0% found this document useful (0 votes)
87 views2 pages

Calculus Integration Problems

This document contains solutions to 10 integration problems: 1) Finding the integral of x sin x and relating it to a constant term. 2) Integrating x tan-1 x and relating it to terms involving x and tan-1 x. 3) Solving the integral of e^-2x sin 3x using substitution and relating the solution to terms involving e^-2x, cos 3x, and sin 3x. 4) Integrating x^2 sin 2x using substitution and relating the solution to terms involving x, cos 2x, and sin 2x. 5) Integrating a term involving e^x, cos 2x, and sin 2x and relating

Uploaded by

PRADEEP C
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
87 views2 pages

Calculus Integration Problems

This document contains solutions to 10 integration problems: 1) Finding the integral of x sin x and relating it to a constant term. 2) Integrating x tan-1 x and relating it to terms involving x and tan-1 x. 3) Solving the integral of e^-2x sin 3x using substitution and relating the solution to terms involving e^-2x, cos 3x, and sin 3x. 4) Integrating x^2 sin 2x using substitution and relating the solution to terms involving x, cos 2x, and sin 2x. 5) Integrating a term involving e^x, cos 2x, and sin 2x and relating

Uploaded by

PRADEEP C
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 2

1.

(a) Since,
∫ x sin x dx=−xcos x+ A
⇒−x cos x +sin x+constant=−x cos x+ A
Equating it, we get A=sin x+ constant .

2 2
+1−1
∫ x . tan−1 x dx= x2 tan−1 x− 12 ∫ x 1+ x2
dx
2. (a)
x 2 −1 1 1
= tan x− x + tan −1 x+ c
2 2 2
1 1
= tan−1 x . ( x 2 +1)− x +c
2 2 .

I=∫ e−2 x sin 3 x dx


3. (d) Let
e−2 x cos3 x 2e−2 x cos3 x
=− −∫ dx
3 3

=−
3

3 [
e−2 x cos3 x 2 e−2 x sin 3 x
3
+∫
2 e−2 x sin 3 x
3
dx ]
e−2 x cos3 x 2 e−2 x sin 3 x 4
⇒ I=− − − I
3 9 9


13
9
I=−e−2 x
[
3 cos 3 x +2 sin 3 x
9 ]
1 −2 x
I=− e [3 cos3 x +2 sin3 x ]
Hence 13 .

−x 2 cos2 x 2 x cos2 x
I=∫ x 2 sin 2 x dx= +∫ dx +c
4. (b) Let 2 2
x 2 cos2 x x sin 2 x cos 2 x
=− + + +c .
2 2 4

5. (d)
∫ ( 1+cos2 x)
2+sin 2 x x
e dx=∫ ( 2 ex
1+cos2 x )
dx +∫
e x sin 2 x
1+cos2 x
dx

=∫ e x sec 2 x dx+∫ e x tan x dx=e x tan x+c


.

1
sin−1 x =t ⇒ dx=dt ,
6. (a) Putting √1−x 2 we get
x sin−1 x
∫ dx= ∫ t sin t dt=−t cos t+sin t +c
√ 1−x 2
=−sin−1 x cos(sin−1 x )+sin(sin−1 x )+c
=x−sin−1 x √1−x 2 +c .

7. (c)
∫ √ x2−8 x+7 dx=∫ √( x−4)2−(3)2 dx
Now apply formula of
∫ √ x 2−a2 dx.

x 1
∫ √1+ x 2 dx= 2 √ x 2+1+ 2 log ( x +√ x2 +1)+c
8. (a) .

1
∫ e x sin x dx= 2 e x a+ c
9. (a) Given that ..…(i)

I=∫ e x sin x dx=−e x cos x+∫ e x cos x dx+c


Let

=−e x cos x+e x sin x−∫ e x sin x dx+c


⇒ 2 I=e x (−cos x +sin x )+c . Now from (i), we get
1 x 1
e a= e x (sin x−cos x )⇒ a=sin x−cos x .
2 2

I=∫ √ x 2 +a 2 dx =∫ √ x 2 +a2 .1 dx
10. (b)
= √ x 2 +a2 ∫ 1 dx−∫
[ d
dx
( √ x 2 +a2 ) ∫ 1 dx dx ]
=x √ x +a −∫
2 2
[√ 2 x +a
2x
2 2 ]
x dx

=x √ x2 +a2 − ∫[ x 2 +a 2−a2
dx
]
√ x 2 + a2

=x √ x2 +a2 − ∫ [√ x 2 +a 2−
a2
] dx
√ x 2+a 2
dx
=x √ x2 +a2 −∫ √ x 2 +a 2 dx+a2 ∫
√ x 2 +a2
= √ x 2+a2−I +a2 log [ x+√ x2 +a2 ] +C


2 I=x √ x 2+a 2+ a2 log [ x+√ x 2+a 2] +C
x 2 2 a2
I=
2
√ x + a + 2 log [ x + √ x 2 +a 2 ] +C
 .

You might also like