VNHD7008AY: H-Bridge Motor Driver For Automotive DC Motor Driving
VNHD7008AY: H-Bridge Motor Driver For Automotive DC Motor Driving
Contents
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Power limitation (high-side driver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 High-side current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 External PowerMOS low side VDS monitoring . . . . . . . . . . . . . . . . . . . . . 27
5 MultiSense operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 MultiSense analog monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Multisense diagnostics flag in fault conditions . . . . . . . . . . . . . . . . . . . . . 29
12 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
List of tables
List of figures
CLAMP HS A CP CP CLAMP HS B
DRIVER DRIVER
HS A HS A LOGIC HS B
HS B
DRIVER DRIVER
GATE_LSA LS A LS B GATE_LSB
MUX
VREF_OVL_LSB VREF_OVL_LSB
VDS_MONITORING VDS_MONITORING
GAPG2808151154_2CFT
Allows the turn-on and the turn-off of the high-side and the
Logic control
low-side switches according to the truth table.
Undervoltage (US) Shuts down the device for battery voltage below (4 V).
Protect the high-side and the low-side switches from the high
High-side and low-side clamp voltage
voltage on the battery line.
Drive the gate of the concerned switch to allow a proper Ron
High-side and low-side driver
for the leg of the bridge.
Current limitation Limits the motor current in case of short circuit.
In case of short-circuit with the increase of the junction
High-side overtemperature protection temperature, it shuts down the concerned driver to prevent
degradation and to protect the die.
VDS_MONITORING Protection of LSD powers against short to battery failure
Internal voltage regulator that provides the supply for the
VREG
gates of the external low-side switches
Signalizes an abnormal condition of the power stage (output
Fault detection shorted to ground or output shorted to battery) by a feedback
on the MultiSense
OUTA 1 36 OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA OUTB
OUTA TAB = V CC OUTB
SEL0 SEL1
MultiSense_EN VREG
GATE_LSA GATE_LSB
KSOURCE_LSA KSOURCE_LSB
VREF_OVL_LSA VREF_OVL_LSB
INA IN B
CP PWM
Vbatt 18 19 MultiSense
GAPG2808151437CFT
1, 2, 3, 4, 5, 6, 7,
OUTA Source of high-side switch A
8, 9, 10
27, 28, 29, 30, 31,
OUTB Source of high-side switch B
32, 33, 34, 35, 36
Drives the gate of external P-MOSFET for the reverse
17 CP
battery protection
Floating X X X X X
To ground Not allowed Through 10 kΩ resistor Not allowed X
2 Electrical specifications
IDS_LSA ICP
V REF_OVL_LSA Vbatt TAB = V CC CP
IDS_LSB IOUTA
OUTA
V REF_OVL_LSB
IINA IOUTB
OUTB
INA
ISENSE
IINB MultiSense
INB ISEN
ISEL0 MultiSense_EN
SEL0
KSOURCE_LSA
KSOURCE_LSB
ISEL1
SEL1
GATE_LSA
GATE_LSB
IREG
VREG
PWM
VSEN V VOUTB VOUTA VCP VCC
SENSE
IPWM IGLSB IGLSA
VDS_LSA
VDS_LSB
IGND
VSEL0
VSEL1
VREG
VPWM VGLSA
VINA
VINB
VGLSB
GAPG3109150935CFT
VBATT -6 to
VCP VCP DC voltage V
VBATT +14
VGATE_LSx GATE_LAS, GATE_LSB DC voltage 12 V
VREF_OVL_LSx VREF_OVL_LSA, VREF_OVL_LSB input current -1 to 10 V
Operating supply
VCC 4 28 V
voltage
Off-state standby
INA = INB = PWM = Multisense_EN= 0; 1 µA
SEL0,1 = 0; Tj = 25 °C; VCC = 13 V
Off-state standby;
INA = INB = PWM = Multisense_EN= 0; 1 µA
SEL0,1 = 0; VCC = 13 V; Tj = 85 °C
Off-state standby;
INA = INB = PWM = Multisense_EN= 0; 10 µA
SEL0,1 = 0; VCC = 13 V; Tj = 125 °C
Table 7. Logic inputs (INA, INB) (Vcc = 7 V up to 28 V; -40 °C < Tj < 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 10. Protections and diagnostics (7 V < VCC < 18 V; -40 °C < Tj < 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 10. Protections and diagnostics (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Low-side drain-current
IREF_OVL_LSD 40 50 60 µA
overload reference current
Low-side drain-current
VREF_OVL_LSD_MIN overload threshold voltage 0.32 0.4 0.8 V
minimum
Low-side drain-current
VREF_OVL_LSD_MAX overload threshold voltage 1.6 2 2.4 V
maximum
High-side thermal shutdown
TTSD_HSD INx = 2.1 V 150 175 200 °C
temperature
High-side thermal reset
TTR_HSD 135 °C
temperature
High-side thermal hysteresis
THYST_HSD 7 °C
(TSD_HSD - TR_HSD)
ΔTj_SD(1) Dynamic temperature 60 °C
OFF-state output sink current INA = INB = 0; PWM = 0;
IL(off3) 0 1.1 2.5 mA
with VOUT = VCC VOUT = VCC
IOUT = 100 mA;
Clamp signal
VCL tclamp = 1 ms; 38 46 52 V
(VCC to GND)
Iclamp = 100 mA
INA = INB = 0; PWM = 0;
OFF-state open-load voltage VSEL0 = 5 V for CHA;
VOL 2 3 4 V
detection threshold VSEL0 = 0 V and within
tD_STBY for CHB
INA = INB = 0; VOUT = 2 V;
PWM = 2 V;
IL(off2) OFF-state output sink current VSEL0 = 5 V for CHA; -150 -5 µA
VSEL0 = 0 V and within
tD_STBY for CHB
OFF-state diagnostic delay INA = 5 V to 0 V; INB = 0;
tDSTKON time from falling edge of PWM = 0; VSEL0 = 5 V; 40 160 300 µs
INPUT (see Figure 4) IOUT = 0 A; VOUTA = 4 V
VCP - VBAT = VGS_CP 8 12 15 V
VGS_CP CP output voltage VBAT = -16 V;
0.6 V
VCP - VBAT = VGS_CP
INA = INB = 0 V; PWM = 0;
OFF-state diagnostic delay VOUTx = 0 V to 4 V;
tD_VOL time from rising edge of VOUT VSEL1 = 0 V for CHA; 5 30 µs
(see Figure 10) VSEL0,1 = 0 V;
SENSE_EN = 5 V for CHB
Input reset time for high-side VINx = 5 V to 0 V; HSDx
tLATCH_RST_HS 3 10 20 µs
fault unlatch faulting (see Figure 8)
Table 10. Protections and diagnostics (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 11. MultiSense (7 V < VCC < 18 V; -40 °C < Tj < 150 °C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 11. MultiSense (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VSENSE_EN = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V; 2.325 2.41 2.495 V
RSENSE = 1 kΩ; Tj = -40 °C
MultiSense output VSENSE_EN = 5 V; VSEL0 = 0 V;
VSENSE_TC voltage proportional VSEL1 = 5 V; VIN = 0 V; 1.985 2.07 2.155 V
to chip temperature RSENSE = 1 kΩ; Tj = 25 °C
VSENSE_EN = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 5 V; 1.435 1.52 1.605 V
RSENSE = 1 kΩ; Tj = 125 °C
dVSENSE_TC/dT Temperature
(2) Tj = -40 °C to 150 °C -5.5 mV/K
coefficient
Transfer function VSENSE_TC(T) = VSENSE_TC(T0) + dVSENSE_TC/dT * (T - T0)
Table 11. MultiSense (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
MultiSense output
voltage proportional VCC = 13 V; VSENSE_EN = 5 V;
VSENSE_VCC 3.16 3.23 3.3 V
to VCC supply VSEL0 = VSEL1 = 5 V; RSENSE = 1 kΩ
voltage
Transfer function VSENSE_VCC = VCC/4
VINA = 5 V; VSENSE_EN = 5 V;
MultiSense
VSEL0 = 5 V to 0 V;
transition delay from
tD_CStoTC VSEL1 = 0 V to 5 V; IOUTA = 2.5 A; 60 µs
current sense to TC
RSENSE = 1 kΩ; VSENSE_TC = 90% of
sense
VSENSE_TC_FINAL
VINA = 5 V; VSENSE_EN = 5 V;
MultiSense
VSEL0 = 0 V to 5 V;
transition delay from
tD_TCtoCS VSEL1 = 5 V to 0 V; IOUTA = 2.5 A; 20 µs
TC sense to current
RSENSE = 1 kΩ; ISENSE = 90% of
sense
ISENSE_MAX
VINA = 5 V; VSENSE_EN = 5 V;
MultiSense
VSEL0 = 5 V; VSEL1 = 0 V to 5 V;
transition delay from
tD_CStoVCC I = 2.5 A; RSENSE = 1 kΩ; 60 µs
current sense to VCC OUTA
VSENSE_VCC = 90% of
sense
VSENSE_VCC_FINAL
MultiSense VINA = 5 V; VSENSE_EN = 5 V;
transition delay from VSEL0 = 5 V; VSEL1 = 5 V to 0 V;
tD_VCCtoCS 20 µs
VCC sense to current IOUTA = 2.5 A; RSENSE = 1 kΩ;
sense ISENSE = 90% of ISENSE_MAX
VCC = 13 V; Tj = 125 °C;
MultiSense VSENSE_EN = 5 V;
transition delay from VSEL0 = 0 V to 5 V;
tD_TCtoVCC 20 µs
TC sense to VCC VSEL1 = 5 V; RSENSE = 1 kΩ;
sense VSENSE_VCC = 90% of
VSENSE_VCC_FINAL
VCC = 13 V; Tj = 125 °C;
MultiSense VSENSE_EN = 5 V;
transition delay from VSEL0 = 5 V to 0 V;
tD_VCCtoTC 20 µs
VCC sense to TC VSEL1 = 5 V; RSENSE = 1 kΩ;
sense VSENSE_TC = 90% of
VSENSE_TC_FINAL
VINA = 5 V; VINB = 0 V;
Current sense
VSENSE_EN = 0 V to 5 V;
settling time from
tDSENSE1H RSENSE = 1 k; RL = 2.6 Ω 60 µs
rising edge of
VPWM = 5 V; VSEL0 = 5 V;
VSENSE_EN
VSEL1 = 0 V
Table 11. MultiSense (7 V < VCC < 18 V; -40 °C < Tj < 150 °C) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
VINA = 5 V; VINB = 0 V;
Current sense
VSENSE_EN = 5 V to 0 V;
disable delay time
tDSENSE1L RSENSE = 1 k; RL = 2.6 Ω 20 µs
from falling edge of
VPWM = 5 V; VSEL0 = 5 V;
VSENSE_EN
VSEL1 = 0 V
VSENSE_TC settling VSENSE_EN = 0 V to 5 V;
tDSENSE2H time from rising VSEL0 = 0 V; VSEL1 = 5 V; 60 µs
edge of VSENSE_EN RSENSE = 1 kΩ
VSENSE_TC settling VSENSE_EN = 5 V to 0 V;
tDSENSE2L time from rising VSEL0 = 0 V; VSEL1 = 5 V; 20 µs
edge of VSENSE_EN RSENSE = 1 kΩ
Figure 4. TDSTKON
VINPUT
VOUT
MultiSense
TDSTKON GAPGCFT00601
PWM
t
VGATE_LSA,LSB
80% 80%
tgf_Is
20% 20% tgr_Is t
VINA tD(off)
tD(on)
t
VOUTA
90%
10%
INA
t
INB
PWM
Gate_LSA
tcross
Gate_LSB
t
GAPG3108151219CFT
INA
Fault HSA
Fault removing
GAPG2810151219CFT
Note: Multisense_EN=1
INA
tcross
T_Lacht_RST_LSD
GAPG2810151222CFT
Note: Multisense_EN=1
Figure 10. OFF-state diagnostic delay time from rising edge of VOUT (tD_VOL)
INA
Fault : V out> V oL
OUTA
V multi_senseH
Multisense t D_VOL
GAPG2810151228CFT
Note: Multisense_EN=1
MultiSense_EN
MultiSense
OUTB
OUTA
SEL0
SEL1
PWM
INA
INB
Description
Off-state diagnostic
Note: To power on the device from standby, it is recommended to: toggle INA or INB or SEL0 or
SEL1 from 0 to 1 first to come out from STBY mode; toggle PWM from 0 to 1 with a delay of
20 microsecond this avoids any overstress on the device in case of existing short-to-battery.
2.4 Waveforms
Figure 11. Normal operative conditions (resistive load)
VINA
VINB
VPWM
VSEL0
VOUTA
VOUTB
ILoad
Vsense
GAPG2909150752CFT
Note: MultiSense_EN=1
VINA
Reset Pulse
OutA Shorted to Gnd Fault Removing
VINB
Reset Pulse
OutB Shorted to Gnd Fault Removing VPWM
VSEL0
VOUTA
VOUTB
Vsense_nom VSenseH
VSENSE
ILoad_nom
ILOAD
GAPG2909150739CFT
Note: MultiSense_EN=1
VINA
Reset Pulse
VSEL0
VOUTA
VOUTB
VSenseH VSENSE
ILoad_nom ILOAD
GAPG2909150743CFT
Note: MultiSense_EN=1
Figure 14. Gate driver low side rise time Figure 15. Gate driver low side fall time
normalized vs Cg = 4.7nF normalized vs Cg = 4.7nF
tr GADG271020171146IDL tf GADG271020171151LSG
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 1 2 3 4 Qg(nF) 0 1 2 3 4 Cg (nF)
3 Protections
4.7K
VBAT CP Vcc
1k PWM 100nF
470μF
1k INB
1k INA
μC
Open load in off
1k SEL0 stete detection
OUTA OUTB circuity
1k SEL1
1k MS_EN GATE_LSA
GATE_LSB
Source_LSA Source_LSB
10k MS
Vref_OVL_LSA Vref_OVL_LSB
1.5K
33nF
VREG
10K
10K
100nF
Note: To protect the device against Battery disconnection with energized inductive load when the
bridge driver goes into 3-state, suggested C(Vcc) is:
Emotor
c V cc = ---------------------------------------2-
0.5DVcc,max
where:
Emotor = 33.5 mJ;
DVcc,max = Vcc_AMR - Vcc_max;
Vcc_AMR = 38 V;
Vcc_max = 26 V (Vcc at jump start);
C(Vcc) = 470 µF
5 MultiSense operation
Vcc
INPUT
OUT
Current sense
Vbat Monitor
Fault
MULTISENSE
To uC ADC
RPROT
RSENSE
GAPGCFT01040
VREG pin is the output of an internal low drop voltage regulator. VREG block is designed to
power the driver of external power Mosfet (Driver_LS) and it allows a proper MOS transition.
VREG out voltage will be VREG=10V if Vbattery > 10V, while VREG = Vbattery if
Vbattery < 10V.
An external capacitor CREG = 100 nF connected to the pin VREG is needed to proper
polarize the circuit (see Figure 16).
CP pin provides the necessary gate drive for an external n-channel PowerMOS used for
reverse polarity protection. The external N-channel Power MOSFET used for the reverse
battery protection should have the following characteristics:
BVdss > 20 V (for a reverse battery of -16 V);
RDS(on) < 1/3 of H-bridge total RDS(on)
Standard Logic Gate Driving
The Open Load (OL) detection in off-state operates when output is deactivated (means INA
= INB = PWM=0, or INB together with PWM=0). Open load detection is performed by
reading the MultiSense output. External (switched) pull-up resistor has to be used and
dimensioned to pull output voltage above the maximum open load detection voltage (VOL
MAX) when load is not connected and as well stays below the minimum level (VOL MIN)
when load is connected.
When the open load is detected, VsenseH is indicated on Multisense pin, possible
conditions are specified in Table 14.
If pull up resistor is applied over switched circuitry, it allows to detect short to VCC from
open-load (see Figure 16).
The RPU value has to be:
V BATTmin – V OLmax
R pull_up -----------------------------------------------------------
2 I L(off2)min [@VOLmax]
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 15.
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device
only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: "The function does not perform as designed during the test but returns automatically
to normal operation after the test".
Table 15. IISO 7637-2 - electrical transient conduction along supply line
Test pulse severity level Pulse duration
Test pulse Minimum Burst cycle/pulse
with status II functional and pulse
2011(E) number of repetition time
performance status generator
pulses or
internal
test time
Level US(1) min. max. impedance
Figure 19. Rthj-amb vs PCB copper area in open box free air condition
GAPGCFT00325
Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the
embedded protections (power limitation or thermal cycling during thermal shutdown) are not
triggered.
R1 (°C/W) 0.75
R2 (°C/W) 1
R3 (°C/W) 2 2 2 1
R4 (°C/W) 7 6 6 4
R5 (°C/W) 20 14 10 2
R6 (°C/W) 30 26 15 7
R7 (°C/W) 0.75
R8 (°C/W) 1
C1 (W•s/°C) 0.0027
C2 (W•s/°C) 0.006
C3 (W•s/°C) 0.05 0.05 0.05 0.05
C4 (W•s/°C) 0.15 0.2 0.2 0.2
C5 (W•s/°C) 1 2 3 10
C6 (W•s/°C) 3 5 9 18
C7 (W•s/°C) 0.0027
C8 (W•s/°C) 0.006
GAPG2508150825CFT
Ө 0° - 8°
Ө1 5° - 10°
Ө2 0° - -
A 2.15 - 2.45
A1 0.0 - 0.1
A2 2.15 - 2.35
b 0.18 - 0.32
b1 0.13 0.25 0.3
c 0.23 - 0.32
c1 0.2 0.2 0.3
(1)
D 10.30 BSC
D1 6.9 - 7.5
D2 - 3.65 -
D3 - 4.3 -
e 0.50 BSC
E 10.30 BSC
(1)
E1 7.50 BSC
E2 4.3 - 5.2
E3 - 2.3 -
E4 - 2.9 -
G1 - 1.2 -
G2 - 1 -
G3 - 0.8 -
h 0.3 - 0.4
L 0.55 0.7 0.85
L1 1.40 REF
L2 0.25 BSC
N 36
R 0.3 - -
R1 0.2 - -
S 0.25 - -
Tolerance of form and position
aaa 0.2
bbb 0.2
ccc 0.1
ddd 0.2
eee 0.1
ffff 0.2
ggg 0.15
1. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is ‘0.25
mm’ per side D and ‘0.15 mm’ per side E1. D and E1 are Maximum plastic body size dimensions including
mold mismatch.
Base Qty 49
Bulk Qty 1225
Tube length (±0.5) 532
C
B A 3.5
B 13.8
C (±0.1) 0.6
Reel dimensions
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width W 24
Tape Hole Spacing P0 (±0.1) 4
Component Spacing P 12
Hole Diameter D (±0.05) 1.55
Hole Diameter D1 (min) 1.5
Hole Position F (±0.1) 11.5
Compartment Depth K (max) 2.85
Hole Spacing P1 (±0.1) 2 End
Marking area
1 2 3 4 5 6 7 8 9
Note: Engineering Samples: these samples can be clearly identified by a dedicated special
symbol in the marking of each unit. These samples are intended to be used for electrical
compatibility evaluation only; usage for any other purpose may be agreed only upon written
authorization by ST. ST is not liable for any customer usage in production and/or in reliability
qualification trials.
Note: Commercial Samples: fully qualified parts from ST standard production with no usage
restrictions.
12 Order codes
13 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.