ESE 570 MOS TRANSISTOR
THEORY Part 2
GCA (gradual channel approximation) MOS Transistor Model
Strong Inversion Operation
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
Two-Terminal MOS Capacitor -> nMOS Transistor
VGS << VT0
NMOS TRANSISTOR IN CUTOFF REGION
VG
VD
VS
-
Substrate or
Bulk B
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
Depletion
region
Immobile
acceptor
ions
Two-Terminal MOS Capacitor -> nMOS Transistor
VGS = VT0n +
Onset of INVERSION
VG
QI
-
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
VD
QB0
-
MOS Transistor Regions of Operation
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
n
-
MOS Transistor Regions of Operation
n
-
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
MOS Transistor Regions of Operation
VDS = VD VDSAT = VGS - VT0
VDS - VDSAT
VGD = VGS VDS < VT0
-
z n+
-
- VCS(y) = VDSAT
n+
-
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
MOSFET CURRENT VOLTAGE CHARACTERISTICS
VG = VGS > VT0 and VGD > VT0
VD = small
n+ z
n+
yy
x
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
2
dy
1
V
sec
cm
dR=
.=
2
W n Q I y
cm C
n = U0 = electron mobility = cm2/{V sec}
VG = VGS > VT0
VD = VDS
n+
n+
VCS(y)
VCS(y = 0) = VS = 0
VCS(y = L) = VDS
Ey >> Ex, Ez
Mobile charge in inverted channel:
QI(y) = -Cox [VGS VCS(y) - VT0]
I 1
=
V R
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
QI(y) = -Cox [VGS VCS(y) - VT0]
VCS(y = 0) = VS = 0
VCS(y = L) = VD
dVCS
0 VCS(y) VDS
dVCS
VGS - VCS - VT0 dV
CS
2
CS
(VGS VT0)VCS - V /2
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
VCS = VDS
VCS = 0
KP -> Transconductance Parameter
2
cm C 1
C /s A
KP=n C ox =
= 2 = 2
2
Vs V cm
V
V
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
10
ID(VDS = VDSAT) and VDSAT = VGS - VT0
Assumptions:
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
11
@VDS = VDSAT = VGS - VT0
n C ox W
2
I D sat =
V GS V T0
2 L
ID(VDS = VDSAT) = ID(sat)
LINEAR
SAT
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
IN GENERAL
ID(sat)
12
VDSAT
+
n+
V DS V DSAT
1
1
1V DS
L 1V DS
1
for V DS 1
L
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
13
Compatible Eqs. ?
ID = f(VGS, VDS)
0
0
0
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
14
DISCONTINUOUS!
@ VDS = VDSAT
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
15
V DS 1
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
16
V T =V T0 2 F V SB 2 F
V DS 1
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
17
(VT = VTn > 0)
V GD V T
VGS > VT, VDS < VGS - VT
VGS > VT, VDS VGS - VT
(VT = VTp < 0)
V GD V T
V GD V T
VGS < VT, VDS > VGS - VT
VGS < VT, VDS VGS - VT
V GD V T
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
18
D
G
=> SAT
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
19
=> SAT
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
20
n+
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
n+
21
V GS
E ox =
volts /cm
t ox
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
E=
q
N A x volts /cm
si
22
V GS
E ox =
volts/cm
t ox
Year
E=
q
N A x volts/cm
si
1993 1995 1997 1999 2001
Feature Size (m) 0.80
0.60
0.35
0.25
0.18
2003
2005 2007
0.13
0.09
0.045
Historical reduction in min feature size for typical CMOS process
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
23
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
24
LD
n+
LD
+
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
n+
25
(nMOS, pMOS)
Model
Depletion Region Capacitances
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
26
CGS0(overlap) = CoxWLD
CGD0(overlap) = CoxWLD
CGB0(overlap) = CoxWovLM
SPICE: CoxLD = CGS0 = CGD0 in F/m; CoxWov = CGB0 in F/m
Wov
n+
LD
n+
Wov
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
27
CBG0 Gate-to-Bulk Overlap Capacitance
CBG0
Weff
SiO2
poly
n+
p
Wov
CGB0 = CoxWovLM
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
SiO2
Wov
(conservative
estimate)
28
Cgb, Cgs and Cgd
n+
n+
Leff
Leff
n+
n+
MOSFET Saturation Region
n+
n+
Leff
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
29
Gate-to-Bulk, - Drain & - Source Oxide
Capacitances Summary
+ 2CGB0
0 + 2CGB0
0 + 2CGB0
Application of Oxide Capacitance Model:
1. Approximate: For hand calculations, assume that C gb, Cgd and Cgs are connected in
parallel for each region of operation, i.e.
Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0
Cut-off Region;
Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0
Linear Region;
Cg(tot) = 2/3 CoxWLeff + 2CGB0 + CGD0 + CGS0 Saturation Region.
and use the maximum value Cg(tot) = CoxWLeff + 2CGB0 + CGD0 + CGS0
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
30
Depletion Region Capacitances -> Cdb, Csb
n+
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
n+
31
Depletion Region Capacitances -> Cdb, Csb
Assume Weff = W
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
32
Depletion Region Capacitances -> Cdb, Csb
n+
V = Ext Bias --> VSB, VDB
Qj = depletion-region charge
A = junction area
dQ j
A C j0
AS , AD CJ (F)
C j V =
=
=
m
MJ
dV
V
V
1
1
PB
0
where
Si
q Si N A N D 1
2
(F/cm
)
CJ =C j0 = =
xd
2 N AN D 0
ND
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
m = MJ = grading coefficient
m = for abrupt junction
[AS, AD -> Source, Drain
Areas in SPICE]
[CJ -> Cj0 in SPICE]
[PB -> O0 in SPICE]
[MJ -> m in SPICE]
33
SUMMARY n+, p Junctions
C j V =
where
A C j0
AS , ADCJ
(F)
=
m
MJ
V
V
1
1
PB
0
q Si N A N D 1
CJ =C j0 =
2 N A N D 0
SPICE
Parameters
(F/cm2)
Cj(0) = A Cj0 when V = 0
[AS, AD -> Source, Drain
Areas in SPICE]
[CJ -> Cj0 in SPICE]
[PB -> O0 in SPICE]
[MJ -> m in SPICE]
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
34
n+, p Junctions
C j V =
A C j0
AS , ADCJ
=
m
MJ
V
V
1
1
PB
0
voltage
dependent
EQUIVALENT LINEAR LARGE SIGNAL CAPACITANCE
V
Q Q j V 2 Q j V 1
1
C eq =
=
=
C j V dV
V
V 2 V 1
V 2 V 1
V
2
voltage
0
V 2 1m
V 1 1m
C j V C eq =A C j0
[1 1 ] independent
V 2V 1 1m
0
0
approximation
0 < Keq < 1 --> Voltage Equivalence Factor
where V1 V V2
V = Ext Bias --> VSB, VDB for nMOS
VBS, VBD for pMOS
C j V = A C j0 K eq = AS , ADCJK eq
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
35
[PS, PD -> Source, Drain
Perimeters in
SPICE]
(F/cm2) [CJSW -> C in SPICE]
jsw
[PBSW -> O0SW in SPICE]
[MJSW -> m(sw) in SPICE]
(F/cm)
dQ jsw
C jsw V =
=
dV
[XJ -> xj in SPICE]
P C jsw
PS , PDCJSW
=
msw
MJSW
V
V
1
PBSW
0sw
1m sw
(F)
1m sw
V2
V1
Recall for n+, pjunctions
0sw
K eq sw=
[1
V 2 V 1 1m
sw
dQ j
A C j0 0sw
AS , ADCJ 0sw
C j V =
=
=
(F)
m
MJ
V junction V
m(sw) = dV
for an abrupt
1
1
PB
0
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
36
dQ jsw
C jsw V =
=
dV
P C jsw
PS , PDCJSW
=
MJSW
V msw
V
1
PBSW
0sw
voltage
dependent
voltage
independent
approximation
where
V1 V V2
V = Ext Bias --> VSB, VDB for nMOS
VBS, VBD for pMOS
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
37
4
CJ = 1.35 x 10-8 F/cm2
CJSW = 5.83 x 10-12 F/cm
PB = 0.896 V
PBSW = 0.975 V
XJ = 1 x 10-4 cm
MJ = MJSW =
D n+
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
n+
38
C j V = A C j0 K eq = ADCJK eq
1 MJ
V2
PB
K eq =
[1
V 2V 1 1MJ
PB
1 MJ
V1
1
PB
CJ = 1.35 x 10-8 F/cm2
CJSW = 5.83 x 10-12 F/cm
PB = 0.896 V
PBSW = 0.975 V
XJ = 1 x 10-4 cm
MJ = MJSW = 1/2
1/2
20.896 V
5V
0.5 V 1 /2
=
[1
1
]=0.52
5V 0.5 V
0.896 V
0.896 v
C jsw V =P C jsw K eq sw =PDCJSWK eq sw
1 MJSW
V2
PBSW
K eq sw=
[1
V 2 V 1 1MJSW
PBSW
1 /2
1 MJSW
V1
1
PBSW
1/ 2
= 20.975 V [1 5 V 1 0.5 V ]=0.53K eq
5V 0.5 V
0.975V
0.975 v
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
39
CJ = 1.35 x 10-8 F/cm2
CJSW = 5.83 x 10-12 F/cm
PB = 0.896 V
PBSW = 0.975 V
XJ = 1 x 10-4 cm
MJ = MJSW = 1/2
C j V = A C j0 K eq = ADCJK eq =55 x 10 cm 1.35 x 10 F / cm 0.52=3.86 fF
C jsw V =P C jsw K eq sw =PDCJSWK eq sw
= 2.5 x 103 cm5.83 x 1012 F / cm0.53=7.72 fF
C db = ADCJK eqPDCJSWK eq sw =11.58 fF
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
40
MOSFET CAPACITANCE SUMMARY
OXIDE CAPACITANCES
Cgb = COX WLeff + CGB0
Cgd = (1/2) COX WLeff + CGD0
Cgs = (2/3) COX WLeff + CGS0
Leff = LM - 2LD
DEPLETION CAPACITANCES
Csb = Cj(VSB) + Cjsw(VSB)
Cdb = Cj(VDB) + Cjsw(VDB)
C j V =
AS , AD CJ
AS , AD CJK eq
Assume: AS = AD
MJ
V
1
1MJ
1MJ
V
V
PB
PB
K eq =
[1 2
1 1
]
V 2V 1 1MJ
PB
PB
C jsw V =
PS , PDCJSW
PS , PDCJSWK eq sw Assume: PS = PD
MJSW
V
1
PBSW
V 2 1MJSW
V 1 1MJSW
PBSW
K eq sw=
[1
]
V 2 V 1 1MJSW
PBSW
PBSW
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
41
Short Channel Effects Leff xj
Velocity saturation limit
Reduced electron, hole mobility
Reduced threshold voltage V
T0
Narrow Channel Effects W xdm
Increased threshold voltage V
T0
Sub-threshold Current VGS < VT0
Non-zero drain current when V
< VT0
GS
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
42
SHORT CHANNEL ISSUES
v sat
cm
V
cm2
0 =
/ =
sec cm V sec
I D sat =W v sat C ox V GS V T
n0
n eff
1V GS V T
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
(Lvl 3)
43
SHORT CHANNEL ISSUES - CONT.
Short Channel Effect Leff xj (source, drain diffusion depth)
G
S
n+
pn+
depletion
region
D
n+
QB0
Leff
xj
pn+
depletion
region
VGS induced
depletion
region
Q ox Q B0
V T0 long channel =V FB 2 F
C ox C ox
n+
n+
Leff
QB0(sc)
QB0(sc) << QB0
VT0 (short channel) = VT0 (long channel) - VT0
22
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
44
NARROW CHANNEL ISSUES
Narrow Channel Effect W xdm (depletion region depth)
field-oxide
gate-oxide
Gate Extension
design rule
field-oxide
QB0(nc)
QB0(nc) > QB0
Q ox Q B0
V T0 long channel =V FB 2 F
C ox C ox
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
45
I D subthreshold =I S e
V GS
n kT / q
V DS
1e
kT /q
1V DS
Si t ox
sub-threshold swing coefficient: n1
ox t Si
C ox W kT 2
I S
L
q
[SPICE Parameter: N0 -> n sub-threshold swing coefficient
NOTE:
ID (sub-threshold) is leakage current for strong-inversion operation
ID (sub-threshold) is primary current for weak-inversion operation
+
J. Rabaey, A. Chandrakasan and B. Nikolic; Digital Integrated Circuits 2nd Edition,
Prentice Hall, 2003, pp99.
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
46
(MOSIS: Level 3 model used for min feature size 1 m)
(MOSIS: BISIM3 model used for min feature size < 1 m)
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
47
Complexity of SPICE Models vs. Time
BSIM4v6.5 (2009)
EKV = Enz-Krummenacher-Vittoz
(EKV) model is for low-power
analog circuit simulation.
SPICE Parameter Calculator Rochester Institute of Technology
http://people.rit.edu/lffeee/Spice_Parameter_Calculator.XLS
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
48
MOS SPICE MODEL PARAMETERS
Name
Model Parameters
LEVEL
Model type (1, 2, or 3)
L
W
LD
WD
Channel
Channel
Lateral
Lateral
VTO
U0
KP
GAMMA
PHI
LAMBDA
Zero-bias threshold voltage
Mobility
Transconductance
Bulk threshold parameter
Surface potential
Channel-length modulation
(LEVEL = 1 and 2)
RD
RS
RG
RB
RDS
RSH
NRS
IS
JS
PB
length
width
diffusion length
diffusion width
Drain ohmic resistance
Source ohmic resistance
Gate ohmic resistance
Bulk ohmic resistance
Drain-source shunt resistance
Drain-source diffusion sheet
Resistance
Number of squares of RD, RS
Bulk p-n saturation current
Bulk p-n saturation/current area
Bulk p-n potential
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
Units
m
m
m
m
V
cm**2/Vs
A/V**2
V**1/2
V
1/V
Ohms
Ohms
Ohms
Ohms
Ohms
Ohms/sq.
A
A/m**2
V
49
MOS SPICE MODEL PARAMETERS - CONT.
Name
Model Parameters
Units
LEVEL
Model type (1, 2, or 3)
CBD
CBS
CJ
CJSW
MJ
MJSW
FC
CGSO
CGDO
CGBO
Bulk-drain zero-bias p-n cap (not used)
F
Bulk-source zero-bias p-n cap (not used)
F
Bulk p-n zero-bias bottom cap/area
F/m**2
Bulk p-n zero-bias perimeter cap/length
F/m
Bulk p-n bottom grading coefficient
Bulk p-n sidewall grading coefficient
Empirical bulk p-n forward-bias cap coefficient
Gate-source overlap cap/channel width
F/m
Gate-drain overlap cap/channel width
F/m
Gate-bulk overlap cap/channel width
F/m
NSUB
NSS
NFS
TOX
TPG
XJ
Substate doping density
Surface-state density
Fast surface-state density
Oxide thickness
Gate material type:
+ 1 = opposite of substrate,
- 1 = same as substrate,
0 = aluminum
Metallurgical junction depth
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
1/cm**3
1/cm**2
1/cm**2
m
m
50
MOS SPICE MODEL PARAMETERS - CONT.
Name
Model Parameters
Units
LEVEL
Model type (1, 2, or 3)
UCRIT
DELTA
THETA
ETA
KAPPA
Mobility degradation critical field
V/cm
(LEVEL=2)
Empirical mobility degradation exponent
(LEVEL=2)
Maximum carrier drift velocity (Level=2)
m/s
Empirical channel charge coefficient
(LEVEL=2)
Empirical Fraction of channel charge
attributed to drain (Level=2)
Empirical channel width effect on VT
Empirical mobility modulation (LEVEL=3)
1/V
Empirical static feedback on VT (LEVEL=3)
Empirical saturation field factor (LEVEL=3)
KF
AF
Flicker noise coefficient
Flicker noise exponent
UEXP
VMAX
NEFF
XQC
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
51
Level 3 SPICE Parameters
KP (in A/V2) = k'n (k'p)
VT0 (in volts) = VTn (VTp)
U0 (in cm2/{Vs}) = n (p)
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
52
G D S
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
53
Kenneth R. Laker, University of Pennsylvania, updated 27Jan14
54