Sta540san INTEGRADO
Sta540san INTEGRADO
Features
High output-power capability:
– 4 x 9 W / 2 Ω at 12 V, 1 kHz, 10%
– 4 x 10 W / 4 Ω at 17 V, 1 kHz, 10%
– 2 x 26 W / 4 Ω at 14.4 V, 1 kHz, 10%
( s )
– 2 x 15 W / 8 Ω at 16 V, 1 kHz, 10%
u ct
Minimum external component count:
– No bootstrap capacitors
o d
Clipwatt15
– No Boucherot cells
P r
– Thermal cut-off limiter to prevent chip from
– Internally fixed gain of 20 dB
Standby function (CMOS compatible)
overheating
e te
– High inductive loads
No audible pop during standby operations – ESD
o l
Diagnostic facilities:
b s
Description
– Clip detector
O
)-
– Out to GND short circuit The STA540SAN contains four single-ended,
– Out to VS short circuit
– Soft short at turn-on
t ( s class-AB audio amplifiers assembled in a
Clipwatt15 package.
c
du
– Thermal shutdown proximity These amplifiers are used for high-quality sound
Protection for applications. Each amplifier has integrated
r o
– Output AC/DC short circuit short-circuit and thermal protection and
P
– Soft short circuit at turn-on
e
diagnostic functions. Two amplifiers can be paired
up for applications requiring high power output.
e t
ol
Table 1. Device summary
bs
Order code Temperature range Package Packaging
O
STA540SAN -40 to 150 °C Clipwatt15 Tube
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2
)
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
( s
ct
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
d u
Test and applications board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
r o
5 P
Standard applications circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
e
6 l e t
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
s o
7 b
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
O
) -
(s
8 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.1
c t
High application flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2
d u
Easy single-ended to bridge transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3
r o
Internally fixed gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4
e P Silent turn on/off and muting/standby functions . . . . . . . . . . . . . . . . . . . . 18
l e t
8.5 Standby driving (pin 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
o
bs
8.6 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.6.1 Rail-to-rail output voltage swing with no need of bootstrap capacitors . 19
O 8.6.2 Absolute stability without any external compensation . . . . . . . . . . . . . . 19
8.7 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.7.1 Diagnostic facilities (pin 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.7.2 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.8 Handling of the diagnostic information . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.9 PCB-layout grounding (general rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.10 Mute function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
( s )
u ct
o d
P r
e t e
o l
b s
- O
(s )
c t
d u
r o
e P
l e t
s o
O b
1 Block diagram
VCC2 VCC1
13 3 A1
+ 1
OUT1
-
4
IN1
A2 INV
+
)
2
7 OUT2
ST_BY -
( s
IN2
5
A3
u ct
+ 15
o d
r
OUT3
-
12
e P
IN3
A4 INV
+
l e t 14
s o-
OUT4
IN4
11
O b 10 DIAGNOSTIC
OUTPUT
( s )-
6 8 9
t
SVR P_GND S_GND
D06AU1630_bc
u c
o d
P r
e t e
o l
b s
O
2 Pin description
15 OUT3
14 OUT4
13 VCC2
12 IN3
11 IN4
10 DIAG
9 S_GND
8 P_GND
7 ST_BY
( s )
ct
6 SVR
5 IN2
4
3
IN1
VCC1
d u
2
1
OUT2
OUT1
r o
e P
t
clp15_pins_540san_bc
1 OUT1 OUTPUT
- O
Channel 1 output
2 OUT2
)
OUTPUT
(s
Channel 2 output
ct
3 VCC1 POWER Power supply
du
4 IN1 INPUT Channel 1 input
5 IN2
ete
7 ST_BY INPUT Standby control pin
ol
8 P_GND POWER Power ground
b s 9
10
S_GND
DIAG
POWER
OUTPUT
Signal ground
Diagnostics
O 11
12
IN4
IN3
INPUT
INPUT
Channel 4 input
Channel 3 input
13 VCC2 POWER Power supply
14 OUT4 OUTPUT Channel 4 output
15 OUT3 OUTPUT Channel 3 output
3 Electrical specifications
( s ) -
ct
Ptot Total power dissipation (Tcase = 70 °C) 35 W
du
Tstg, Tj Storage and junction temperature -40 to150 °C
ro
Top Operating temperature 0 to 70 °C
e P
3.2 Thermal data
l e t
Table 4. Thermal data
s o
Symbol
O b
Parameter Min Typ Max Unit
)-
Rth j-case Thermal resistance junction to case - - 2.5 °C/W
t(s
Rth j-amb Thermal resistance junction to ambient - - 45 °C/W
u c
3.3
d
Electrical characteristics
o
P r
The results in Table 5 below were measured under the conditions VS = 15 V, RL = 4 Ω,
f = 1 kHz and Tamb = 25 °C unless otherwise specified. Refer also to the test circuit in
e t e
Figure 3 on page 8
O b Symbol
VS
Parameter
8
Min
-
Typ
22
Max Unit
V
Id Total quiescent drain current - - 80 150 mA
Vos Output offset voltage - -250 - 250 mV
THD = 10% 6.5 7.5 - W
THD = 10%, VS = 17 V
- 10 - W
Po Output power S.E. RL = 4 Ω
THD = 10%, VS = 17 V
- 20 - W
BTL, RL = 8 Ω
THD Distortion RL = 4 Ω, Po = 0.1 to 4 W - 0.02 - %
ISC Short-circuit current - - 3.5 - A
f = 1 kHz 70
CT Crosstalk - - dB
f = 10 kHz 60
Rin Input impedance - 20 30 - kΩ
Gv Voltage gain - 19 20 21 dB
Gv Voltage gain match - - - 0.5 dB
Rg = 0, “A” weighted
EN Total output noise Inverting channels: - 50 - µV
Non-inverting channels: - 20 -
Rg = 0, f = 300 Hz,
( s )
ct
SVR Supply voltage rejection 50 - - dB
CSVR = 470 µF
du
ASB Standby attenuation - 80 90 - dB
ro
ISB ST_BY current consumption VST_BY = 0 to 1.5 V - - 100 µA
VSB ST_BY IN threshold voltage
ST_BY OUT threshold
-
e P - - 1.5 V
let
VSB - 3.5 - - V
voltage
so
Play mode VST_BY = 5 V - - 50 µA
IST_BY ST_BY pin current
)-
Icd off THD = 1% (1) - 90 - µA
average current
Icd on
t
average current ( s
Clipping detector output
THD = 5% (1) - 160 - µA
c
du
Sink current on pin DIAG
VDIAG Voltage saturation on DIAG - - 0.7 V
IDIAG = 1 mA
TW
r o
Thermal warning - - 140 - °C
e
TM P Thermal muting - - 150 - °C
O b
R2
r o R1
P
2
2 C6 C5
3 1K8 10K
e 1000 µF CN3
t
100 nF C7 2200 µF, 25 V CN-5-02P
PGND C13 C12 25 V 50 V 1
e
DO7
ol
10 µF 2
ZD1
SGND 100 nF 25 V
PGND JP1
s
JP1, JP2 :
SGND JUMPER2X1(DIP) Open = SE
2 IN1
b SGND PGND
Doc ID 18306 Rev 1
Closed = BTL
13
CN4
ST-BY 7
VCC1 3
1 SGND C8 2200 µF, 25 V CN-5-02P
)-
C1
VCC2
4 IN1 1
3 IN2 JP5
0.22uF OUT1 1 2
s
JUMPER2X1(DIP)
C2 0.22uF
CN1
c t
RCA4CH_6P ( 5 IN2
12 IN3
IC1
STA540SAN
OUT2 2 JP2
JUMPER2X1(DIP) PGND
du
CLIPWATT15
C3 0.22uF OUT3 15
JP6
5 IN4 C4
ro
JUMPER2X1(DIP) 11 IN4
CN5
OUT4 14
P_GND
S_GND
0.22uF C9 2200 µF, 25 V CN-5-02P
DIAG
4 6 SVR 1
e P 6 IN3
SGND
C11
2
10
8
9
JP3, JP4 :
let
47 µF Diagnostics JP3
25 V Open = SE
JUMPER2X1(DIP) PGND
Closed = BTL
CN6
o
SGND C10 2200 µF, 25 V CN-5-02P
TP 1
O JP4
JUMPER2X1(DIP)
PGND
STA540SAN
STA540SAN Test and applications board
( s )
u ct
o d
Figure 5. Component side
P r
e te
o l
b s
- O
(s )
c t
d u
r o
e P
let
Figure 6. Solder side
s o
Ob
( s )
ct
C13 100 nF Ripple rejection
ZD1 10 µF
u
Standby time constant
d
r o
e P
l e t
s o
O b
) -
c t(s
d u
r o
e P
l e t
s o
O b
IN1 4 7 13 3 1
Suggested applications:
0.22µF 2200µF OUT1
IN2 5 4 x 12 W at 2 Ω, 14.4 V
2 4 x 10 W at 4 Ω, 17 V
0.22µF
2200µF OUT2 4 x 9 W at 2 Ω, 12 V
IN3
0.22µF
12
15
4 x 5 W at 4 Ω, 12 V
( s )
IN4
0.22µF
11 2200µF OUT3
u ct
6
8 9
14
10 2200µF OUT4
o d
47µF
DIAGNOSTICS
D04AU1555B
P r
P-GND S-GND
e t e
Figure 8. Audio performance option
o l
bs
1 14
2
- O
( s ) 15
c t 470 µF 470 µF
d u
r o
The best audio performance is obtained with the configuration where each speaker has its
e P
own DC blocking capacitor. If the application allows a little degradation of the spatial image it
is possible to connect a couple of speakers with only one low-value DC blocking capacitor.
l e t
Figure 9. Double bridge
so 10K
O b ST-BY
10µF 100nF
VS
1000µF
Suggested applications:
7 13 3
IN L 4 1 2 x 9 W at 8 Ω, 12 V
0.47µF 5 OUT L 2 x 18 W at 4 Ω, 12 V
2
2 x 13 W at 8 Ω, 14 V
IN R 11 2 x 26 W at 8 Ω, 14 V
14 2 x 15 W at 8 Ω, 16 V
0.47µF 12
OUT R
6 15
47µF 8 9 10
DIAGNOSTICS
D95AU1600
A dedicated evaluation board is available for this application (see Chapter 4 on page 8).
7 13 3
IN L 4 1
OUT L
0.22µF 2200µF
IN R 5 2
OUT R
0.22µF 2200µF
IN BRIDGE 11 14
0.47µF 12 OUT
)
BRIDGE
6 15
8 9 10
( s
ct
47µF
DIAGNOSTICS
u
D05AU1601
Suggested applications:
o d
2 x 9 W into 2 Ω + 1 x 18 W into 4 Ω, 12 V
2 x 12 W into 2 Ω + 1 x 26 W into 4 Ω, 14.4 V
2 x 8 W into 4 Ω + 1 x 16 W into 8 Ω, 16 V P r
e t e
l
A dedicated evaluation board is available for this application (see Chapter 4 on page 8).
o
b s
- O
(s )
c t
d u
r o
e P
l e t
s o
O b
Figure 11. Quiescent drain current vs supply Figure 12. Quiescent output voltage vs supply
voltage (single-ended and bridge) voltage (single-ended and bridge)
( s )
u ct
o d
P r
Figure 13. Output power vs supply voltage
e te
Figure 14. Distortion vs output power
o l
b s
- O
(s )
c t
d u
r o
e P
l e t
o
bs
Figure 15. Output power vs supply voltage Figure 16. Distortion vs output power
O
20
Po(W)
18
S.E.
16
Rl=4ohm
14 f=1KHz
12
T.H.D=10%
10
6 T.H.D=1%
0
+8 +10 +12 +14 +16 +18 +20 +22
Vs(V)
Figure 17. Output power vs supply voltage Figure 18. Distortion vs output power
( s )
u ct
Figure 19. Output power vs supply voltage
d
Figure 20. Crosstalk vs frequency
o
Po(W)
12
11
P r
10
9
S.E.
Rl=8ohm
e t e
l
f=1KHz
8
s o
b
6 T.H.D=10%
3
T.H.D=1%
- O
2
(s )
t
1
0
+8 +10 +12 +14 +16
Vs(V)
o d
Figure 21. Output power vs voltage
P r Figure 22. Standby attenuation vs threshold
e t e voltage
l
Po(W) 35
o
32.5
bs
30
BTL
27.5
Rl=8ohm
25 f=1KHz
O 22.5
20
17.5
T.H.D=10%
15
12.5
T.H.D=1%
10
7.5
5
2.5
0
+8 +10 +12 +14 +16 +18 +20 +22
Vs(V)
Figure 23. Supply voltage rejection vs Figure 24. Total power dissipation and
frequency efficiency vs output power
( s )
u ct
o d
Figure 25. Total power dissipation and
efficiency vs output power
P r
e te
o l
b s
- O
(s )
c t
d u
r o
e P
l e t
s o
O b
7 Thermal information
In order to avoid the thermal protection intervention that is placed at Tj =150 °C (thermal
muting) or Tj=160 °C (thermal shutdown), it is important to design the heatsink Rth (°C/W)
value correctly.
The parameters that influence the design are:
z Maximum dissipated power for the device (Pdmax)
z Maximum thermal resistance junction to case (Rth_j-case)
z Maximum ambient temperature Tamb_max
There is also an additional term that depends on the quiescent current, Iq, but this is
negligible in this case.
( s )
Example 1: 4-channel single-ended amplifier
u ct
d
VCC =14.4 V, RL = 4 Ω x 4 channels, Rth_j-case = 2.5 °C/W, Tamb_max = 50 °C, Pout = 4 x 7 W
o
V CC
P dmax = NChannel ⋅ -----------------
2
2
- = 4 ⋅ 2.62 = 10.5W
P r
2Π R L
e t e
The required thermal resistance for the heatsink is
o l
150 – T amb_max
b s - – R th_j-case = 150
"" R th_c-amb = -------------------------------------- – 50- – 2.5 = 7°C/W
---------------------
P dmax
- O 10.5
(s )
Example 2: 2-channel single-ended plus 1-channel (BTL) amplifier
c t
VCC = 14.4 V, RL = 2 x 2 Ω (SE) + 1 x 4 Ω (BTL), Pout = 2 x 12 W + 1 x 26 W
u
od
2 2
V CC 2V CC
P dmax = 2 ⋅ ----------------- - = 2 ⋅ 5.25 + 10.5 = 21W
- + ----------------
P r 2
2Π R L Π R L
2
t e
The required thermal resistance for the heatsink is
e
o l 150 – T amb_max
- – R th_j-case = 150
"" R th_c-amb = -------------------------------------- – 50- – 2.5 = 2.2°C/W
---------------------
b s P dmax 21
Pd(W) 30
1) Infinite
25 1
2) 3.5C/W
2
3 3) 5C/W
20 4) 7C/W
4
15
10
( s )
0
0 20 40 60 80 100 120 140
u ct
160
Tamb(C)
o d
P r
e t e
o l
b s
- O
(s )
c t
d u
r o
e P
l e t
so
O b
8 General structure
d
circuit across the inputs (resulting in no need of additional external components).
o
P r
8.3 Internally fixed gain
e te
l
The gain is internally fixed to 20 dB in single-ended mode and 26 dB in bridge mode.
o
z components and space saving b s
The advantages of this design choice are in terms of:
z
- O
output noise, supply voltage rejection and distortion optimization.
(s )
8.4 t
Silent turn on/off and muting/standby functions
c
d u
Standby mode can be easily activated by means of a CMOS logic level applied to pin 7
r o
through a RC filter.
e P
Under standby conditions, the device is turned off completely (supply current = 1 mA typical,
output attenuation = 80 dB minimum).
l e t
All on/off operations are virtually pop-free. Furthermore, at turn-on the device stays in mute
s o condition for a time determined by the value assigned to the SVR capacitor. In mute mode,
O b the device outputs are insensitive to any kind of signal that may be present at the input
terminals. In other words, any transients coming from previous stages produce no
unpleasant acoustic effects at the speakers.
( s )
ct
This unbalanced saturation causes a significant power reduction. The only way to recover
power includes the addition of expensive bootstrap capacitors.
d u
8.6.2 Absolute stability without any external compensation
r o
P
With reference to the circuit shown in Figure 27, the gain Vout/Vin is greater than unity, that
e
to all the channels.
l e t
is, approximately 1+R2/R1. The DC output (VCC/2) is fixed by an auxiliary amplifier common
s o
By controlling the amount of this local feedback, it is possible to force the loop gain (A*β) to
O b
less than unity at a frequency where the phase shift is 180 °. This means that the output
buffer is intrinsically stable and not prone to oscillation.
-
The above feature has been achieved even though there is very low closed-loop gain of the
)
(s
amplifier.
c t
This is in contrast with the classical PNP-NPN stage where the solution adopted for
Boucherot cells.
d u
reducing the gain at high frequencies makes use of external RC networks, namely the
r o
P
Figure 27. The new output stage
e
l e t
s o
O b
( s )
ct
Figure 28. Sharing a capacitor
d u
r o
e P
l e t
If the output capacitor Cout is shorted for any reason, the loudspeaker is not damaged.
s o
8.7.1 Diagnostic facilities (pin 10)
O b
events:
) -
The STA540SAN is equipped with diagnostic circuitry that is able to detect the following
z
z t (s
Clipping in the output signal
Thermal shutdown
c
z
d
Output fault: u
–
r o
short to GND
e
–
P short to VS
let
– soft short at turn on
The information is available across an open collector output (pin 10) through a current
A current sinking at pin 10 is provided when a certain distortion level is reached at each
output. This function initiates a gain-compression facility whenever the amplifier is
overdriven.
10
10
( s )
Figure 31. Fault waveforms
u ct
o d
ST_BY PIN
VOLTAGE
P r
e
2V
let
t
OUT TO Vs SHORT
OUTPUT
s o
b
WAVEFORM
SOFT SHORT
- O t
Vpin 10
c t CORRECT TURN-ON
d u FAULT DETECTION
o
t
Pr
CHECK AT TURN-ON SHORT TO GND
D05AU1603
(TEST PHASE) OR TO Vs
e t e
s ol
O b
ST_BY PIN
( s )
ct
VOLTAGE
du
t
Vs
r o
OUTPUT
WAVEFORM
e P
e t
ol
t
Vpin 10
b s
WAVEFORM
O
( s )- CLIPPING
SHORT TO GND THERMAL
t
t
D05AU1604_bc
OR TO Vs PROXIMITY
u c
d
Figure 33. Interface circuit diagram
o
P r
e te
o l 10
b s
O
P r
8.10 Mute function
e t e
o l
s
If the mute function is required, it can be accessed on SVR (pin 6) as shown in Figure 34.
b
Figure 34. Components for layout
O
)-
10K
t ( s
ST-BY
10µF 100nF 1000µF
VS
c
du
0.22µF 7 13 3
IN L 4 1
OUT L
r o IN R
0.22µF
5
2200µF
P
2
OUT R
2200µF
e t e IN BRIDGE
0.47µF
12 15
o l MUTE R1 3.3K
11
6 14
OUT
BRIDGE
b s 0
5V
R2 10K
470µF
8 9 10
O PLAY DIAGNOSTICS
D06AU1632_bc
)
A 3.2 0.126
B 1.05 0.041
( s
ct
C 0.15 0.006 Weight: 1.92gr
D
E 0.49
1.50
0.55 0.019
0.061
0.022
d u
F 0.67 0.73 0.026 0.029
r o
G 1.14 1.27 1.4 0.045 0.050 0.055
e P
t
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1
H2
12
18.6
0.480
0.732
o l e
H3 19.85 0.781
b s
O
L 17.9 0.704
L1
L2 10.7
14.55
11 11.2
)
0.421- 0.572
0.433 0.441
L3
M
5.5
2.54
ct (s 0.217
0.100 Clipwatt15
du
M1 2.54 0.100
r o
e P
e t
s ol
O b
0044538 G
10 Revision history
( s )
u ct
o d
P r
e te
o l
b s
- O
(s )
c t
du
r o
e P
l e t
s o
O b
( s )
u ct
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
All ST products are sold pursuant to ST’s terms and conditions of sale.
P r
t e
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
e
o l
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
b s
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
- O
(s )
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
c t
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
d u
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
r o
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
P
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
e t e
o l
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
s
liability of ST.
b
O ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.