0% found this document useful (0 votes)
12 views2 pages

Salution To Previous Sheet

The document contains solutions to various problems related to digital electronics, focusing on number systems and Boolean algebra. It includes calculations, logic circuit modifications, and explanations of concepts like 2's complement and 1's complement. The content is structured in a question-answer format, providing step-by-step solutions and examples.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views2 pages

Salution To Previous Sheet

The document contains solutions to various problems related to digital electronics, focusing on number systems and Boolean algebra. It includes calculations, logic circuit modifications, and explanations of concepts like 2's complement and 1's complement. The content is structured in a question-answer format, providing step-by-step solutions and examples.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

UNIT 4 GATE EC BY RK Kanodia Digital Electronics

A - B = A + B,
SOLUTIONS
A 010 10110
B + 00010011
0110 1001
1. (D) 100110 2 = 2 5 + 2 2 + 21 = 3810
- A - B = A + B, A 1010 1001
2616 = 2 ´ 16 + 6 = 3810
B + 00010011
468 = 4 ´ 8 + 6 = 3810
10111100
212 4 = 2 ´ 4 2 + 41 = 3810
So 3610 is not equivalent. 7. (B) Here A , B are 2’s complement

A + B, A 0100 0110
2. (C) 2 x 2 + x + 1 = 64 + 5 ´ 8 + 2 Þ x =7 B + 1101 0011
1 0001 1001
3. (C) All are 2’s complement of 7
11001 Þ 00110 Discard the carry 1
+ 1
A - B = A + B, A 010 0 0110
00111 = 710 B + 0010 1101
1001 Þ 0110
0111 0011
+ 1
0111 = 710 B - A, B 1101 0011

111001 Þ 000110 A + 1011 1010


+ 1 1 1000 1101

000111 = 710
Discard the carry 1

4. (C) See a example - A - B = A + B, A 1011 1010


B + 0010 1101
42 in a byte 00101010
1110 0111
42in a word 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
-42 in a byte 11010110
8. (B) 1110 = 10112
-42 in a word 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0
0.3 2Fi-1 Bi Fi
Therefore (C) is correct.
0.6 0 0.6
5. (C) 4810 = 00110000 2
1.2 1 0.2
-4810 = 1100 1111
+ 1 0.4 0 0.4

11010000 0.8 0 0.8

1.6 1 0.6
6. (D) Here A , B are 1’s complement
A + B, A 01010110 Repeat from the second line 0.310 = 0.01001 2

B + 1110 1100
10100 0010 , 9. (C)
+ 1 b4 b3 b2 p3 b1 p2 p1

0100 0011 Received 1 1 0 1 1 0 0


B - A = B + A, B 1110 1100
C1* = b4 Å b2 Å b1 Å p1 = 0
A + 1010 1001
C2* = b4 Å b3 Å b1 Å p2 = 1
110010101
C3* = b4 Å b3 Å b2 Å p3 = 1
+ 1
10010110
www.gatehelp.com
Page
202
Number Systems & Boolean Algebra GATE EC BY RK Kanodia Chap 4.1

C3* C2* C1* = 110 which indicate position 6 in error = ( AA + AB)( A + B + C) = A( A + B + C) = A


Transmitted code 1001100. Therefore No gate is required to implement this
function.
10. (D) X = MNQ + M NQ + M NQ
= MQ + M NQ = Q( M + M N ) = Q( M + N ) 23. (A)
A B C ( A + BC) ( A + B)( A + C)
11. (A) The logic circuit can be modified as shown in fig.
S. 4.1.11 0 0 0 0 0

A 0 0 1 0 0
B
Z 0 1 0 0 0
C+D

E 0 1 1 1 1
Fig. S4.1.11
1 0 0 1 1
Now Z = AB + ( C + D) E 1 0 1 1 1
Fig. S 4.1.23
12. (D) You can see that input to last XNOR gate is
same. So output will be HIGH. 24. (B) X = ABC + ABC + ABC = BC + ABC

13. (D) Z = A + ( AB + BC) + C


25. (B) ( A + B)( B + C ) = ( AB)( BC) = ABC
= A + ( A + B + B + C) + C = A + B + C
( A + B)( B + C ) = ( A + B) + ( B + C) = A + B + C
ABC = A + B + C
( A + B)( B + C) = ( A + B) + ( B + C)
AB + BC + AC = A + B + B + C + A + C = A + B + C
= AB + B + C = A + B + C

14. (C) ( X + Y )( X + Y ) = XY + X Y From truth table Z = A + B + C


Thus (B) is correct.
( X + Y )( X + Y )( X + Y ) = ( X + Y )( XY + X Y )

= XY + XY = XY 26. (D) AC + BC = AC( B + B) + ( A + A) BC


= ABC + ABC + ABC + ABC
15. (B) Using duality
( A + B)( A + C)( B + C) = ( A + B)( A + C) 27. (D) F = A + AB + A BC + A B C( D + DE)
Thus (B) is correct option. = A + AB + A B( C + C( D + E))
= A + A( B + B( C + D + E)) = A + B + C + D + E
16. (B) Z = ( AB)( CD)( EF ) = AB + CD + EF

28. (B) A( B + C ( AB + AC)) = AB + AC ( AB × AC)


17. (A) X = ( A B + AB)( A + B) = ( AB + A B)( AB) = AB
= AB + AC[( A + B)( A + C)]
= AB + AC ( A + AC + AB + B C) = AB
18. (B) Y = ( A Å B) × C = ( AB + AC) × C

= ( AB + AB) + C = A B + AB + C
29. (C) ( AB ) × ( AB) = AB + AB = AB + AB

19. (C) Z = A( A + A) BC = ABC


30. (B) X Z + XZ = X ( XY + XY ) + X ( X Y + XY )

20. (A) Z = AB( B + C) = ABC = X ( XY + X Y ) + XY = XY + XY = Y

31. (A) X Å Y = X Y + XY = ( XY + XY ) = ( XY ) = X + Y
21. (A) Z = ( A + B ) × BC = ( AB) × BC = ABC

22. (A) A( A + B)( A + B + C)


www.gatehelp.com
Page
203

You might also like