Tda 7491 P
Tda 7491 P
Features
■ 10 W + 10 W continuous output power:
RL = 6 Ω, THD = 10% at VCC = 11 V
■ 9.5 W + 9.5 W continuous output power:
RL = 8 Ω, THD = 10% at VCC = 12 V
■ Wide range single supply operation (5 V - 18 V)
■ High efficiency (η = 90%)
PowerSSO-36 with
■ Four selectable, fixed gain settings of
exposed pad down
nominally 20 dB, 26 dB, 30 dB and 32 dB
■ Differential inputs minimize common-mode
noise
Description
■ Filterless operation
■ No ‘pop’ at turn-on/off The TDA7491P is a dual BTL class-D audio
amplifier with single power supply designed for
■ Standby and mute features LCD TVs and monitors.
■ Short-circuit protection
Thanks to the high efficiency and
■ Thermal overload protection exposed-pad-down (EPD) package no separate
■ Externally synchronizable heatsink is required.
Furthermore, the filterless operation allows a
reduction in the external component count.
The TDA7491P is pin-to-pin compatible with the
TDA7491LP and TDA7491HV.
Contents
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 With 4-Ω load at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 With 6-Ω load at VCC = 11 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 With 8-Ω load at VCC = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.1 Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.2 Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6.1 Reconstruction low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.2 Filterless modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Heatsink requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10 Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
List of tables
List of figures
Figure 1 shows the block diagram of one of the two identical channels of the TDA7491P.
2 Pin description
SUB_GND 1 36 VSS
OUTPB 2 35 SVCC
OUTPB 3 34 VREF
PGNDB 4 33 INNB
PGNDB 5 32 INPB
PVCCB 6 31 GAIN1
PVCCB 7 30 GAIN0
OUTNB 8 29 SVR
OUTNB 9 28 DIAG
OUTNA 10 27 SGND
OUTNA 11 26 VDDS
PVCCA 12 25 SYNCLK
PVCCA 13 24 ROSC
PGNDA 14 EP 23 INNA
exposed pad down
PGNDA 15 Connect to ground 22 INPA
OUTPA 16 21 MUTE
OUTPA 17 20 STBY
PGND 18 19 VDDPW
3 Electrical specifications
4 Characterization curves
The following characterization curves were made using the TDA7491P demo board. The
LC filter for the 4-Ω load uses components of 15 µH and 470 nF, whilst that for the 6-Ω load
uses 22 µH and 220 nF and that for the 8-Ω load uses 33 µH and 220 nF.
Cosc =100nF, 8
7
f =1kHz,
6
Gv = 30dB,
5
Tamb = 25℃
4
Specification Limit: 3
Typical: 2
1
Po = 10W @THD =10%
0
Po =8W @THD =1%
5 6 7 8 9 10
Supply Voltage (V)
Test Conditions:
Vcc = 10V
Rl = 4 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 1kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 12W, THD = 10%
Test Conditions:
Vcc = 10V
Rl = 4 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 100Hz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 12W, THD = 10%
Test Conditions:
Vcc = 10V
Rl = 4 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 15kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 12W, THD = 2%
Test Condition:
0.5
Vcc=10V,
RL=4 ohm,
Rosc=39kΩ, Cosc=100nF, 0.2
f = 1kHz,
0.1
Gv=30dB,
Po=1W 0.05
Tamb=25℃
0.02
Frequency (Hz)
Test Condition:
Vcc =10V, +1
RL= 4 ohm,
-0
Rosc=39kΩ, Cosc=100nF,
f = 1kHz,
-1
Gv = 30dB,
Po =1W
-2
Tamb = 25℃
-3
Specification Limit:
Max: +/-3dB -4
@20Hz to 20kHz
-5
10 20 50 100 200 500 1k 2k 5k 10k 30k
Frequency (Hz)
Test Conditions:
Vcc = 10V
Rl = 4 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Crosstalk < -73 dB
Frequency (Hz)
-50
f =1kHz,
-60
Gv = 30dB, -70
Po = 1W -80
-90
Tamb = 25℃
-100
-110
Specification Limit: -120
-140
for the harmonic frequency
-150
20 50 100 200 500 1k 2k 5k 10k 20k
Frequency (Hz)
FFT (dB)
+0
-10
Test Condition:
-20
Vcc =10V,
-30
RL= 4 ohm, -40
f = 1kHz, -60
-70
Gv=30dB,
-80
Po= -60dB (@ 1W =0dB)
-90
Tamb=25℃ -100
-110
-130
Typical: > 90dB
-140
for the harmonic frequency
-150
20 50 100 200 500 1k 2k 5k 10k 20k
Frequency (Hz)
-10
Test Condition:
-20
Vcc =10V,
RL= 4 ohm, -30 Ripple frequency=100Hz
Rosc = 39kΩ, Cosc = 100nF,
-40 Ripple voltage=500mV
Vin=0, d
B
Gv=30dB, r -50
-80
-90
-100
20 50 100 200 500 1k 2k 5k 10k 20k
Hz
4 ohm 10 v PSRR.at27
Test Condition: 90 5
Vcc =10V, 80 4. 5
RL= 4 ohm, 4
70
Ef f i ci ency ( %)
f = 1kHz,
3
Gv=30dB, 50
2. 5
Tamb=25℃ 40 Vcc=10V
Rload=4ohm 2
30 Gain=30dB 1. 5
20 f=1kHz
1
10 0. 5
0 0
0 2 4 6 8 10 12
Out put power per channel ( W)
10
Test Condition:
0
Vcc =10V,
RL= 4 ohm, -10
-60
-70
-80
-90
0 1 2 3 4
Mute voltage (V)
40
Test Condition:
Vcc =10V, 35
RL= 4 ohm, 30
Iquiescent (mA)
10
0
0 0.5 1 1.5 2 2.5 3 3.5
Standby voltage (V)
Test Condition:
Vcc =10V,
0
RL= 4 ohm,
Rosc = 39kΩ, Cosc = 100nF, -20
Vcc=10V
0dB@f=1kHz,Po=1w,
Attenuation (dB)
-40 Rload=4ohm
Gv=30dB, Gain=30dB
Tamb=25℃ -60 0dB@f=1kHz, Po=1w
-80
-100
-120
0 0.5 1 1.5 2 2.5 3 3.5
Standby voltage (V)
Test Condition :
Vcc = 5~11V, 12
RL = 6 ohm, 11
Rosc = 39kO, Cosc = 100nF, 10
9
Output Power (W)
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 1kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 10W, THD = 10%
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 100Hz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 10W, THD = 10%
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 15kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 10W, THD = 1%
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
THD <2%
Frequency(Hz)
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Max: +/- 3 dB @20 -
20kHz
Frequency(Hz)
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Crosstalk < - 85 dB
Frequency (Hz)
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
Ref. Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Harmonics < - 50 dB
Frequency (Hz)
Test Conditions:
Vcc = 11V
Rl = 6 ohm
Rosc = 39k ohm
Cosc = 100nF
Ref. Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Harmonics < - 90 dB
Frequency (Hz)
-10
Test Condition:
Vcc =11V, -20
-70
-80
-90
-100
20 50 100 200 500 1k 2k 5k 10k 20k
Hz
6ohm 11v PSRR.at27
60
Gv =30dB,
50 1.5
Tamb =25℃ Vcc=11V
40 Rload=6ohm
1
30 Gain=30dB
20 f=1kHz
0.5
10
0 0
0 2 4 6 8 10 12
Output power per channel (W)
Test Condition :
Vcc = 5~12V, 10
RL = 8 ohm, 9
Rosc =39kO, Cosc =100nF, 8 THD =10%
Test Conditions:
Vcc = 12V
Rl = 8 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 1kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 9.5W
@THD =10%
Test Conditions:
Vcc = 12V
Rl = 8 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 100Hz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 9.5W
@THD =10%
THD (%)
Test Conditions:
Vcc = 12V
Rl = 8 ohm
Rosc = 39k ohm
Cosc = 100nF
f = 15kHz
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Po = 9.5W
@THD =1%
Test Condition:
0.5
Vcc =12V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF, 0.2
f =1kHz,
0.1
Gv =30dB,
Po =1W 0.05
Tamb =25℃
0.02
Typical: THD<0.5%
0.005
20 50 100 200 500 1k 2k 5k 10k 20k
Frequency (Hz)
Test Conditions:
Vcc = 12V
Rl = 8 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Max: +/- 3 dB
@20—20kHz
Frequency (Hz)
Vcc = 12V
Rl = 8 ohm
Rosc = 39k ohm
Cosc = 100nF
Po = 1W
Gv = 20 dB
Tamb. = 25 ˚C
Specification limits:
Typical:
Crosstalk < -83 dB
Frequency (Hz)
Po =1W -80
-90
Tamb =25℃
-100
-110
Specification Limit: -120
Frequency (Hz)
-10
Test Condition:
-20
Vcc =12V,
-30
RL= 8 ohm, -40
f =1kHz, -60
-70
Gv =30dB,
-80
Po = -60dB (@ 1W =0dB)
-90
Tamb =25℃ -100
-110
-140
for the harmonic frequency
-150
20 50 100 200 500 1k 2k 5k 10k 20k
Frequency (Hz)
-10
Test Condition:
-20
Vcc =12V,
RL= 8 ohm, -30
Ripple frequency=100Hz
Rosc =39kΩ, Cosc =100nF,
-40 Ripple voltage=500mV
f =1kHz, d
B
Gv =30dB, r -50
-80
-90
-100
20 50 100 200 500 1k 2k 5k 10k 20k
Hz
8ohm 12v PSRR.at27
Test Condition:
100 2.5
Vcc =12V,
90
RL= 8 ohm,
80 2
Rosc =39kΩ, Cosc =100nF,
Dissipation Power (W)
70
f =1kHz,
Efficiency (%)
60 1.5
Gv =30dB,
Tamb =25℃ 50
Vcc=12V
40 Rload=8ohm
1
30 Gain=30dB
f=1kHz
20 0.5
10
0 0
0 2 4 6 8 10
Output power per channel (W)
5 Applications information
3*1'$ 5
& Q) &
6*1' Q) 6*1' & &
-
TDA7491P
,&
9&&
6<1&/. &
6<1&/. X) *1'
- 2873% / 9 9
526& 7'$
,1/
2873% X+
,1/ & 5
- *$,1
39&&% &
,15
Q) . 5
,15 39&&% Q)
9''6 *$,1 -
5
&
6*1'
- 2875
)RU 69&& &
Q) 2875
6LQJOH(QGHG
- & Q)
3*1'%
,QSXW Q)
966 & &
3*1'%
6*1'
S) Q)
& Q) ,13%
2871%
& /
2871%
& Q) 6*1' Q) ,11%
9 X+
9
/RDG &&
5 N
& ////
6*1'
X)
&
X) RKP X+ Q)
287 ,& ,1 5 9&&
6*1'
9
9
/&=
& N RKP X+ Q)
X) & 5 6*1'
*1'
Q) RKP X+ Q)
N
7'$3/3+9&/$66'$03/,),(5
6*1'
6*1'
Q)
6*1' 6*1' 6*1'
Standby STBY
3.3 V R2 C7
0V 30 kΩ 2.2 µF TDA7491P
Mute MUTE
3.3 V R4 C15
0V 30 kΩ 2.2 µF
L(1) L(1) 20
L H 26
H L 30
H H 32
1. Refer to VinL and VinH in Table 5: Electrical specifications on page 11 for the drive levels for L and H
fc = 1 / (2 * π * Ri * Ci)
Rf
Input
signal Input Ri
Ci
pin
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 8.
Output Input
Cosc Rosc
100 nF 39 kΩ
5.6 Modulation
The output modulation scheme of the BTL is called unipolar pulse width modulation (PWM).
The differential output voltages change between 0 V and +VCC and between 0 V and -VCC.
This is in contrast to the traditional bipolar PWM outputs which change between +VCC
and -VCC.
An advantage of this scheme is that it effectively doubles the switching frequency of the
differential output waveform on the load then reducing the current ripple accordingly. The
OUTP and OUTN are in the same phase almost overlapped when the input is zero under
this condition, then the switching current is low and the related losses in the load are low. In
practice, a short delay is introduced between these two outputs in order to avoid the BTL
outputs switching simultaneously when the input is zero.
Figure 44 shows the resulting differential output voltage and current when a positive, zero
and negative input signal is applied. The resulting differential voltage on the load has a
double frequency with respect to outputs OUTP and OUTN then resulting in reduced current
ripple.
INP
INN
OUTP
OUTN
Differential
OUT
Emission tests have been performed with a 1-m length of twisted speaker wire with ferrite
beads. Changing the type of the ferrite bead requires care due to factors such as its
effectiveness in the EMC frequency range and impedance stability over the rated current
range. An output snubber network further improves the emissions and this should be tuned
according to the actual PCB, layout and component characteristics.
AM045140v1
TDA7491P
R1
DIAG
Protection logic
VDD
Restart Restart
Overcurrent UV, OT
protection protection
Pd (W) 8
7
Copper Area 3x3 cm
6 and via holes
5 TDA7491P
TDA7491P
PowerSSO-36
PSSO36
4
3
Copper Area 2x2 cm
2 and via holes
1
0
0 20 40 60 80 100 120 140 160
Tamb ( °C)
The TDA7491P comes in a 36-pin PowerSSO package with exposed pad down (EPD).
Figure 51 below shows the package outline and Table 9 gives the dimensions.
7 Revision history
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.