1.
(a)   Since,
                 ∫ x sin x dx=−xcos x+ A
         ⇒−x cos x +sin x+constant=−x cos x+ A
         Equating it, we get A=sin x+ constant .
                               2                         2
                                               +1−1
         ∫ x . tan−1 x dx= x2 tan−1 x− 12 ∫ x 1+ x2
                                                    dx
2. (a)
                           x 2 −1        1     1
                          =   tan x− x + tan −1 x+ c
                            2            2     2
                           1                     1
                          = tan−1 x . ( x 2 +1)− x +c
                           2                     2    .
               I=∫ e−2 x sin 3 x dx
3. (d)   Let
                e−2 x cos3 x    2e−2 x cos3 x
          =−                 −∫               dx
                      3               3
          =−
                      3
                            −
                              3    [
                e−2 x cos3 x 2 e−2 x sin 3 x
                                     3
                                             +∫
                                                2 e−2 x sin 3 x
                                                       3
                                                                dx         ]
                  e−2 x cos3 x 2 e−2 x sin 3 x 4
         ⇒ I=−                −               − I
                        3             9        9
         ⇒
             13
              9
                I=−e−2 x
                           [
                         3 cos 3 x +2 sin 3 x
                                  9                      ]
                         1 −2 x
                  I=−      e [3 cos3 x +2 sin3 x ]
         Hence          13                         .
                                        −x 2 cos2 x    2 x cos2 x
               I=∫ x 2 sin 2 x dx=                  +∫            dx +c
4. (b)   Let                                 2              2
                    x 2 cos2 x x sin 2 x cos 2 x
               =−             +         +        +c .
                         2         2        4
5. (d)
         ∫ ( 1+cos2  x)
             2+sin 2 x x
                        e dx=∫          (     2 ex
                                            1+cos2 x )
                                                     dx +∫
                                                           e x sin 2 x
                                                           1+cos2 x
                                                                       dx
                  =∫ e x sec 2 x dx+∫ e x tan x dx=e x tan x+c
                                                                       .
                                            1
                   sin−1 x =t ⇒                  dx=dt ,
6. (a)   Putting                       √1−x 2                we get
           x sin−1 x
         ∫             dx= ∫ t sin t dt=−t cos t+sin t +c
             √ 1−x 2
                          =−sin−1 x cos(sin−1 x )+sin(sin−1 x )+c
                            =x−sin−1 x √1−x 2 +c .
7. (c)
          ∫ √ x2−8 x+7 dx=∫ √( x−4)2−(3)2 dx
          Now apply formula of
                               ∫ √ x 2−a2 dx.
                               x              1
          ∫ √1+ x 2 dx= 2 √ x 2+1+ 2 log ( x +√ x2 +1)+c
8. (a)                                                                          .
                                              1
                          ∫ e x sin x dx= 2 e x a+ c
9. (a)    Given that                                                   ..…(i)
                I=∫ e x sin x dx=−e x cos x+∫ e x cos x dx+c
          Let
                =−e x cos x+e x sin x−∫ e x sin x dx+c
          ⇒ 2 I=e x (−cos x +sin x )+c . Now from (i), we get
          1 x   1
            e a= e x (sin x−cos x )⇒ a=sin x−cos x .
          2     2
          I=∫ √ x 2 +a 2 dx =∫ √ x 2 +a2 .1 dx
10. (b)
           = √ x 2 +a2 ∫ 1 dx−∫
                                     [   d
                                         dx
                                            ( √ x 2 +a2 ) ∫ 1 dx dx    ]
           =x √ x +a −∫
                      2    2
                                [√ 2 x +a
                                         2x
                                          2       2    ]
                                                      x dx
           =x √ x2 +a2 −       ∫[  x 2 +a 2−a2
                                                dx
                                                      ]
                                    √  x 2 + a2
           =x √ x2 +a2 −       ∫ [√ x 2 +a 2−
                                                           a2
                                                                  ]   dx
                                                      √ x 2+a 2
                                                                   dx
           =x √ x2 +a2 −∫ √ x 2 +a 2 dx+a2 ∫
                                                                √ x 2 +a2
           = √ x 2+a2−I +a2 log [ x+√ x2 +a2 ] +C
          
              2 I=x √ x 2+a 2+ a2 log [ x+√ x 2+a 2] +C
                     x 2 2 a2
                I=
                     2
                       √ x + a + 2 log [ x + √ x 2 +a 2 ] +C
                                                            .