0% found this document useful (0 votes)
223 views8 pages

6n60a PDF

Uploaded by

Roy Ana
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
223 views8 pages

6n60a PDF

Uploaded by

Roy Ana
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

PD - 91813

SMPS MOSFET IRFIB6N60A


HEXFET® Power MOSFET
Applications
l Switch Mode Power Supply ( SMPS )
VDSS Rds(on) max ID
l Uninterruptable Power Supply 600V 0.75W 5.5A
l High speed power switching
l High Voltage Isolation = 2.5KVRMS†

Benefits
l Low Gate Charge Qg results in Simple
Drive Requirement
l Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current G DS
TO-220 FULLPAK

Absolute Maximum Ratings


Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 5.5
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 3.5 A
IDM Pulsed Drain Current  37
PD @TC = 25°C Power Dissipation 60 W
Linear Derating Factor 0.48 W/°C
VGS Gate-to-Source Voltage ± 30 V
dv/dt Peak Diode Recovery dv/dt ƒ 5.0 V/ns
TJ Operating Junction and -55 to + 150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)

Typical SMPS Topologies:

l Single Transistor Forward


l Active Clamped Forward

Notes  through †are on page 8


www.irf.com 1
01/12/99
IRFIB6N60A
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 600 ––– ––– V VGS = 0V, ID = 250µA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.75 W VGS = 10V, ID = 3.3A „
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
––– ––– 25 VDS = 600V, VGS = 0V
IDSS Drain-to-Source Leakage Current µA
––– ––– 250 VDS = 480V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 V GS = 30V
IGSS nA
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -30V

Dynamic @ TJ = 25°C (unless otherwise specified)


Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 5.5 ––– ––– S VDS = 25V, ID = 5.5A
Qg Total Gate Charge ––– ––– 49 ID = 9.2A
Qgs Gate-to-Source Charge ––– ––– 13 nC VDS = 400V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 20 VGS = 10V, See Fig. 6 and 13 „
td(on) Turn-On Delay Time ––– 13 ––– VDD = 300V
tr Rise Time ––– 25 ––– ns ID = 9.2A
td(off) Turn-Off Delay Time ––– 30 ––– RG = 9.1W
tf Fall Time ––– 22 ––– RD = 35.5W,See Fig. 10 „
Ciss Input Capacitance ––– 1400 ––– VGS = 0V
Coss Output Capacitance ––– 180 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 7.1 ––– pF ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 1957 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 49 ––– VGS = 0V, VDS = 480V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 96 ––– VGS = 0V, VDS = 0V to 480V …
Avalanche Characteristics
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy‚ ––– 290 mJ
IAR Avalanche Current ––– 9.2 A
EAR Repetitive Avalanche Energy ––– 6.0 mJ
Thermal Resistance
Parameter Typ. Max. Units
RqJC Junction-to-Case ––– 2.1
RqJA Junction-to-Ambient ––– 65 °C/W

Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
D
IS Continuous Source Current MOSFET symbol
––– ––– 5.5
(Body Diode) showing the
A
ISM Pulsed Source Current integral reverse G

––– ––– 37
(Body Diode)  p-n junction diode. S

VSD Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 9.2A, VGS = 0V „
trr Reverse Recovery Time ––– 530 800 ns TJ = 25°C, IF = 9.2A
Qrr Reverse RecoveryCharge ––– 3.0 4.4 µC di/dt = 100A/µs „
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2 www.irf.com
IRFIB6N60A

100 100
VGS VGS
TOP 15V TOP 15V
10V 10V

I D , Drain-to-Source Current (A)


8.0V 8.0V
I D , Drain-to-Source Current (A)

7.0V 7.0V
6.0V 6.0V
5.5V 5.5V
5.0V 5.0V
BOTTOM 4.7V BOTTOM 4.7V
10

10

4.7V
4.7V

20µs PULSE WIDTH 20µs PULSE WIDTH


TJ = 25 °C TJ = 150 °C
0.1 1
0.1 1 10 100 1 10 100
VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics

100 3.0
ID = 9.2A
RDS(on) , Drain-to-Source On Resistance
I D , Drain-to-Source Current (A)

2.5

TJ = 150 ° C
10 2.0
(Normalized)

1.5
TJ = 25 ° C

1 1.0

0.5

V DS = 50V
20µs PULSE WIDTH VGS = 10V
0.1 0.0
4.0 5.0 6.0 7.0 8.0 9.0 10.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature ( °C)

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance


Vs. Temperature
www.irf.com 3
IRFIB6N60A

2400 20
V GS = 0V, f = 1MHz ID = 9.2A
C iss = Cgs + C gd , Cds SHORTED
400V
VDS = 480V

VGS , Gate-to-Source Voltage (V)


C rss = C gd
2000 C oss = C ds + C gd VDS = 300V
16
VDS = 120V
Ciss
C, Capacitance (pF)

1600
Coss 12

1200

8
800

Crss 4
400

FOR TEST CIRCUIT


SEE FIGURE 13
0 A 0
1 10 100 1000 0 10 20 30 40 50
VDS , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC)

Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs.


Drain-to-Source Voltage Gate-to-Source Voltage

100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ISD , Reverse Drain Current (A)

100
I D , Drain Current (A)

10

TJ = 150 ° C 10us

10
100us

1 1ms
TJ = 25 ° C 1
10ms
TC = 25 ° C
TJ = 150 ° C
V GS = 0 V Single Pulse
0.1 0.1
0.2 0.5 0.7 1.0 1.2 10 100 1000 10000
VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V)

Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area


Forward Voltage
4 www.irf.com
IRFIB6N60A

6.0 RD
VDS

VGS
5.0 D.U.T.
RG
+
ID , Drain Current (A)

-V DD
4.0
10V
Pulse Width £ 1 µs
3.0 Duty Factor £ 0.1 %

2.0 Fig 10a. Switching Time Test Circuit

VDS
1.0
90%

0.0
25 50 75 100 125 150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs. td(on) tr t d(off) tf
Case Temperature
Fig 10b. Switching Time Waveforms

10
Thermal Response (Z thJC )

D = 0.50
1

0.20

0.10
P DM
0.05
0.1
t1
0.02
t2
0.01
SINGLE PULSE Notes:
(THERMAL RESPONSE) 1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001 0.0001 0.001 0.01 0.1 1 10
t1 , Rectangular Pulse Duration (sec)

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com 5
IRFIB6N60A

600
ID

EAS , Single Pulse Avalanche Energy (mJ)


TOP 4.1A
15V 500 5.8A
BOTTOM 9.2A

L DRIVER 400
VDS

300
RG D.U.T +
- VDD
IAS A
20V 200
tp 0.01Ω

Fig 12a. Unclamped Inductive Test Circuit 100

0
25 50 75 100 125 150
V(BR)DSS Starting TJ , Junction Temperature ( °C)
tp

Fig 12c. Maximum Avalanche Energy


Vs. Drain Current

I AS
Current Regulator
Fig 12b. Unclamped Inductive Waveforms Same Type as D.U.T.

50KΩ

12V .2µF
QG .3µF

10 V +
V
QGS QGD D.U.T. - DS

VGS
VG
3mA

IG ID
Charge Current Sampling Resistors

Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit

6 www.irf.com
IRFIB6N60A

Peak Diode Recovery dv/dt Test Circuit

+ Circuit Layout Considerations


D.U.T
· Low Stray Inductance
· Ground Plane
ƒ
· Low Leakage Inductance
Current Transformer
-

+
‚
„
- +
-


RG · dv/dt controlled by RG +
· Driver same type as D.U.T. VDD
-
· ISD controlled by Duty Factor "D"
· D.U.T. - Device Under Test

Driver Gate Drive


P.W.
Period D=
P.W. Period

VGS=10V *

D.U.T. ISD Waveform

Reverse
Recovery Body Diode Forward
Current Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
VDD

Re-Applied
Voltage Body Diode Forward Drop
Inductor Curent

Ripple ≤ 5% ISD

* VGS = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

www.irf.com 7
IRFIB6N60A
Package Outline
TO-220 Fullpak Outline
Dimensions are shown in millimeters (inches)
10.60 (.417) 3.40 (.133)
ø 4.80 (.189)
10.40 (.409) 3.10 (.123) 4.60 (.181)
2.80 (.110)
-A- 2.60 (.102)
3.70 (.145) LEAD ASSIGNMENTS
3.20 (.126) 7.10 (.280) 1 - GATE
6.70 (.263) 2 - DRAIN
3 - SOURCE
16.00 (.630)
15.80 (.622)
1.15 (.045) NOTES:
MIN.
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1 2 3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
D

A
0.48 (.019) B
0.90 (.035) 3X
1.40 (.055) 3X 0.44 (.017)
3X 0.70 (.028)
1.05 (.042) 2.85 (.112)
0.25 (.010) M A M B 2.65 (.104) MINIMUM CREEPAGE
2.54 (.100) DISTANCE BETWEEN
2X A-B-C-D = 4.80 (.189)

Part Marking Information


TO-220 Fullpak
EXAMPLE : THIS IS AN IRFI840G
WITH ASSEMBLY
A
LOT CODE E401
INTERNATIONAL PART NUMBER
RECTIFIER IRFI840G
LOGO
E401 9245
ASSEMBLY DATE CODE
LOT CODE (YYWW)
YY = YEAR
Notes: WW = WEEK
 Repetitive rating; pulse width limited by „ Pulse width £ 300µs; duty cycle £ 2%.
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 6.8mH … Coss eff. is a fixed capacitance that gives the same charging time
RG = 25W, IAS = 9.2A. (See Figure 12) as Coss while VDS is rising from 0 to 80% VDSS
† t=60s, f=60Hz
ƒ ISD £ 9.2A, di/dt £ 50A/µs, VDD £ V(BR)DSS,
TJ £ 150°C

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/ Data and specifications subject to change without notice. 5/99
8 www.irf.com

You might also like