
∵ AN AK
∴ CK is not perpendicular to AD. 1M
i.e. BKC is not the angle between the face ABD and the face ACD.
∴ The claim is disagreed. 1A
----------(3)
Solution Marks
4
(b)(i) Slope of RG =
3
3 11 4
=
ha 3
2 1
=
ah 3
6=ah
h=a6
a2 8
Substitute h = a 6 into h = .
2a 12
a2 8
a6= 1M
2a 12
(a 6)(2a 12) = a2 8
2a2 24a + 72 = a2 8
a2 24a + 80 = 0
(a 4)(a 20) = 0
a = 4 or 20
42 8
When a = 4, h = = 2 < 0
2(4) 12
202 8
When a = 20, h = = 14 > 0
2(20) 12
∴ a = 20 1A
Solution Marks
k (14 3k )
(iii) y-coordinate of M =
1 k 2
Note that OMG = 90.
OM = 2 41
2 2
14 3k k (14 3k )
2
0 2
0 = 2 41 1M
1 k 1 k
(14 3k ) 2
2
= (2 41) 2
1 k
196 + 84k + 9k2 = 164 + 164k2
155k2 84k 32 = 0
(5k 4)(31k + 8) = 0
4 8
k= or (rejected)
5 31
14 3 4 4 14 3 4
5, 5 5
Coordinates of M = 2 2 = (10 , 8) 1M
1 4 4
1
5 5
When P is farthest from M, MGA is a straight line.
When P is nearest to the y-axis,
coordinates of B = (14 10 , 3)
= (4 , 3) 1M
Note that the area of the circle passing through A and B is the least when AB is
a diameter of the circle. Hence, AUB = 90. 1M
Slope of AM = slope of GM
83
=
10 14
5
=
4
83
Slope of BM =
10 4
5
=
6
Slope of AM slope of BM
5 5
= 1M
4 6
25
=
24
1
∴ AMB 90
∵ AUB + AMB 180
∴ A, M, B and U are not concyclic. 1A
Solution Marks
k (14 3k )
y-coordinate of M =
1 k 2
Note that OMG = 90.
OM = 2 41
2 2
14 3k k (14 3k )
2
0 2
0 = 2 41 1M
1 k 1 k
(14 3k ) 2
= (2 41) 2
1 k 2
196 + 84k + 9k2 = 164 + 164k2
155k2 84k 32 = 0
(5k 4)(31k + 8) = 0
4 8
k= or (rejected)
5 31
When P is farthest from M, MGA is a straight line.
When P is nearest to the y-axis,
coordinates of B = (14 10 , 3)
= (4 , 3) 1M
Note that the area of the circle passing through A and B is the least when AB is
a diameter of the circle. Hence, AUB = 90. 1M
4
Substitute x = 4 and y = 3 into y = x.
5
L.H.S. = 3 1M
4 16
R.H.S. = (4) =
5 5
∵ L.H.S. R.H.S.
i.e. The ordered pair (4 , 3) does not satisfy the equation.
∴ B(4 , 3) does not lie on OM. 1M
∴ AMB 90
∵ AUB + AMB 180
∴ A, M, B and U are not concyclic. 1A
----------(11)