239 results sorted by ID
Possible spell-corrected query: benchmarks
Trilithium: Efficient and Universally Composable Distributed ML-DSA Signing
Antonín Dufka, Semjon Kravtšenko, Peeter Laud, Nikita Snetkov
Cryptographic protocols
In this paper, we present Trilithium: a protocol for distributed key generation and signing compliant with FIPS 204 (ML-DSA). Our protocol allows two parties, "server" and "phone" with assistance of correlated randomness provider (CRP) to produce a standard ML-DSA signature. We prove our protocol to be secure against a malicious server or phone in the universal composability (UC) model, introducing some novel techniques to argue the security of two-party secure computation protocols with...
SoK: FHE-Friendly Symmetric Ciphers and Transciphering
Chao Niu, Benqiang Wei, Zhicong Huang, Zhaomin Yang, Cheng Hong, Meiqin Wang, Tao Wei
Public-key cryptography
Fully Homomorphic Encryption (FHE) enables computation on encrypted data without decryption, demonstrating significant potential for privacy-preserving applications.
However, FHE faces several challenges, one of which is the significant plaintext-to-ciphertext expansion ratio, resulting in high communication overhead between client and server. The transciphering technique can effectively address this problem by first encrypting data with a space-efficient symmetric cipher, then converting...
$\mathsf{emGraph}$: Efficient Multiparty Secure Graph Computation
Siddharth Kapoor, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal
Applications
Secure graph computation enables computing on graphs while hiding the graph topology as well as the associated node/edge data. This facilitates collaborative analysis among multiple data owners, who may only hold a private partial view of the global graph. Several works address this problem using the technique of secure multiparty computation (MPC) in the presence of 2 or 3 parties. However, when moving to the multiparty setting, as required for collaborative analysis among multiple data...
Buffalo: A Practical Secure Aggregation Protocol for Asynchronous Federated Learning
Riccardo Taiello, Clémentine Gritti, Melek Önen, Marco Lorenzi
Cryptographic protocols
Federated Learning (FL) has become a crucial framework for collaboratively training Machine Learning (ML) models while ensuring data privacy. Traditional synchronous FL approaches, however, suffer from delays caused by slower clients (called stragglers), which hinder the overall training process.
Specifically, in a synchronous setting, model aggregation happens once all the intended clients have submitted their local updates to the server. To address these inefficiencies, Buffered...
Breaking and Fixing Content-Defined Chunking
Kien Tuong Truong, Simon-Philipp Merz, Matteo Scarlata, Felix Günther, Kenneth G. Paterson
Applications
Content-defined chunking (CDC) algorithms split streams of data into smaller blocks, called chunks, in a way that preserves chunk boundaries when the data is partially changed. CDC is ubiquitous in applications that deduplicate data such as backup solutions, software patching systems, and file hosting platforms. Much like compression, CDC can introduce leakage when combined with encryption: fingerprinting attacks can exploit chunk length patterns to infer information about the data.
To...
Multi-Party Computation in Corporate Data Processing: Legal and Technical Insights
Sebastian Becker, Christoph Bösch, Benjamin Hettwer, Thomas Hoeren, Merlin Rombach, Sven Trieflinger, Hossein Yalame
Foundations
This paper examines the deployment of Multi-Party Computation (MPC) in corporate data processing environments, focusing on its legal and technical implications under the European Union’s General Data Protection Regulation (GDPR). By combining expertise in cryptography and legal analysis, we address critical questions necessary for assessing the suitability of MPC for real-world applications. Our legal evaluation explores the conditions under which MPC qualifies as an anonymizing approach...
MIDAS: an End-to-end CAD Framework for Automating Combinational Logic Locking
Akashdeep Saha, Siddhartha Chowdhury, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay
Implementation
Logic locking has surfaced as a notable safeguard
against diverse hazards that pose a risk to the integrated circuit
(IC) supply chain. Existing literature on logic locking largely
encompasses the art of proposing new constructions, on the one
hand, and unearthing weaknesses in such algorithms on the
other. Somehow, in this race of make and break, the stress on
automation of adopting such techniques on real-life circuits has
been rather limited. For the first time, we present a...
Private Computation on Common Fuzzy Records
Kyoohyung Han, Seongkwang Kim, Yongha Son
Cryptographic protocols
Private computation on common records refers to analyze data from two databases containing shared records without revealing personal information. As a basic requirement for private computation, the databases involved essentially need to be aligned by a common identification system. However, it is hard to expect such common identifiers in real world scenario. For this reason, multiple quasi-identifiers can be used to identify common records. As some quasi-identifiers might be missing or have...
Garblet: Multi-party Computation for Protecting Chiplet-based Systems
Mohammad Hashemi, Shahin Tajik, Fatemeh Ganji
Applications
The introduction of shared computation architectures assembled from
heterogeneous chiplets introduces new security threats. Due to the shared logical and physical resources, an untrusted chiplet can act maliciously to surreptitiously probe the data communication between chiplets or sense the computation shared between them. This paper presents Garblet, the first framework to leverage the flexibility offered by chiplet technology and Garbled Circuits (GC)-based MPC to enable efficient,...
SNARKs for Stateful Computations on Authenticated Data
Johannes Reinhart, Erik-Oliver Blass, Bjoern Annighoefer
Cryptographic protocols
We present a new generalization of (zk-)SNARKs combining two additional features at the same time. Besides the verification of correct computation, our new SNARKs also allow, first, the verification of input data authenticity. Specifically, a verifier can confirm that the input to the computation originated from a trusted source. Second, our SNARKs support verification of stateful computations across multiple rounds, ensuring that the output of the current round correctly depends on the...
HiAE: A High-Throughput Authenticated Encryption Algorithm for Cross-Platform Efficiency
Han Chen, Tao Huang, Phuong Pham, Shuang Wu
Secret-key cryptography
This paper addresses the critical challenges in designing cryptographic algorithms that achieve both high performance and cross-platform efficiency on ARM and x86 architectures, catering to the demanding requirements of next-generation communication systems, such as 6G and GPU/NPU interconnections. We propose HiAE, a high-throughput authenticated encryption algorithm optimized for performance exceeding 100 Gbps and designed to meet the stringent security requirements of future communication...
Bootstrapping with RMFE for Fully Homomorphic Encryption
Khin Mi Mi Aung, Enhui Lim, Jun Jie Sim, Benjamin Hong Meng Tan, Huaxiong Wang
Applications
There is a heavy preference towards instantiating BGV and BFV homomorphic encryption schemes where the cyclotomic order $m$ is a power of two, as this admits highly efficient fast Fourier transformations. Field Instruction Multiple Data (FIMD) was introduced to increase packing capacity in the case of small primes and improve amortised performance, using reverse multiplication-friendly embeddings (RMFEs) to encode more data into each SIMD slot. However, FIMD currently does not admit...
Committing Authenticated Encryption: Generic Transforms with Hash Functions
Shan Chen, Vukašin Karadžić
Secret-key cryptography
Recent applications and attacks have highlighted the need for authenticated encryption (AE) schemes to achieve the so-called committing security beyond privacy and authenticity. As a result, several generic solutions have been proposed to transform a non-committing AE scheme to a committing one, for both basic unique-nonce security and advanced misuse-resistant (MR) security. We observe that all existing practical generic transforms are subject to at least one of the following limitations:...
Practical Circuit Privacy/Sanitization for TFHE
Intak Hwang, Seonhong Min, Yongsoo Song
Public-key cryptography
Fully homomorphic encryption (FHE) enables the computation of arbitrary circuits over encrypted data. A widespread application of FHE is a simple two-party computation (2PC) protocol, where the server evaluates a circuit over the client's encrypted data and its private inputs. However, while the security of FHE guarantees that the client's data is protected from the server, there is no inherent support for the privacy of the server's input and the circuit.
One effective solution to this...
BulletCT: Towards More Scalable Ring Confidential Transactions With Transparent Setup
Nan Wang, Qianhui Wang, Dongxi Liu, Muhammed F. Esgin, Alsharif Abuadbba
Cryptographic protocols
RingCT signatures are essential components of Ring Confidential Transaction (RingCT) schemes on blockchain platforms, enabling anonymous transaction spending and significantly impacting the scalability of these schemes. This paper makes two primary contributions:
We provide the first thorough analysis of a recently developed Any-out-of-N proof in the discrete logarithm (DLOG) setting and the associated RingCT scheme, introduced by ZGSX23 (S&P '23). The proof conceals the number of the...
dCTIDH: Fast & Deterministic CTIDH
Fabio Campos, Andreas Hellenbrand, Michael Meyer, Krijn Reijnders
Public-key cryptography
This paper presents dCTIDH, a CSIDH implementation that combines two recent developments into a novel state-of-the-art deterministic implementation. We combine the approach of deterministic variants of CSIDH with the batching strategy of CTIDH, which shows that the full potential of this key space has not yet been explored. This high-level adjustment in itself leads to a significant speed-up. To achieve an effective deterministic evaluation in constant time, we introduce Wombats, a new...
Fast, private and regulated payments in asynchronous networks
Maxence Brugeres, Victor Languille, Petr Kuznetsov, Hamza Zarfaoui
Applications
We propose a decentralized asset-transfer system that enjoys full privacy: no party can learn the details of a transaction, except for its issuer and its recipient. Furthermore, the recipient is only aware of the amount of the transaction. Our system does not rely on consensus or synchrony assumptions, and therefore, it is responsive, since it runs at the actual network speed. Under the hood, every transaction creates a consumable coin equipped with a non-interactive zero-knowledge proof...
Further Improvements in AES Execution over TFHE: Towards Breaking the 1 sec Barrier
Sonia Belaïd, Nicolas Bon, Aymen Boudguiga, Renaud Sirdey, Daphné Trama, Nicolas Ye
Implementation
Making the most of TFHE advanced capabilities such as programmable or circuit bootstrapping and their generalizations for manipulating data larger than the native plaintext domain of the scheme is a very active line of research. In this context, AES is a particularly interesting benchmark, as an example of a nontrivial algorithm which has eluded "practical" FHE execution performances for years, as well as the fact that it will most likely be selected by NIST as a flagship reference in its...
XBOOT: Free-XOR Gates for CKKS with Applications to Transciphering
Chao Niu, Zhicong Huang, Zhaomin Yang, Yi Chen, Liang Kong, Cheng Hong, Tao Wei
Applications
The CKKS scheme is traditionally recognized for approximate homomorphic encryption of real numbers, but BLEACH (Drucker et al., JoC 2024) extends its capabilities to handle exact computations on binary or small integer numbers.
Despite this advancement, BLEACH's approach of simulating XOR gates via $(a-b)^2$ incurs one multiplication per gate, which is computationally expensive in homomorphic encryption. To this end, we introduce XBOOT, a new framework built upon BLEACH's blueprint but...
Separating Broadcast from Cheater Identification
Yashvanth Kondi, Divya Ravi
Cryptographic protocols
Secure Multiparty Computation (MPC) protocols that achieve Identifiable Abort (IA) guarantee honest parties that in the event that they are denied output, they will be notified of the identity of at least one corrupt party responsible for the abort. Cheater identification provides recourse in the event of a protocol failure, and in some cases can even be desired over Guaranteed Output Delivery. However, protocols in the literature typically make use of broadcast as a necessary tool in...
Quantum-resistant secret handshakes with dynamic joining, leaving, and banishment: GCD revisited
Olivier Blazy, Emmanuel Conchon, Philippe Gaborit, Philippe Krejci, Cristina Onete
Cryptographic protocols
Secret handshakes, introduced by Balfanz et al. [3], allow users associated with various groups to determine if they share a common affiliation. These protocols ensure crucial properties such as fairness (all participants learn the result simultaneously), affiliation privacy (failed handshakes reveal no affiliation information), and result-hiding (even participants within a shared group cannot infer outcomes of unrelated handshakes). Over time, various secret-handshake schemes have been...
SPY-PMU: Side-Channel Profiling of Your Performance Monitoring Unit to Leak Remote User Activity
Md Kawser Bepary, Arunabho Basu, Sajeed Mohammad, Rakibul Hassan, Farimah Farahmandi, Mark Tehranipoor
Attacks and cryptanalysis
The Performance Monitoring Unit (PMU), a standard feature in all modern computing systems, presents significant security risks by leaking sensitive user activities through microarchitectural event data. This work demonstrates the feasibility of remote side-channel attacks leveraging PMU data, revealing vulnerabilities that compromise user privacy and enable covert surveillance without physical access to the target machine. By analyzing the PMU feature space, we create distinct...
Simulation Secure Multi-Input Quadratic Functional Encryption: Applications to Differential Privacy
Ferran Alborch Escobar, Sébastien Canard, Fabien Laguillaumie
Applications
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
Carousel: Fully Homomorphic Encryption from Slot Blind Rotation Technique
Seonhong Min, Yongsoo Song
Public-key cryptography
Fully Homomorphic Encryption (FHE) enables secure computation of functions on ciphertexts without requiring decryption. Specifically, AP-like HE schemes exploit an intrinsic bootstrapping method called blind rotation. In blind rotation, a look-up table is homomorphically evaluated on the input ciphertext through the iterative multiplication of monomials. However, the algebraic structure of the multiplicative group of monomials imposes certain limitations on the input and output plaintext...
ZK-SNARKs for Ballot Validity: A Feasibility Study
Nicolas Huber, Ralf Kuesters, Julian Liedtke, Daniel Rausch
Cryptographic protocols
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
Fast Two-party Threshold ECDSA with Proactive Security
Brian Koziel, S. Dov Gordon, Craig Gentry
Cryptographic protocols
We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme of Lindell and improving his scheme in several ways.
ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the signing function. Lindell's scheme uses Paillier encryption to encrypt one party's key share and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero knowledge proofs over the Paillier group during the signing process. However,...
Classic McEliece Hardware Implementation with Enhanced Side-Channel and Fault Resistance
Peizhou Gan, Prasanna Ravi, Kamal Raj, Anubhab Baksi, Anupam Chattopadhyay
Implementation
In this work, we propose the first hardware implementation of Classic McEliece protected with countermeasures against Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA). Classic Mceliece is one of the leading candidates for Key Encapsulation Mechanisms (KEMs) in the ongoing round 4 of the NIST standardization process for post-quantum cryptography. In particular, we implement a range of generic countermeasures against SCA and FIA, particularly protected the vulnerable operations...
SoK: On the Physical Security of UOV-based Signature Schemes
Thomas Aulbach, Fabio Campos, Juliane Krämer
Attacks and cryptanalysis
Multivariate cryptography currently centres mostly around UOV-based signature schemes: All multivariate round 2 candidates in the selection process for additional digital signatures by NIST are either UOV itself or close variations of it: MAYO, QR-UOV, SNOVA, and UOV. Also schemes which have been in the focus of the multivariate research community, but are broken by now - like Rainbow and LUOV - are based on UOV. Both UOV and the schemes based on it have been frequently analyzed regarding...
$\mathsf{Graphiti}$: Secure Graph Computation Made More Scalable
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal
Applications
Privacy-preserving graph analysis allows performing computations on graphs that store sensitive information while ensuring all the information about the topology of the graph, as well as data associated with the nodes and edges, remains hidden. The current work addresses this problem by designing a highly scalable framework, $\mathsf{Graphiti}$, that allows securely realising any graph algorithm. $\mathsf{Graphiti}$ relies on the technique of secure multiparty computation (MPC) to design a...
The SMAesH dataset
Gaëtan Cassiers, Charles Momin
Implementation
Datasets of side-channel leakage measurements are widely used in research to develop and benchmark side-channel attack and evaluation methodologies. Compared to using custom and/or one-off datasets, widely-used and publicly available datasets improve research reproducibility and comparability. Further, performing high-quality measurements requires specific equipment and skills, while also taking a significant amount of time. Therefore, using publicly available datasets lowers the barriers...
HierNet: A Hierarchical Deep Learning Model for SCA on Long Traces
Suvadeep Hajra, Debdeep Mukhopadhyay
Attacks and cryptanalysis
In Side-Channel Analysis (SCA), statistical or machine learning methods are employed to extract secret information from power or electromagnetic (EM) traces. In many practical scenarios, raw power/EM traces can span hundreds of thousands of features, with relevant leakages occurring over only a few small segments. Consequently, existing SCAs often select a small number of features before launching the attack, making their success highly dependent on the feasibility of feature selection....
A Waterlog for Detecting and Tracing Synthetic Text from Large Language Models
Brennon Brimhall, Orion Weller, Matthew Green, Ian Miers
Applications
We propose waterlogs, a new direction to detect and trace synthetic text outputs from large language models based on transparency logs. Waterlogs offer major categorical advantages over watermarking: it (1) allows for the inclusion of arbitrary metadata to facilitate tracing, (2) is publicly verifiable by third parties, and (3) operates in a distributed manner while remaining robust and efficient.
Waterlogs rely on a verifiable Hamming distance index, a novel data structure that we...
KpqClean Ver2: Comprehensive Benchmarking and Analysis of KpqC Algorithm Round 2 Submissions
Minjoo Sim, Siwoo Eum, Gyeongju Song, Minwoo Lee, Sangwon Kim, Minho Song, Hwajeong Seo
Implementation
From 2022, Korean Post-Quantum Cryptography (KpqC) Competition has been held. Among the Round 1 algorithms of KpqC, eight algorithms were selected in December 2023. To evaluate the algorithms, the performance is critical factor. However, the performance of the algorithms submitted to KpqC was evaluated in different development environments. Consequently, it is difficult to compare the performance of each algorithm fairly, because the measurements were not conducted in the identical...
AES-based CCR Hash with High Security and Its Application to Zero-Knowledge Proofs
Hongrui Cui, Chun Guo, Xiao Wang, Chenkai Weng, Kang Yang, Yu Yu
Cryptographic protocols
The recent VOLE-based interactive zero-knowledge (VOLE-ZK) protocols along with non-interactive zero-knowledge (NIZK) proofs based on MPC-in-the-Head (MPCitH) and VOLE-in-the-Head (VOLEitH) extensively utilize the commitment schemes, which adopt a circular correlation robust (CCR) hash function as the core primitive. Nevertheless, the state-of-the-art CCR hash construction by Guo et al. (S&P'20), building from random permutations, can only provide 128-bit security, when it is instantiated...
zk-promises: Anonymous Moderation, Reputation, and Blocking from Anonymous Credentials with Callbacks
Maurice Shih, Michael Rosenberg, Hari Kailad, Ian Miers
Applications
Anonymity is essential for free speech and expressing dissent, but platform moderators need ways to police bad actors. For anonymous clients, this may involve banning their accounts, docking their reputation, or updating their state in a complex access control scheme. Frequently, these operations happen asynchronously when some violation, e.g., a forum post, is found well after the offending action occurred. Malicious clients, naturally, wish to evade this asynchronous negative feedback....
AutoHoG: Automating Homomorphic Gate Design for Large-Scale Logic Circuit Evaluation
Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, Song Bian
Applications
Recently, an emerging branch of research in the field of fully homomorphic encryption (FHE) attracts growing attention, where optimizations are carried out in developing fast and efficient homomorphic logic circuits. While existing works have pointed out that compound homomorphic gates can be constructed without incurring significant computational overheads, the exact theory and mechanism of homomorphic gate design have not yet been explored. In this work, we propose AutoHoG, an automated...
Optimized Computation of the Jacobi Symbol
Jonas Lindstrøm, Kostas Kryptos Chalkias
Implementation
The Jacobi Symbol is an essential primitive in cryptographic applications such as primality testing, integer factorization, and various encryption schemes. By exploring the interdependencies among modular reductions within the algorithmic loop, we have developed a refined method that significantly enhances computational efficiency. Our optimized algorithm, implemented in the Rust language, achieves a performance increase of 72% over conventional textbook methods and is twice as fast as the...
MaSTer: Maliciously Secure Truncation for Replicated Secret Sharing without Pre-Processing
Martin Zbudila, Erik Pohle, Aysajan Abidin, Bart Preneel
Cryptographic protocols
Secure multi-party computation (MPC) in a three-party, honest majority scenario is currently the state-of-the-art for running machine learning algorithms in a privacy-preserving manner. For efficiency reasons, fixed-point arithmetic is widely used to approximate computation over decimal numbers. After multiplication in fixed-point arithmetic, truncation is required to keep the result's precision. In this paper, we present an efficient three-party truncation protocol secure in the presence of...
Attribute-Based Threshold Issuance Anonymous Counting Tokens and Its Application to Sybil-Resistant Self-Sovereign Identity
Behzad Abdolmaleki, Antonis Michalas, Reyhaneh Rabaninejad, Sebastian Ramacher, Daniel Slamanig
Cryptographic protocols
Self-sovereign identity (SSI) systems empower users to (anonymously) establish and verify their identity when accessing both digital and real-world resources, emerging as a promising privacy-preserving solution for user-centric identity management. Recent work by Maram et al. proposes the privacy-preserving Sybil-resistant decentralized SSI system CanDID (IEEE S&P 2021). While this is an important step, notable shortcomings undermine its efficacy. The two most significant among them being...
Grafting: Complementing RNS in CKKS
Jung Hee Cheon, Hyeongmin Choe, Minsik Kang, Jaehyung Kim, Seonghak Kim, Johannes Mono, Taeyeong Noh
Implementation
The Residue Number System (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) scheme (SAC 2018) has been widely implemented due to its computational efficiency. However, state-of-the-art implementations fail to use the machine word size tightly, creating inefficiency. As rescaling moduli are chosen to be approximately equal to the scaling factors, the machine's computation budget can be wasted when the scaling factors are not close to the machine's word size.
To solve this problem, we present...
Dishonest Majority Multi-Verifier Zero-Knowledge Proofs for Any Constant Fraction of Corrupted Verifiers
Daniel Escudero, Antigoni Polychroniadou, Yifan Song, Chenkai Weng
Cryptographic protocols
In this work we study the efficiency of Zero-Knowledge (ZK) arguments of knowledge, particularly exploring Multi-Verifier ZK (MVZK) protocols as a midway point between Non-Interactive ZK and Designated-Verifier ZK, offering versatile applications across various domains. We introduce a new MVZK protocol designed for the preprocessing model, allowing any constant fraction of verifiers to be corrupted, potentially colluding with the prover. Our contributions include the first MVZK over rings....
A Note on (2, 2)-isogenies via Theta Coordinates
Jianming Lin, Saiyu Wang, Chang-An Zhao
Implementation
In this paper, we revisit the algorithm for computing chains of $(2, 2)$-isogenies between products of elliptic curves via theta coordinates proposed by Dartois et al. For each fundamental block of this algorithm, we provide a explicit inversion-free version. Besides, we exploit a novel technique of $x$-only ladder to speed up the computation of gluing isogeny. Finally, we present a mixed optimal strategy, which combines the inversion-elimination tool with the original methods together...
Loquat: A SNARK-Friendly Post-Quantum Signature based on the Legendre PRF with Applications in Ring and Aggregate Signatures
Xinyu Zhang, Ron Steinfeld, Muhammed F. Esgin, Joseph K. Liu, Dongxi Liu, Sushmita Ruj
Cryptographic protocols
We design and implement a novel post-quantum signature scheme based on the Legendre PRF, named Loquat. Prior to this work, efficient approaches for constructing post-quantum signatures with comparable security assumptions mainly used the MPC-in-the-head paradigm or hash trees. Our method departs from these paradigms and, notably, is SNARK-friendly, a feature not commonly found in earlier designs. Loquat requires significantly fewer computational operations for verification than other...
Novel approximations of elementary functions in zero-knowledge proofs
Kaarel August Kurik, Peeter Laud
Cryptographic protocols
In this paper, we study the computation of complex mathematical functions in statements executed on top of zero-knowledge proofs (ZKP); these functions may include roots, exponentials and logarithms, trigonometry etc. While existing approaches to these functions in privacy-preserving computations (and sometimes also in general-purpose processors) have relied on polynomial approximation, more powerful methods are available for ZKP. In this paper, we note that in ZKP, all algebraic functions...
INDIANA - Verifying (Random) Probing Security through Indistinguishability Analysis
Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich
Implementation
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process.
This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice
Barbara Gigerl, Florian Mendel, Martin Schläffer, Robert Primas
Implementation
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography.
Our implementations target theoretical and practical security against second-order power analysis attacks.
First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness.
The extension...
$\mathsf{OPA}$: One-shot Private Aggregation with Single Client Interaction and its Applications to Federated Learning
Harish Karthikeyan, Antigoni Polychroniadou
Applications
Our work aims to minimize interaction in secure computation due to the high cost and challenges associated with communication rounds, particularly in scenarios with many clients. In this work, we revisit the problem of secure aggregation in the single-server setting where a single evaluation server can securely aggregate client-held individual inputs. Our key contribution is the introduction of One-shot Private Aggregation ($\mathsf{OPA}$) where clients speak only once (or even choose not to...
Chocobo: Creating Homomorphic Circuit Operating with Functional Bootstrapping in basis B
Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey
Applications
The TFHE cryptosystem only supports small plaintext space, up to 5 bits with usual parameters. However, one solution to circumvent this limitation is to decompose input messages into a basis B over multiple ciphertexts. In this work, we introduce B-gates, an extension of logic gates to non binary bases, to compute base B logic circuit. The flexibility introduced by our approach improves the speed performance over previous approaches such as the so called tree-based method which requires an...
A post-quantum Distributed OPRF from the Legendre PRF
Novak Kaluderovic, Nan Cheng, Katerina Mitrokotsa
Cryptographic protocols
A distributed OPRF allows a client to evaluate a pseudorandom function on an input chosen by the client using a distributed key shared among multiple servers. This primitive ensures that the servers learn nothing about the input nor the output, and the client learns nothing about the key.
We present a post-quantum OPRF in a distributed server setting, which can be computed in a single round of communication between a client and the servers.
The only server-to-server communication occurs...
EFFLUX-F2: A High Performance Hardware Security Evaluation Board
Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya
Attacks and cryptanalysis
Side-channel analysis has become a cornerstone of modern hardware security evaluation for cryptographic accelerators. Recently, these techniques are also being applied in fields such as AI and Machine Learning to investigate possible threats. Security evaluations are reliant on standard test setups including commercial and open-source evaluation boards such as, SASEBO/SAKURA and ChipWhisperer. However, with shrinking design footprints and overlapping tasks on the same platforms, the quality...
PerfOMR: Oblivious Message Retrieval with Reduced Communication and Computation
Zeyu Liu, Eran Tromer, Yunhao Wang
Cryptographic protocols
Anonymous message delivery, as in privacy-preserving blockchain and private messaging applications, needs to protect recipient metadata: eavesdroppers should not be able to link messages to their recipients. This raises the question: how can untrusted servers assist in delivering the pertinent messages to each recipient, without learning which messages are addressed to whom?
Recent work constructed Oblivious Message Retrieval (OMR) protocols that outsource the message detection and...
PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs
Décio Luiz Gazzoni Filho, Guilherme Brandão, Gora Adj, Arwa Alblooshi, Isaac A. Canales-Martínez, Jorge Chávez-Saab, Julio López
Implementation
As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...
Faster BGV Bootstrapping for Power-of-Two Cyclotomics through Homomorphic NTT
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
Public-key cryptography
Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the...
Logstar: Efficient Linear* Time Secure Merge
Suvradip Chakraborty, Stanislav Peceny, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols
Secure merge considers the problem of combining two sorted lists into a single sorted secret-shared list. Merge is a fundamental building block for many real-world applications. For example, secure merge can implement a large number of SQL-like database joins, which are essential for almost any data processing task such as privacy-preserving fraud detection, ad conversion rates, data deduplication, and many more.
We present two constructions with communication bandwidth and rounds...
Scalable Collaborative zk-SNARK: Fully Distributed Proof Generation and Malicious Security
Xuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, Xiaohu Yang
Cryptographic protocols
The notion of collaborative zk-SNARK is introduced by Ozdemir and Boneh (USENIX 2022), which allows multiple parties to jointly create a zk-SNARK proof over distributed secrets (also known as the witness).
This approach ensures the privacy of the witness, as no corrupted servers involved in the proof generation can learn anything about the honest servers' witness.
Later, Garg et al. continued the study, focusing on how to achieve faster proof generation (USENIX 2023).
However, their...
Accelerating BGV Bootstrapping for Large $p$ Using Null Polynomials Over $\mathbb{Z}_{p^e}$
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
Public-key cryptography
The BGV scheme is one of the most popular FHE schemes for computing homomorphic integer arithmetic. The bootstrapping technique of BGV is necessary to evaluate arbitrarily deep circuits homomorphically. However, the BGV bootstrapping performs poorly for large plaintext prime $p$ due to its digit removal procedure exhibiting a computational complexity of at least $O(\sqrt{p})$. In this paper, we propose optimizations for the digit removal procedure with large $p$ by leveraging the properties...
Simpler and Faster BFV Bootstrapping for Arbitrary Plaintext Modulus from CKKS
Jaehyung Kim, Jinyeong Seo, Yongsoo Song
Public-key cryptography
Bootstrapping is currently the only known method for constructing fully homomorphic encryptions.
In the BFV scheme specifically, bootstrapping aims to reduce the error of a ciphertext while preserving the encrypted plaintext.
The existing BFV bootstrapping methods follow the same pipeline, relying on the evaluation of a digit extraction polynomial to annihilate the error located in the least significant digits.
However, due to its strong dependence on performance, bootstrapping could only...
OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element
Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain, Aleksei Udovenko
Applications
Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice.
This work...
Computational Differential Privacy for Encrypted Databases Supporting Linear Queries
Ferran Alborch Escobar, Sébastien Canard, Fabien Laguillaumie, Duong Hieu Phan
Applications
Differential privacy is a fundamental concept for protecting individual privacy in databases while enabling data analysis. Conceptually, it is assumed that the adversary has no direct access to the database, and therefore, encryption is not necessary. However, with the emergence of cloud computing and the «on-cloud» storage of vast databases potentially contributed by multiple parties, it is becoming increasingly necessary to consider the possibility of the adversary having (at least...
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
Practical Two-party Computational Differential Privacy with Active Security
Fredrik Meisingseth, Christian Rechberger, Fabian Schmid
Cryptographic protocols
In this work we revisit the problem of using general-purpose MPC schemes to emulate the trusted dataholder in differential privacy (DP), to achieve the same accuracy but without the need to trust one single dataholder. In particular, we consider the two-party model where two computational parties (or dataholders), each with their own dataset, wish to compute a canonical DP mechanism on their combined data and to do so with active security. We start by remarking that available definitions of...
EstraNet: An Efficient Shift-Invariant Transformer Network for Side-Channel Analysis
Suvadeep Hajra, Siddhartha Chowdhury, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter, and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced...
Entrada to Secure Graph Convolutional Networks
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal
Cryptographic protocols
Graph convolutional networks (GCNs) are gaining popularity due to their powerful modelling capabilities. However, guaranteeing privacy is an issue when evaluating on inputs that contain users’ sensitive information such as financial transactions, medical records, etc. To address such privacy concerns, we design Entrada, a framework for securely evaluating GCNs that relies on the technique of secure multiparty computation (MPC). For efficiency and accuracy reasons, Entrada builds over the MPC...
Hintless Single-Server Private Information Retrieval
Baiyu Li, Daniele Micciancio, Mariana Raykova, Mark Schultz-Wu
Applications
We present two new constructions for private information retrieval (PIR) in the classical setting where the clients do not need to do any preprocessing or store any database dependent information, and the server does not need to store any client-dependent information.
Our first construction (HintlessPIR) eliminates the client preprocessing step from the recent LWE-based SimplePIR (Henzinger et. al., USENIX Security 2023) by outsourcing the "hint" related computation to the server,...
Aurora: Leaderless State-Machine Replication with High Throughput
Hao Lu, Jian Liu, Kui Ren
Cryptographic protocols
State-machine replication (SMR) allows a {deterministic} state machine to be replicated across a set of replicas and handle clients' requests as a single machine. Most existing SMR protocols are leader-based requiring a leader to order requests and coordinate the protocol. This design places a disproportionately high load on the leader, inevitably impairing the scalability. If the leader fails, a complex and bug-prone fail-over protocol is needed to switch to a new leader. An adversary can...
Private Web Search with Tiptoe
Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, Nickolai Zeldovich
Cryptographic protocols
Tiptoe is a private web search engine that allows clients to search over hundreds of millions of documents, while revealing no information about their search query to the search engine’s servers. Tiptoe’s privacy guarantee is based on cryptography alone; it does not require hardware enclaves or non-colluding servers. Tiptoe uses semantic embeddings to reduce the problem of private full-text search to private nearest-neighbor search. Then, Tiptoe implements private nearest-neighbor search...
HELM: Navigating Homomorphic Encryption through Gates and Lookup Tables
Charles Gouert, Dimitris Mouris, Nektarios Georgios Tsoutsos
Applications
As cloud computing continues to gain widespread adoption, safeguarding the confidentiality of data entrusted to third-party cloud service providers becomes a critical concern. While traditional encryption methods offer protection for data at rest and in transit, they fall short when it comes to where it matters the most, i.e., during data processing.
To address this limitation, we present HELM, a framework for privacy-preserving data processing using homomorphic encryption. HELM...
Let's Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation
Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, Bart Preneel
Secret-key cryptography
IoT devices collect privacy-sensitive data, e.g., in smart grids or in medical devices, and send this data to cloud servers for further processing. In order to ensure confidentiality as well as authenticity of the sensor data in the untrusted cloud environment, we consider a transciphering scenario between embedded IoT devices and multiple cloud servers that perform secure multi-party computation (MPC). Concretely, the IoT devices encrypt their data with a lightweight symmetric cipher and...
Optimizing HE operations via Level-aware Key-switching Framework
Intak Hwang, Jinyeong Seo, Yongsoo Song
Foundations
In lattice-based Homomorphic Encryption (HE) schemes, the key-switching procedure is a core building block of non-linear operations but also a major performance bottleneck.
The computational complexity of the operation is primarily determined by the so-called gadget decomposition, which transforms a ciphertext entry into a tuple of small polynomials before being multiplied with the corresponding evaluation key.
However, the previous studies such as Halevi et al. (CT-RSA 2019) and Han and...
Waffle: An Online Oblivious Datastore for Protecting Data Access Patterns
Sujaya Maiyya, Sharath Vemula, Divyakant Agrawal, Amr El Abbadi, Florian Kerschbaum
Applications
We present Waffle, a datastore that protects an application’s data access patterns from a passive persistent adversary. Waffle achieves this without prior knowledge of the input data access distribution, making it the first of its kind to adaptively handle input sequences under a passive persistent adversary. Waffle maintains a constant bandwidth and client-side storage overhead, which can be adjusted to suit the application owner’s preferences. This flexibility allows the owner to fine-tune...
A Relational Credential System from $q$-SDH-based Graph Signatures
Syh-Yuan Tan, Ioannis Sfyrakis, Thomas Gross
Cryptographic protocols
An attribute-based credential system enables users to prove possession of a credential and statements over certified attributes to verifiers in zero-knowledge while maintaining anonymity and unlinkability. In a relational anonymous credential system, users can further prove their relationship to other entities in their social graph, such as position in an organizational hierarchy or friends-of-friends status in an online social network graph, while protecting their own privacy and that of...
Evaluating KpqC Algorithm Submissions: Balanced and Clean Benchmarking Approach
Hyeokdong Kwon, Minjoo Sim, Gyeongju Song, Minwoo Lee, Hwajeong Seo
Implementation
In 2022, a Korean domestic Post Quantum Cryptography contest called KpqC held, and the standard for Post Quantum Cryptography is set to be selected in 2024. In Round 1 of this competition, 16 algorithms have advanced and are competing. Algorithms submitted to KpqC introduce their performance, but direct performance comparison is difficult because all algorithms were measured in different environments. In this paper, we present the benchmark results of all KpqC algorithms in a single...
CipherGPT: Secure Two-Party GPT Inference
Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, Kui Ren
Cryptographic protocols
ChatGPT is recognized as a significant revolution in the field of artificial intelligence, but it raises serious concerns regarding user privacy, as the data submitted by users may contain sensitive information. Existing solutions for secure inference face significant challenges in supporting GPT-like models due to the enormous number of model parameters and complex activation functions.
In this paper, we develop CipherGPT, the first framework for secure two-party GPT inference, building...
$\textsf{Asterisk}$: Super-fast MPC with a Friend
Banashri Karmakar, Nishat Koti, Arpita Patra, Sikhar Patranabis, Protik Paul, Divya Ravi
Cryptographic protocols
Secure multiparty computation$~$(MPC) enables privacy-preserving collaborative computation over sensitive data held by multiple mutually distrusting parties. Unfortunately, in the most natural setting where a majority of the parties are maliciously corrupt$~$(also called the $\textit{dishonest majority}$ setting), traditional MPC protocols incur high overheads and offer weaker security guarantees than are desirable for practical applications. In this paper, we explore the possibility of...
Faster coercion-resistant e-voting by encrypted sorting
Diego F. Aranha, Michele Battagliola, Lawrence Roy
Applications
Coercion-resistance is one of the most challenging security properties to achieve when designing an e-voting protocol. The JCJ voting scheme, proposed in 2005 by Juels, Catalano and Jakobsson, is one of the first voting systems where coercion-resistance was rigorously defined and achieved, making JCJ the benchmark for coercion-resistant protocols. Recently, the coercion-resistance definition proposed in JCJ has been disputed and improved by Cortier, Gaudry, and Yang. They identified a major...
Optimizations and Practicality of High-Security CSIDH
Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, Thom Wiggers
Public-key cryptography
In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks.
This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security...
An update on Keccak performance on ARMv7-M
Alexandre Adomnicai
Implementation
This note provides an update on Keccak performance on the ARMv7-M processors. Starting from the XKCP implementation, we have applied architecture-specific optimizations that have yielded a performance gain of up to 21% for the largest permutation instance.
BAKSHEESH: Similar Yet Different From GIFT
Anubhab Baksi, Jakub Breier, Anupam Chattopadhyay, Tomáš Gerlich, Sylvain Guilley, Naina Gupta, Takanori Isobe, Arpan Jati, Petr Jedlicka, Hyunjun Kim, Fukang Liu, Zdeněk Martinásek, Kosei Sakamoto, Hwajeong Seo, Rentaro Shiba, Ritu Ranjan Shrivastwa
Secret-key cryptography
We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular cipher GIFT-128 (CHES'17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks.
The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox with one or more non-trivial LS has not been used in a cipher construction until DEFAULT...
Benchmarking ZK-Circuits in Circom
Colin Steidtmann, Sanjay Gollapudi
Implementation
Zero-knowledge proofs and arithmetic circuits are essential building blocks in modern cryptography, but comparing their efficiency across different implementations can be challenging. In this paper, we address this issue by presenting comprehensive benchmarking results for a range of signature schemes and hash functions implemented in Circom, a popular circuit language that has not been extensively benchmarked before. Our benchmarking statistics include prover time, verifier time, and proof...
2023/610
Last updated: 2023-09-05
A Needle in the Haystack: Inspecting Circuit Layout to Identify Hardware Trojans
Xingyu Meng, Abhrajit Sengupta, Kanad Basu
Attacks and cryptanalysis
Distributed integrated circuit (IC) supply chain has resulted in a myriad of security vulnerabilities including that of hardware Trojan (HT). An HT can perform malicious modifications on an IC design with potentially disastrous consequences, such as leaking secret information in cryptographic applications or altering operation instructions in processors. Due to the emergence of outsourced fabrication, an untrusted foundry is considered the most potent adversary in introducing an HT. This can...
Pushing the Limit of Vectorized Polynomial Multiplication for NTRU Prime
Vincent Hwang
Implementation
We conduct a systematic examination of vector arithmetic for polynomial multiplications in software. Vector instruction sets and extensions typically specify a fixed number of registers, each holding a power-of-two number of bits, and support a wide variety of vector arithmetic on registers. Programmers then try to align mathematical computations with the vector arithmetic supported by the designated instruction set or extension. We delve into the intricacies of this process for polynomial...
Ruffle: Rapid 3-party shuffle protocols
Pranav Shriram A, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal, Somya Sangal
Cryptographic protocols
Secure shuffle is an important primitive that finds use in several applications such as secure electronic voting, oblivious RAMs, secure sorting, to name a few. For time-sensitive shuffle-based applications that demand a fast response time, it is essential to design a fast and efficient shuffle protocol. In this work, we design secure and fast shuffle protocols relying on the techniques of secure multiparty computation. We make several design choices that aid in achieving highly efficient...
Shield: Secure Allegation Escrow System with Stronger Guarantees
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal
Applications
The rising issues of harassment, exploitation, corruption, and other forms of abuse have led victims to seek comfort by acting in unison against common perpetrators (e.g., #MeToo movement). One way to curb these issues is to install allegation escrow systems that allow victims to report such incidents. The escrows are responsible for identifying victims of a common perpetrator and taking the necessary action to bring justice to them. However, users hesitate to participate in these systems...
Deep Neural Networks for Encrypted Inference with TFHE
Andrei Stoian, Jordan Frery, Roman Bredehoft, Luis Montero, Celia Kherfallah, Benoit Chevallier-Mames
Applications
Fully homomorphic encryption (FHE) is an encryption method that allows to perform computation on encrypted data, without decryption. FHE preserves the privacy of the users of online services that handle sensitive data, such as health data, biometrics, credit scores and other personal information. A common way to provide a valuable service on such data is through machine learning and, at this time, Neural Networks are the dominant machine learning model for unstructured data.
In this work...
Concretely Efficient Input Transformation Based Zero-Knowledge Argument System for Arbitrary Circuits
Frank Y.C. Lu
Cryptographic protocols
We introduce a new transparent zero-knowledge argument system based on the novel direct computation concept. Our protocol converts input parameters into a format that the verifier can process directly, so the output of the polynomial representing a circuit can be directly computed by the verifier, allowing us to significantly reduce the size of the polynomial evaluation needed to be evaluated.
In the default setting, the prover runtime cost for group exponentiation operations is only the...
Phantom: A CUDA-Accelerated Word-Wise Homomorphic Encryption Library
Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe Liu, Yunlei Zhao
Implementation
Homomorphic encryption (HE) is a promising technique for privacy-preserving computations, especially the word-wise HE schemes that allow batching. However, the high computational overhead hinders the deployment of HE in real-word applications. GPUs are often used to accelerate execution, but a comprehensive performance comparison of different schemes on the same platform is still missing.
In this work, we fill this gap by implementing three word-wise HE schemes BGV, BFV, and CKKS on GPU,...
Recommendation for a holistic secure embedded ISA extension
Florian Stolz, Marc Fyrbiak, Pascal Sasdrich, Tim Güneysu
Foundations
Embedded systems are a cornerstone of the ongoing digitization of our society, ranging from expanding markets around IoT and smart-X devices over to sensors in autonomous driving, medical equipment or critical infrastructures. Since a vast amount of embedded systems are safety-critical (e.g., due to their operation site), security is a necessity for their operation. However, unlike mobile, desktop, and server systems, where adversaries typically only act have remote access, embedded systems...
Time is money, friend! Timing Side-channel Attack against Garbled Circuit Constructions
Mohammad Hashemi, Domenic Forte, Fatemeh Ganji
Attacks and cryptanalysis
With the advent of secure function evaluation (SFE), distrustful parties can jointly compute on their private inputs without disclosing anything besides the results. Yao’s garbled circuit protocol has become an integral part of secure computation thanks to considerable efforts made to make it feasible, practical, and more efficient. These efforts have resulted in multiple optimizations on this primitive to enhance its performance by orders of magnitude over the last years. The advancement in...
Clipaha: A Scheme to Perform Password Stretching on the Client
Francisco Blas Izquierdo Riera, Magnus Almgren, Pablo Picazo-Sanchez, Christian Rohner
Applications
Password security relies heavily on the choice of password by the user but also on the one-way hash functions used to protect stored passwords. To compensate for the increased computing power of attackers, modern password hash functions like Argon2, have been made more complex in terms of computational power and memory requirements. Nowadays, the computation of such hash functions is performed usually by the server (or authenticator) instead of the client. Therefore, constrained Internet of...
Find Thy Neighbourhood: Privacy-Preserving Local Clustering
Pranav Shriram A, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal
Cryptographic protocols
Identifying a cluster around a seed node in a graph, termed local clustering, finds use in several applications, including fraud detection, targeted advertising, community detection, etc. However, performing local clustering is challenging when the graph is distributed among multiple data owners, which is further aggravated by the privacy concerns that arise in disclosing their view of the graph. This necessitates designing solutions for privacy-preserving local clustering and is addressed...
Efficient Threshold FHE for Privacy-Preserving Applications
Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chandan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee, Debdeep Mukhopadhyay
Cryptographic protocols
Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation over encrypted data while keeping the decryption key distributed across multiple parties at all times. ThFHE is a key enabler for threshold cryptography and, more generally, secure distributed computing. Existing ThFHE schemes relying on standard hardness assumptions, inherently require highly inefficient parameters and are unsuitable for practical deployment. In this paper, we take a novel approach towards making...
2022/1582
Last updated: 2023-04-12
FSMx-Ultra: Finite State Machine Extraction from Gate-Level Netlist for Security Assessment
Rasheed Kibria, Farimah Farahmandi, Mark Tehranipoor
Applications
Numerous security vulnerability assessment techniques
urge precise and fast finite state machines (FSMs) extraction
from the design under evaluation. Sequential logic locking,
watermark insertion, fault-injection assessment of a System-ona-
Chip (SoC) control flow, information leakage assessment, and
reverse engineering at gate-level abstraction, to name a few,
require precise FSM extraction from the synthesized netlist of the
design. Unfortunately, no reliable solutions are currently...
Vogue: Faster Computation of Private Heavy Hitters
Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal, Somya Sangal
Cryptographic protocols
Consider the problem of securely identifying τ -heavy hitters, where given a set of client inputs, the goal is to identify those inputs which are held by at least τ clients in a privacy-preserving manner. Towards this, we design a novel system Vogue, whose key highlight in comparison to prior works, is that it ensures complete privacy and does not leak any information other than the heavy hitters. In doing so, Vogue aims to achieve as efficient a solution as possible. To showcase these...
Less is more: refinement proofs for probabilistic proofs
Kunming Jiang, Devora Chait-Roth, Zachary DeStefano, Michael Walfish, Thomas Wies
Applications
There has been intense interest over the last decade in implementations of _probabilistic proofs_ (IPs, SNARKs, PCPs, and so on): protocols in which an untrusted party proves to a verifier that a given computation was executed properly, possibly in zero knowledge. Nevertheless, implementations still do not scale beyond small computations. A central source of overhead is the _front-end_: translating from the abstract computation to a set of equivalent arithmetic constraints. This paper...
2022/1462
Last updated: 2022-12-29
RTL-FSMx: Fast and Accurate Finite State Machine Extraction at the RTL for Security Applications
Rasheed Kibria, M. Sazadur Rahman, Farimah Farahmandi, Mark Tehranipoor
Applications
At the early stage of the design process, many security vulnerability assessment solutions require fast and precise extraction of the finite state machines (FSMs) present in the register-transfer level (RTL) description of the design. FSMs should be accurately extracted for watermark insertion, fault injection assessment of control paths in a system-on-chip (SoC), information leakage assessment, control-flow reverse engineering in RTL abstraction, logic obfuscation, etc. However, it is quite...
Towards Practical Multi-key TFHE: Parallelizable, Key-Compatible, Quasi-linear Complexity
Hyesun Kwak, Seonhong Min, Yongsoo Song
Public-key cryptography
Multi-key homomorphic encryption is a generalized notion of homomorphic encryption supporting arbitrary computation on ciphertexts, possibly encrypted under different keys. In this paper, we revisit the work of Chen, Chillotti and Song (ASIACRYPT 2019) and present yet another multi-key variant of the TFHE scheme.
The previous construction by Chen et al. involves a blind rotation procedure where the complexity of each iteration gradually increases as it continuously operates on ciphertexts...
Cryptographic Administration for Secure Group Messaging
David Balbás, Daniel Collins, Serge Vaudenay
Cryptographic protocols
Many real-world group messaging systems delegate group administration to the application level, failing to provide formal guarantees related to group membership. Taking a cryptographic approach to group administration can prevent both implementation and protocol design pitfalls that result in a loss of confidentiality and consistency for group members.
In this work, we introduce a cryptographic framework for the design of group messaging protocols that offer strong security guarantees for...
EdMSM: Multi-Scalar-Multiplication for SNARKs and Faster Montgomery multiplication
Youssef El Housni, Gautam Botrel
Implementation
The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this paper we give an overview of a variant of the Pippenger MSM algorithm together with a set of optimizations tailored for curves that admit a twisted Edwards form. We prove that this is the case for SNARK-friendly chains and cycles of elliptic curves, which are useful for recursive constructions. Our contribution is twofold: first, we optimize...
Risky Translations: Securing TLBs against Timing Side Channels
Florian Stolz, Jan Philipp Thoma, Pascal Sasdrich, Tim Güneysu
Foundations
Microarchitectural side-channel vulnerabilities in modern processors are known to be a powerful attack vector that can be utilized to bypass common security boundaries like memory isolation. As shown by recent variants of transient execution attacks related to Spectre and Meltdown, those side channels allow to leak data from the microarchitecture to the observable architectural state. The vast majority of attacks currently build on the cache-timing side channel, since it is easy to exploit...
Private Certifier Intersection
Bishakh Chandra Ghosh, Sikhar Patranabis, Dhinakaran Vinayagamurthy, Venkatraman Ramakrishna, Krishnasuri Narayanam, Sandip Chakraborty
Cryptographic protocols
We initiate the study of Private Certifier Intersection (PCI), which allows mutually distrusting parties to establish a trust basis for cross-validation of claims if they have one or more trust authorities (certifiers) in common. This is one of the essential requirements for verifiable presentations in Web 3.0, since it provides additional privacy without compromising on decentralization. A PCI protocol allows two or more parties holding certificates to identify a common set of certifiers...
In this paper, we present Trilithium: a protocol for distributed key generation and signing compliant with FIPS 204 (ML-DSA). Our protocol allows two parties, "server" and "phone" with assistance of correlated randomness provider (CRP) to produce a standard ML-DSA signature. We prove our protocol to be secure against a malicious server or phone in the universal composability (UC) model, introducing some novel techniques to argue the security of two-party secure computation protocols with...
Fully Homomorphic Encryption (FHE) enables computation on encrypted data without decryption, demonstrating significant potential for privacy-preserving applications. However, FHE faces several challenges, one of which is the significant plaintext-to-ciphertext expansion ratio, resulting in high communication overhead between client and server. The transciphering technique can effectively address this problem by first encrypting data with a space-efficient symmetric cipher, then converting...
Secure graph computation enables computing on graphs while hiding the graph topology as well as the associated node/edge data. This facilitates collaborative analysis among multiple data owners, who may only hold a private partial view of the global graph. Several works address this problem using the technique of secure multiparty computation (MPC) in the presence of 2 or 3 parties. However, when moving to the multiparty setting, as required for collaborative analysis among multiple data...
Federated Learning (FL) has become a crucial framework for collaboratively training Machine Learning (ML) models while ensuring data privacy. Traditional synchronous FL approaches, however, suffer from delays caused by slower clients (called stragglers), which hinder the overall training process. Specifically, in a synchronous setting, model aggregation happens once all the intended clients have submitted their local updates to the server. To address these inefficiencies, Buffered...
Content-defined chunking (CDC) algorithms split streams of data into smaller blocks, called chunks, in a way that preserves chunk boundaries when the data is partially changed. CDC is ubiquitous in applications that deduplicate data such as backup solutions, software patching systems, and file hosting platforms. Much like compression, CDC can introduce leakage when combined with encryption: fingerprinting attacks can exploit chunk length patterns to infer information about the data. To...
This paper examines the deployment of Multi-Party Computation (MPC) in corporate data processing environments, focusing on its legal and technical implications under the European Union’s General Data Protection Regulation (GDPR). By combining expertise in cryptography and legal analysis, we address critical questions necessary for assessing the suitability of MPC for real-world applications. Our legal evaluation explores the conditions under which MPC qualifies as an anonymizing approach...
Logic locking has surfaced as a notable safeguard against diverse hazards that pose a risk to the integrated circuit (IC) supply chain. Existing literature on logic locking largely encompasses the art of proposing new constructions, on the one hand, and unearthing weaknesses in such algorithms on the other. Somehow, in this race of make and break, the stress on automation of adopting such techniques on real-life circuits has been rather limited. For the first time, we present a...
Private computation on common records refers to analyze data from two databases containing shared records without revealing personal information. As a basic requirement for private computation, the databases involved essentially need to be aligned by a common identification system. However, it is hard to expect such common identifiers in real world scenario. For this reason, multiple quasi-identifiers can be used to identify common records. As some quasi-identifiers might be missing or have...
The introduction of shared computation architectures assembled from heterogeneous chiplets introduces new security threats. Due to the shared logical and physical resources, an untrusted chiplet can act maliciously to surreptitiously probe the data communication between chiplets or sense the computation shared between them. This paper presents Garblet, the first framework to leverage the flexibility offered by chiplet technology and Garbled Circuits (GC)-based MPC to enable efficient,...
We present a new generalization of (zk-)SNARKs combining two additional features at the same time. Besides the verification of correct computation, our new SNARKs also allow, first, the verification of input data authenticity. Specifically, a verifier can confirm that the input to the computation originated from a trusted source. Second, our SNARKs support verification of stateful computations across multiple rounds, ensuring that the output of the current round correctly depends on the...
This paper addresses the critical challenges in designing cryptographic algorithms that achieve both high performance and cross-platform efficiency on ARM and x86 architectures, catering to the demanding requirements of next-generation communication systems, such as 6G and GPU/NPU interconnections. We propose HiAE, a high-throughput authenticated encryption algorithm optimized for performance exceeding 100 Gbps and designed to meet the stringent security requirements of future communication...
There is a heavy preference towards instantiating BGV and BFV homomorphic encryption schemes where the cyclotomic order $m$ is a power of two, as this admits highly efficient fast Fourier transformations. Field Instruction Multiple Data (FIMD) was introduced to increase packing capacity in the case of small primes and improve amortised performance, using reverse multiplication-friendly embeddings (RMFEs) to encode more data into each SIMD slot. However, FIMD currently does not admit...
Recent applications and attacks have highlighted the need for authenticated encryption (AE) schemes to achieve the so-called committing security beyond privacy and authenticity. As a result, several generic solutions have been proposed to transform a non-committing AE scheme to a committing one, for both basic unique-nonce security and advanced misuse-resistant (MR) security. We observe that all existing practical generic transforms are subject to at least one of the following limitations:...
Fully homomorphic encryption (FHE) enables the computation of arbitrary circuits over encrypted data. A widespread application of FHE is a simple two-party computation (2PC) protocol, where the server evaluates a circuit over the client's encrypted data and its private inputs. However, while the security of FHE guarantees that the client's data is protected from the server, there is no inherent support for the privacy of the server's input and the circuit. One effective solution to this...
RingCT signatures are essential components of Ring Confidential Transaction (RingCT) schemes on blockchain platforms, enabling anonymous transaction spending and significantly impacting the scalability of these schemes. This paper makes two primary contributions: We provide the first thorough analysis of a recently developed Any-out-of-N proof in the discrete logarithm (DLOG) setting and the associated RingCT scheme, introduced by ZGSX23 (S&P '23). The proof conceals the number of the...
This paper presents dCTIDH, a CSIDH implementation that combines two recent developments into a novel state-of-the-art deterministic implementation. We combine the approach of deterministic variants of CSIDH with the batching strategy of CTIDH, which shows that the full potential of this key space has not yet been explored. This high-level adjustment in itself leads to a significant speed-up. To achieve an effective deterministic evaluation in constant time, we introduce Wombats, a new...
We propose a decentralized asset-transfer system that enjoys full privacy: no party can learn the details of a transaction, except for its issuer and its recipient. Furthermore, the recipient is only aware of the amount of the transaction. Our system does not rely on consensus or synchrony assumptions, and therefore, it is responsive, since it runs at the actual network speed. Under the hood, every transaction creates a consumable coin equipped with a non-interactive zero-knowledge proof...
Making the most of TFHE advanced capabilities such as programmable or circuit bootstrapping and their generalizations for manipulating data larger than the native plaintext domain of the scheme is a very active line of research. In this context, AES is a particularly interesting benchmark, as an example of a nontrivial algorithm which has eluded "practical" FHE execution performances for years, as well as the fact that it will most likely be selected by NIST as a flagship reference in its...
The CKKS scheme is traditionally recognized for approximate homomorphic encryption of real numbers, but BLEACH (Drucker et al., JoC 2024) extends its capabilities to handle exact computations on binary or small integer numbers. Despite this advancement, BLEACH's approach of simulating XOR gates via $(a-b)^2$ incurs one multiplication per gate, which is computationally expensive in homomorphic encryption. To this end, we introduce XBOOT, a new framework built upon BLEACH's blueprint but...
Secure Multiparty Computation (MPC) protocols that achieve Identifiable Abort (IA) guarantee honest parties that in the event that they are denied output, they will be notified of the identity of at least one corrupt party responsible for the abort. Cheater identification provides recourse in the event of a protocol failure, and in some cases can even be desired over Guaranteed Output Delivery. However, protocols in the literature typically make use of broadcast as a necessary tool in...
Secret handshakes, introduced by Balfanz et al. [3], allow users associated with various groups to determine if they share a common affiliation. These protocols ensure crucial properties such as fairness (all participants learn the result simultaneously), affiliation privacy (failed handshakes reveal no affiliation information), and result-hiding (even participants within a shared group cannot infer outcomes of unrelated handshakes). Over time, various secret-handshake schemes have been...
The Performance Monitoring Unit (PMU), a standard feature in all modern computing systems, presents significant security risks by leaking sensitive user activities through microarchitectural event data. This work demonstrates the feasibility of remote side-channel attacks leveraging PMU data, revealing vulnerabilities that compromise user privacy and enable covert surveillance without physical access to the target machine. By analyzing the PMU feature space, we create distinct...
Multi-input functional encryption is a primitive that allows for the evaluation of an $\ell$-ary function over multiple ciphertexts, without learning any information about the underlying plaintexts. This type of computation is useful in many cases where one has to compute over encrypted data, such as privacy-preserving cloud services, federated learning, or more generally delegation of computation from multiple clients. It has recently been shown by Alborch et al. in PETS '24 to be useful to...
Fully Homomorphic Encryption (FHE) enables secure computation of functions on ciphertexts without requiring decryption. Specifically, AP-like HE schemes exploit an intrinsic bootstrapping method called blind rotation. In blind rotation, a look-up table is homomorphically evaluated on the input ciphertext through the iterative multiplication of monomials. However, the algebraic structure of the multiplicative group of monomials imposes certain limitations on the input and output plaintext...
Electronic voting (e-voting) systems have become more prevalent in recent years, but security concerns have also increased, especially regarding the privacy and verifiability of votes. As an essential ingredient for constructing secure e-voting systems, designers often employ zero-knowledge proofs (ZKPs), allowing voters to prove their votes are valid without revealing them. Invalid votes can then be discarded to protect verifiability without compromising the privacy of valid...
We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme of Lindell and improving his scheme in several ways. ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the signing function. Lindell's scheme uses Paillier encryption to encrypt one party's key share and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero knowledge proofs over the Paillier group during the signing process. However,...
In this work, we propose the first hardware implementation of Classic McEliece protected with countermeasures against Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA). Classic Mceliece is one of the leading candidates for Key Encapsulation Mechanisms (KEMs) in the ongoing round 4 of the NIST standardization process for post-quantum cryptography. In particular, we implement a range of generic countermeasures against SCA and FIA, particularly protected the vulnerable operations...
Multivariate cryptography currently centres mostly around UOV-based signature schemes: All multivariate round 2 candidates in the selection process for additional digital signatures by NIST are either UOV itself or close variations of it: MAYO, QR-UOV, SNOVA, and UOV. Also schemes which have been in the focus of the multivariate research community, but are broken by now - like Rainbow and LUOV - are based on UOV. Both UOV and the schemes based on it have been frequently analyzed regarding...
Privacy-preserving graph analysis allows performing computations on graphs that store sensitive information while ensuring all the information about the topology of the graph, as well as data associated with the nodes and edges, remains hidden. The current work addresses this problem by designing a highly scalable framework, $\mathsf{Graphiti}$, that allows securely realising any graph algorithm. $\mathsf{Graphiti}$ relies on the technique of secure multiparty computation (MPC) to design a...
Datasets of side-channel leakage measurements are widely used in research to develop and benchmark side-channel attack and evaluation methodologies. Compared to using custom and/or one-off datasets, widely-used and publicly available datasets improve research reproducibility and comparability. Further, performing high-quality measurements requires specific equipment and skills, while also taking a significant amount of time. Therefore, using publicly available datasets lowers the barriers...
In Side-Channel Analysis (SCA), statistical or machine learning methods are employed to extract secret information from power or electromagnetic (EM) traces. In many practical scenarios, raw power/EM traces can span hundreds of thousands of features, with relevant leakages occurring over only a few small segments. Consequently, existing SCAs often select a small number of features before launching the attack, making their success highly dependent on the feasibility of feature selection....
We propose waterlogs, a new direction to detect and trace synthetic text outputs from large language models based on transparency logs. Waterlogs offer major categorical advantages over watermarking: it (1) allows for the inclusion of arbitrary metadata to facilitate tracing, (2) is publicly verifiable by third parties, and (3) operates in a distributed manner while remaining robust and efficient. Waterlogs rely on a verifiable Hamming distance index, a novel data structure that we...
From 2022, Korean Post-Quantum Cryptography (KpqC) Competition has been held. Among the Round 1 algorithms of KpqC, eight algorithms were selected in December 2023. To evaluate the algorithms, the performance is critical factor. However, the performance of the algorithms submitted to KpqC was evaluated in different development environments. Consequently, it is difficult to compare the performance of each algorithm fairly, because the measurements were not conducted in the identical...
The recent VOLE-based interactive zero-knowledge (VOLE-ZK) protocols along with non-interactive zero-knowledge (NIZK) proofs based on MPC-in-the-Head (MPCitH) and VOLE-in-the-Head (VOLEitH) extensively utilize the commitment schemes, which adopt a circular correlation robust (CCR) hash function as the core primitive. Nevertheless, the state-of-the-art CCR hash construction by Guo et al. (S&P'20), building from random permutations, can only provide 128-bit security, when it is instantiated...
Anonymity is essential for free speech and expressing dissent, but platform moderators need ways to police bad actors. For anonymous clients, this may involve banning their accounts, docking their reputation, or updating their state in a complex access control scheme. Frequently, these operations happen asynchronously when some violation, e.g., a forum post, is found well after the offending action occurred. Malicious clients, naturally, wish to evade this asynchronous negative feedback....
Recently, an emerging branch of research in the field of fully homomorphic encryption (FHE) attracts growing attention, where optimizations are carried out in developing fast and efficient homomorphic logic circuits. While existing works have pointed out that compound homomorphic gates can be constructed without incurring significant computational overheads, the exact theory and mechanism of homomorphic gate design have not yet been explored. In this work, we propose AutoHoG, an automated...
The Jacobi Symbol is an essential primitive in cryptographic applications such as primality testing, integer factorization, and various encryption schemes. By exploring the interdependencies among modular reductions within the algorithmic loop, we have developed a refined method that significantly enhances computational efficiency. Our optimized algorithm, implemented in the Rust language, achieves a performance increase of 72% over conventional textbook methods and is twice as fast as the...
Secure multi-party computation (MPC) in a three-party, honest majority scenario is currently the state-of-the-art for running machine learning algorithms in a privacy-preserving manner. For efficiency reasons, fixed-point arithmetic is widely used to approximate computation over decimal numbers. After multiplication in fixed-point arithmetic, truncation is required to keep the result's precision. In this paper, we present an efficient three-party truncation protocol secure in the presence of...
Self-sovereign identity (SSI) systems empower users to (anonymously) establish and verify their identity when accessing both digital and real-world resources, emerging as a promising privacy-preserving solution for user-centric identity management. Recent work by Maram et al. proposes the privacy-preserving Sybil-resistant decentralized SSI system CanDID (IEEE S&P 2021). While this is an important step, notable shortcomings undermine its efficacy. The two most significant among them being...
The Residue Number System (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) scheme (SAC 2018) has been widely implemented due to its computational efficiency. However, state-of-the-art implementations fail to use the machine word size tightly, creating inefficiency. As rescaling moduli are chosen to be approximately equal to the scaling factors, the machine's computation budget can be wasted when the scaling factors are not close to the machine's word size. To solve this problem, we present...
In this work we study the efficiency of Zero-Knowledge (ZK) arguments of knowledge, particularly exploring Multi-Verifier ZK (MVZK) protocols as a midway point between Non-Interactive ZK and Designated-Verifier ZK, offering versatile applications across various domains. We introduce a new MVZK protocol designed for the preprocessing model, allowing any constant fraction of verifiers to be corrupted, potentially colluding with the prover. Our contributions include the first MVZK over rings....
In this paper, we revisit the algorithm for computing chains of $(2, 2)$-isogenies between products of elliptic curves via theta coordinates proposed by Dartois et al. For each fundamental block of this algorithm, we provide a explicit inversion-free version. Besides, we exploit a novel technique of $x$-only ladder to speed up the computation of gluing isogeny. Finally, we present a mixed optimal strategy, which combines the inversion-elimination tool with the original methods together...
We design and implement a novel post-quantum signature scheme based on the Legendre PRF, named Loquat. Prior to this work, efficient approaches for constructing post-quantum signatures with comparable security assumptions mainly used the MPC-in-the-head paradigm or hash trees. Our method departs from these paradigms and, notably, is SNARK-friendly, a feature not commonly found in earlier designs. Loquat requires significantly fewer computational operations for verification than other...
In this paper, we study the computation of complex mathematical functions in statements executed on top of zero-knowledge proofs (ZKP); these functions may include roots, exponentials and logarithms, trigonometry etc. While existing approaches to these functions in privacy-preserving computations (and sometimes also in general-purpose processors) have relied on polynomial approximation, more powerful methods are available for ZKP. In this paper, we note that in ZKP, all algebraic functions...
Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process. This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography. Our implementations target theoretical and practical security against second-order power analysis attacks. First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness. The extension...
Our work aims to minimize interaction in secure computation due to the high cost and challenges associated with communication rounds, particularly in scenarios with many clients. In this work, we revisit the problem of secure aggregation in the single-server setting where a single evaluation server can securely aggregate client-held individual inputs. Our key contribution is the introduction of One-shot Private Aggregation ($\mathsf{OPA}$) where clients speak only once (or even choose not to...
The TFHE cryptosystem only supports small plaintext space, up to 5 bits with usual parameters. However, one solution to circumvent this limitation is to decompose input messages into a basis B over multiple ciphertexts. In this work, we introduce B-gates, an extension of logic gates to non binary bases, to compute base B logic circuit. The flexibility introduced by our approach improves the speed performance over previous approaches such as the so called tree-based method which requires an...
A distributed OPRF allows a client to evaluate a pseudorandom function on an input chosen by the client using a distributed key shared among multiple servers. This primitive ensures that the servers learn nothing about the input nor the output, and the client learns nothing about the key. We present a post-quantum OPRF in a distributed server setting, which can be computed in a single round of communication between a client and the servers. The only server-to-server communication occurs...
Side-channel analysis has become a cornerstone of modern hardware security evaluation for cryptographic accelerators. Recently, these techniques are also being applied in fields such as AI and Machine Learning to investigate possible threats. Security evaluations are reliant on standard test setups including commercial and open-source evaluation boards such as, SASEBO/SAKURA and ChipWhisperer. However, with shrinking design footprints and overlapping tasks on the same platforms, the quality...
Anonymous message delivery, as in privacy-preserving blockchain and private messaging applications, needs to protect recipient metadata: eavesdroppers should not be able to link messages to their recipients. This raises the question: how can untrusted servers assist in delivering the pertinent messages to each recipient, without learning which messages are addressed to whom? Recent work constructed Oblivious Message Retrieval (OMR) protocols that outsource the message detection and...
As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...
Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the...
Secure merge considers the problem of combining two sorted lists into a single sorted secret-shared list. Merge is a fundamental building block for many real-world applications. For example, secure merge can implement a large number of SQL-like database joins, which are essential for almost any data processing task such as privacy-preserving fraud detection, ad conversion rates, data deduplication, and many more. We present two constructions with communication bandwidth and rounds...
The notion of collaborative zk-SNARK is introduced by Ozdemir and Boneh (USENIX 2022), which allows multiple parties to jointly create a zk-SNARK proof over distributed secrets (also known as the witness). This approach ensures the privacy of the witness, as no corrupted servers involved in the proof generation can learn anything about the honest servers' witness. Later, Garg et al. continued the study, focusing on how to achieve faster proof generation (USENIX 2023). However, their...
The BGV scheme is one of the most popular FHE schemes for computing homomorphic integer arithmetic. The bootstrapping technique of BGV is necessary to evaluate arbitrarily deep circuits homomorphically. However, the BGV bootstrapping performs poorly for large plaintext prime $p$ due to its digit removal procedure exhibiting a computational complexity of at least $O(\sqrt{p})$. In this paper, we propose optimizations for the digit removal procedure with large $p$ by leveraging the properties...
Bootstrapping is currently the only known method for constructing fully homomorphic encryptions. In the BFV scheme specifically, bootstrapping aims to reduce the error of a ciphertext while preserving the encrypted plaintext. The existing BFV bootstrapping methods follow the same pipeline, relying on the evaluation of a digit extraction polynomial to annihilate the error located in the least significant digits. However, due to its strong dependence on performance, bootstrapping could only...
Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice. This work...
Differential privacy is a fundamental concept for protecting individual privacy in databases while enabling data analysis. Conceptually, it is assumed that the adversary has no direct access to the database, and therefore, encryption is not necessary. However, with the emergence of cloud computing and the «on-cloud» storage of vast databases potentially contributed by multiple parties, it is becoming increasingly necessary to consider the possibility of the adversary having (at least...
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
In this work we revisit the problem of using general-purpose MPC schemes to emulate the trusted dataholder in differential privacy (DP), to achieve the same accuracy but without the need to trust one single dataholder. In particular, we consider the two-party model where two computational parties (or dataholders), each with their own dataset, wish to compute a canonical DP mechanism on their combined data and to do so with active security. We start by remarking that available definitions of...
Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter, and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced...
Graph convolutional networks (GCNs) are gaining popularity due to their powerful modelling capabilities. However, guaranteeing privacy is an issue when evaluating on inputs that contain users’ sensitive information such as financial transactions, medical records, etc. To address such privacy concerns, we design Entrada, a framework for securely evaluating GCNs that relies on the technique of secure multiparty computation (MPC). For efficiency and accuracy reasons, Entrada builds over the MPC...
We present two new constructions for private information retrieval (PIR) in the classical setting where the clients do not need to do any preprocessing or store any database dependent information, and the server does not need to store any client-dependent information. Our first construction (HintlessPIR) eliminates the client preprocessing step from the recent LWE-based SimplePIR (Henzinger et. al., USENIX Security 2023) by outsourcing the "hint" related computation to the server,...
State-machine replication (SMR) allows a {deterministic} state machine to be replicated across a set of replicas and handle clients' requests as a single machine. Most existing SMR protocols are leader-based requiring a leader to order requests and coordinate the protocol. This design places a disproportionately high load on the leader, inevitably impairing the scalability. If the leader fails, a complex and bug-prone fail-over protocol is needed to switch to a new leader. An adversary can...
Tiptoe is a private web search engine that allows clients to search over hundreds of millions of documents, while revealing no information about their search query to the search engine’s servers. Tiptoe’s privacy guarantee is based on cryptography alone; it does not require hardware enclaves or non-colluding servers. Tiptoe uses semantic embeddings to reduce the problem of private full-text search to private nearest-neighbor search. Then, Tiptoe implements private nearest-neighbor search...
As cloud computing continues to gain widespread adoption, safeguarding the confidentiality of data entrusted to third-party cloud service providers becomes a critical concern. While traditional encryption methods offer protection for data at rest and in transit, they fall short when it comes to where it matters the most, i.e., during data processing. To address this limitation, we present HELM, a framework for privacy-preserving data processing using homomorphic encryption. HELM...
IoT devices collect privacy-sensitive data, e.g., in smart grids or in medical devices, and send this data to cloud servers for further processing. In order to ensure confidentiality as well as authenticity of the sensor data in the untrusted cloud environment, we consider a transciphering scenario between embedded IoT devices and multiple cloud servers that perform secure multi-party computation (MPC). Concretely, the IoT devices encrypt their data with a lightweight symmetric cipher and...
In lattice-based Homomorphic Encryption (HE) schemes, the key-switching procedure is a core building block of non-linear operations but also a major performance bottleneck. The computational complexity of the operation is primarily determined by the so-called gadget decomposition, which transforms a ciphertext entry into a tuple of small polynomials before being multiplied with the corresponding evaluation key. However, the previous studies such as Halevi et al. (CT-RSA 2019) and Han and...
We present Waffle, a datastore that protects an application’s data access patterns from a passive persistent adversary. Waffle achieves this without prior knowledge of the input data access distribution, making it the first of its kind to adaptively handle input sequences under a passive persistent adversary. Waffle maintains a constant bandwidth and client-side storage overhead, which can be adjusted to suit the application owner’s preferences. This flexibility allows the owner to fine-tune...
An attribute-based credential system enables users to prove possession of a credential and statements over certified attributes to verifiers in zero-knowledge while maintaining anonymity and unlinkability. In a relational anonymous credential system, users can further prove their relationship to other entities in their social graph, such as position in an organizational hierarchy or friends-of-friends status in an online social network graph, while protecting their own privacy and that of...
In 2022, a Korean domestic Post Quantum Cryptography contest called KpqC held, and the standard for Post Quantum Cryptography is set to be selected in 2024. In Round 1 of this competition, 16 algorithms have advanced and are competing. Algorithms submitted to KpqC introduce their performance, but direct performance comparison is difficult because all algorithms were measured in different environments. In this paper, we present the benchmark results of all KpqC algorithms in a single...
ChatGPT is recognized as a significant revolution in the field of artificial intelligence, but it raises serious concerns regarding user privacy, as the data submitted by users may contain sensitive information. Existing solutions for secure inference face significant challenges in supporting GPT-like models due to the enormous number of model parameters and complex activation functions. In this paper, we develop CipherGPT, the first framework for secure two-party GPT inference, building...
Secure multiparty computation$~$(MPC) enables privacy-preserving collaborative computation over sensitive data held by multiple mutually distrusting parties. Unfortunately, in the most natural setting where a majority of the parties are maliciously corrupt$~$(also called the $\textit{dishonest majority}$ setting), traditional MPC protocols incur high overheads and offer weaker security guarantees than are desirable for practical applications. In this paper, we explore the possibility of...
Coercion-resistance is one of the most challenging security properties to achieve when designing an e-voting protocol. The JCJ voting scheme, proposed in 2005 by Juels, Catalano and Jakobsson, is one of the first voting systems where coercion-resistance was rigorously defined and achieved, making JCJ the benchmark for coercion-resistant protocols. Recently, the coercion-resistance definition proposed in JCJ has been disputed and improved by Cortier, Gaudry, and Yang. They identified a major...
In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks. This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security...
This note provides an update on Keccak performance on the ARMv7-M processors. Starting from the XKCP implementation, we have applied architecture-specific optimizations that have yielded a performance gain of up to 21% for the largest permutation instance.
We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular cipher GIFT-128 (CHES'17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks. The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox with one or more non-trivial LS has not been used in a cipher construction until DEFAULT...
Zero-knowledge proofs and arithmetic circuits are essential building blocks in modern cryptography, but comparing their efficiency across different implementations can be challenging. In this paper, we address this issue by presenting comprehensive benchmarking results for a range of signature schemes and hash functions implemented in Circom, a popular circuit language that has not been extensively benchmarked before. Our benchmarking statistics include prover time, verifier time, and proof...
Distributed integrated circuit (IC) supply chain has resulted in a myriad of security vulnerabilities including that of hardware Trojan (HT). An HT can perform malicious modifications on an IC design with potentially disastrous consequences, such as leaking secret information in cryptographic applications or altering operation instructions in processors. Due to the emergence of outsourced fabrication, an untrusted foundry is considered the most potent adversary in introducing an HT. This can...
We conduct a systematic examination of vector arithmetic for polynomial multiplications in software. Vector instruction sets and extensions typically specify a fixed number of registers, each holding a power-of-two number of bits, and support a wide variety of vector arithmetic on registers. Programmers then try to align mathematical computations with the vector arithmetic supported by the designated instruction set or extension. We delve into the intricacies of this process for polynomial...
Secure shuffle is an important primitive that finds use in several applications such as secure electronic voting, oblivious RAMs, secure sorting, to name a few. For time-sensitive shuffle-based applications that demand a fast response time, it is essential to design a fast and efficient shuffle protocol. In this work, we design secure and fast shuffle protocols relying on the techniques of secure multiparty computation. We make several design choices that aid in achieving highly efficient...
The rising issues of harassment, exploitation, corruption, and other forms of abuse have led victims to seek comfort by acting in unison against common perpetrators (e.g., #MeToo movement). One way to curb these issues is to install allegation escrow systems that allow victims to report such incidents. The escrows are responsible for identifying victims of a common perpetrator and taking the necessary action to bring justice to them. However, users hesitate to participate in these systems...
Fully homomorphic encryption (FHE) is an encryption method that allows to perform computation on encrypted data, without decryption. FHE preserves the privacy of the users of online services that handle sensitive data, such as health data, biometrics, credit scores and other personal information. A common way to provide a valuable service on such data is through machine learning and, at this time, Neural Networks are the dominant machine learning model for unstructured data. In this work...
We introduce a new transparent zero-knowledge argument system based on the novel direct computation concept. Our protocol converts input parameters into a format that the verifier can process directly, so the output of the polynomial representing a circuit can be directly computed by the verifier, allowing us to significantly reduce the size of the polynomial evaluation needed to be evaluated. In the default setting, the prover runtime cost for group exponentiation operations is only the...
Homomorphic encryption (HE) is a promising technique for privacy-preserving computations, especially the word-wise HE schemes that allow batching. However, the high computational overhead hinders the deployment of HE in real-word applications. GPUs are often used to accelerate execution, but a comprehensive performance comparison of different schemes on the same platform is still missing. In this work, we fill this gap by implementing three word-wise HE schemes BGV, BFV, and CKKS on GPU,...
Embedded systems are a cornerstone of the ongoing digitization of our society, ranging from expanding markets around IoT and smart-X devices over to sensors in autonomous driving, medical equipment or critical infrastructures. Since a vast amount of embedded systems are safety-critical (e.g., due to their operation site), security is a necessity for their operation. However, unlike mobile, desktop, and server systems, where adversaries typically only act have remote access, embedded systems...
With the advent of secure function evaluation (SFE), distrustful parties can jointly compute on their private inputs without disclosing anything besides the results. Yao’s garbled circuit protocol has become an integral part of secure computation thanks to considerable efforts made to make it feasible, practical, and more efficient. These efforts have resulted in multiple optimizations on this primitive to enhance its performance by orders of magnitude over the last years. The advancement in...
Password security relies heavily on the choice of password by the user but also on the one-way hash functions used to protect stored passwords. To compensate for the increased computing power of attackers, modern password hash functions like Argon2, have been made more complex in terms of computational power and memory requirements. Nowadays, the computation of such hash functions is performed usually by the server (or authenticator) instead of the client. Therefore, constrained Internet of...
Identifying a cluster around a seed node in a graph, termed local clustering, finds use in several applications, including fraud detection, targeted advertising, community detection, etc. However, performing local clustering is challenging when the graph is distributed among multiple data owners, which is further aggravated by the privacy concerns that arise in disclosing their view of the graph. This necessitates designing solutions for privacy-preserving local clustering and is addressed...
Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation over encrypted data while keeping the decryption key distributed across multiple parties at all times. ThFHE is a key enabler for threshold cryptography and, more generally, secure distributed computing. Existing ThFHE schemes relying on standard hardness assumptions, inherently require highly inefficient parameters and are unsuitable for practical deployment. In this paper, we take a novel approach towards making...
Numerous security vulnerability assessment techniques urge precise and fast finite state machines (FSMs) extraction from the design under evaluation. Sequential logic locking, watermark insertion, fault-injection assessment of a System-ona- Chip (SoC) control flow, information leakage assessment, and reverse engineering at gate-level abstraction, to name a few, require precise FSM extraction from the synthesized netlist of the design. Unfortunately, no reliable solutions are currently...
Consider the problem of securely identifying τ -heavy hitters, where given a set of client inputs, the goal is to identify those inputs which are held by at least τ clients in a privacy-preserving manner. Towards this, we design a novel system Vogue, whose key highlight in comparison to prior works, is that it ensures complete privacy and does not leak any information other than the heavy hitters. In doing so, Vogue aims to achieve as efficient a solution as possible. To showcase these...
There has been intense interest over the last decade in implementations of _probabilistic proofs_ (IPs, SNARKs, PCPs, and so on): protocols in which an untrusted party proves to a verifier that a given computation was executed properly, possibly in zero knowledge. Nevertheless, implementations still do not scale beyond small computations. A central source of overhead is the _front-end_: translating from the abstract computation to a set of equivalent arithmetic constraints. This paper...
At the early stage of the design process, many security vulnerability assessment solutions require fast and precise extraction of the finite state machines (FSMs) present in the register-transfer level (RTL) description of the design. FSMs should be accurately extracted for watermark insertion, fault injection assessment of control paths in a system-on-chip (SoC), information leakage assessment, control-flow reverse engineering in RTL abstraction, logic obfuscation, etc. However, it is quite...
Multi-key homomorphic encryption is a generalized notion of homomorphic encryption supporting arbitrary computation on ciphertexts, possibly encrypted under different keys. In this paper, we revisit the work of Chen, Chillotti and Song (ASIACRYPT 2019) and present yet another multi-key variant of the TFHE scheme. The previous construction by Chen et al. involves a blind rotation procedure where the complexity of each iteration gradually increases as it continuously operates on ciphertexts...
Many real-world group messaging systems delegate group administration to the application level, failing to provide formal guarantees related to group membership. Taking a cryptographic approach to group administration can prevent both implementation and protocol design pitfalls that result in a loss of confidentiality and consistency for group members. In this work, we introduce a cryptographic framework for the design of group messaging protocols that offer strong security guarantees for...
The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this paper we give an overview of a variant of the Pippenger MSM algorithm together with a set of optimizations tailored for curves that admit a twisted Edwards form. We prove that this is the case for SNARK-friendly chains and cycles of elliptic curves, which are useful for recursive constructions. Our contribution is twofold: first, we optimize...
Microarchitectural side-channel vulnerabilities in modern processors are known to be a powerful attack vector that can be utilized to bypass common security boundaries like memory isolation. As shown by recent variants of transient execution attacks related to Spectre and Meltdown, those side channels allow to leak data from the microarchitecture to the observable architectural state. The vast majority of attacks currently build on the cache-timing side channel, since it is easy to exploit...
We initiate the study of Private Certifier Intersection (PCI), which allows mutually distrusting parties to establish a trust basis for cross-validation of claims if they have one or more trust authorities (certifiers) in common. This is one of the essential requirements for verifiable presentations in Web 3.0, since it provides additional privacy without compromising on decentralization. A PCI protocol allows two or more parties holding certificates to identify a common set of certifiers...