Paper 1
Paper 1
2 hours
                                                                                               8821 – 7101
     14 pages                                              © International Baccalaureate Organization 2021
                                              16EP01
            –2–                    8821 – 7101
            16EP02
                                                  –3–                                           8821 – 7101
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.
Answer     questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
[Maximum mark: 4]
                  dy                                    3
     Given that        cos x       and y   2 when x        , find y in terms of x .
                  dx           4                         4
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
      ..........................................................................
                                                  16EP03
                                               –4–                     8821 – 7101
[Maximum mark: 9]
                                         2x + 4
The function f is defined by f ( x ) =          , where x   , x   3.
                                         3− x
(a)   Write down the equation of
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                               16EP04
                                                     –5–                                    8821 – 7101
15
10
                                                                                    x
                  15         10         5        0             5         10    15
10
15
                                            ax + 4
The function g is defined by g ( x ) =             , where x       , x    3 and a       .
                                            3− x
                             1
(d)   Given that g x     g       x , determine the value of a .                                     [4]
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                                     16EP05
                                                –6–                        8821 – 7101
[Maximum mark: 5]
                                   1
Solve the equation log 3 x =             + log 3 ( 4 x3 ) , where x   0.
                               2 log 2 3
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                                16EP06
                                                –7–                                         8821 – 7101
[Maximum mark: 5]
(a) A box is chosen at random and a ball is drawn. Find the probability that the ball is red. [3]
Let A be the event that “box 1 is chosen” and let R be the event that “a red ball is drawn”.
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                             16EP07
                                            –8–                                                   8821 – 7101
[Maximum mark: 7]
The function f is defined for all x   . The line with equation y      6x        1 is the tangent to
the graph of f at x 4 .
(d) Hence find the equation of the tangent to the graph of h at x 4. [3]
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                            16EP08
                                            –9–                                        8821 – 7101
[Maximum mark: 7]
                          6     2 x2 5x 3
(a)   Show that 2 x 3                     , x        , x   1.                                    [2]
                         x 1        x 1
                                                                   6                       π
(b)   Hence or otherwise, solve the equation 2 sin 2θ − 3 −              = 0 for 0   ,θ≠     .   [5]
                                                              sin 2θ − 1                   4
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                            16EP09
                                                  – 10 –                                     8821 – 7101
[Maximum mark: 7]
(b)   Consider the case when p           4 . The roots of the equation can be expressed in
                    a       13
      the form x                 , where a      . Find the value of a .                              [2]
                        6
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                                  16EP10
                                          – 11 –                                   8821 – 7101
[Maximum mark: 7]
                              dy ln 2 x   2y                                 1
Solve the differential equation              , x 0 , given that y   4 at x     .
                              dx   x2      x                                 2
Give your answer in the form y f x .
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                          16EP11
                                            – 12 –                                        8821 – 7101
[Maximum mark: 7]
                             1
Consider the expression              1 x where a         , a   0.
                           1 ax
The binomial expansion of this expression, in ascending powers of x , as far as the term in x2
is 4bx bx2 , where b      .
(b) State the restriction which must be placed on x for this expansion to be valid. [1]
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
                                            16EP12
                                                        – 13 –                                          8821 – 7101
Answer questions in the answer booklet provided. Please start each question on a new page.
(a) (i) Find the value of t when P reaches its maximum velocity.
                                                                            88
             (ii)   Show that the distance of P from O at this time is         metres.                          [7]
                                                                            27
     (b)     Sketch a graph of v against t , clearly showing any points of intersection
             with the axes.                                                                                     [4]
                                                       dn 2 x
                                                         n (
     (a)     Prove by mathematical induction that            x e ) =  x 2 + 2nx + n ( n − 1)  e x for n .   [7]
                                                      dx
     (b)     Hence or otherwise, determine the Maclaurin series of f x              x2ex in ascending powers
                                                     4
             of x , up to and including the term in x .                                                         [3]
                                                              ( x 2e x − x 2 )3 
     (c)     Hence or otherwise, determine the value of lim                     .                             [4]
                                                        x →0          x9        
                                                                                
                                                        16EP13
                                                                    – 14 –                                                           8821 – 7101
(ii) Find 2 and 3, expressing these in the form a ei , where a and 0. [6]
                                                                                  1
     (d)   By using de Moivre’s theorem, show that α =                                     π
                                                                                               is a root of this equation.                   [3]
                                                                                       i
                                                                                           6
                                                                                1− e
     (e)   Determine the value of Re                       .                                                                                 [6]
                                                                       16EP14
Please       write on this page.
            16EP15
Please       write on this page.
16EP16