2100 results sorted by ID
Possible spell-corrected query: has functions
On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving BBB Security
Avik Chakraborti, Mridul Nandi, Suprita Talnikar, Kan Yasuda
Secret-key cryptography
Observing the growing popularity of random permutation (RP)-based designs (e.g, Sponge), Bart Mennink in CRYPTO 2019 has initiated an interesting research in the direction of RP-based pseudorandom functions (PRFs). Both are claimed to achieve beyond-the-birthday-bound (BBB) security of $2n/3$ bits ($n$ being the input block size in bits) but require two instances of RPs and can handle only one-block inputs. In this work, we extend research in this direction by providing two new BBB-secure...
Unconditionally secure encryption algorithm with unified confidentiality and integrity
Zhen-Hu Ning
Foundations
One-Time Pad (OTP), introduced by Shannon, is well-known as an unconditionally secure encryption algorithm and has become the cornerstone of modern cryptography. However, the unconditional security of OTP applies solely to confidentiality and does not extend to integrity. Hash functions such as SHA2, SHA3 or SM3 applies only to integrity but not to confidentiality and also can not obtain unconditional security. Encryption and digital signatures based on asymmetric cryptography can provide...
KIVR: Committing Authenticated Encryption Using Redundancy and Application to GCM, CCM, and More
Yusuke Naito, Yu Sasaki, Takeshi Sugawara
Secret-key cryptography
Constructing a committing authenticated encryption (AE)
satisfying the CMT-4 security notion is an ongoing research challenge.
We propose a new mode KIVR, a black-box conversion for adding the
CMT-4 security to existing AEs. KIVR is a generalization of the Hash-
then-Enc (HtE) [Bellare and Hoang, EUROCRYPT 2022] and uses a
collision-resistant hash function to generate an initial value (or nonce)
and a mask for redundant bits, in addition to a temporary key. We ob-
tain a general bound...
Cryptographic Treatment of Key Control Security -- In Light of NIST SP 800-108
Ritam Bhaumik, Avijit Dutta, Akiko Inoue, Tetsu Iwata, Ashwin Jha, Kazuhiko Minematsu, Mridul Nandi, Yu Sasaki, Meltem Sönmez Turan, Stefano Tessaro
Secret-key cryptography
This paper studies the security of key derivation functions (KDFs), a central class of cryptographic algorithms used to derive multiple independent-looking keys (each associated with a particular context) from a single secret. The main security requirement is that these keys are pseudorandom (i.e., the KDF is a pseudorandom function). This paper initiates the study of an additional security property, called key control (KC) security, first informally put forward in a recent update to NIST...
Strong Secret Sharing with Snitching
Jan Bormet, Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, Marcin Mielniczuk
Foundations
One of the main shortcomings of classical distributed cryptography is its reliance on a certain fraction of participants remaining honest. Typically, honest parties are assumed to follow the protocol and not leak any information, even if behaving dishonestly would benefit them economically. More realistic models used in blockchain consensus rely on weaker assumptions, namely that no large coalition of corrupt parties exists, although every party can act selfishly. This is feasible since, in...
Low-cost anonymous reputation update for IoT applications
Alex Shafarenko
This paper presents a novel approach to zero-trust anonymous reputation update in crowd sensing IoT applications. We use a suite of cryptographic functions to achieve anonymity, including unlinkability of sensing reports to the principals that submit them and to one another, while enabling the infrastructure to reliably quantify the degree of trust expressed as a reputation level. The protocol is low-cost for the anonymous participant due to the use of cheap standard algorithms: low-exponent...
Cryptography meets worst-case complexity: Optimal security and more from iO and worst-case assumptions
Rahul Ilango, Alex Lombardi
Foundations
We study several problems in the intersection of cryptography and complexity theory based on the following high-level thesis.
1) Obfuscation can serve as a general-purpose worst-case to average-case reduction, reducing the existence of various forms of cryptography to corresponding worst-case assumptions.
2) We can therefore hope to overcome barriers in cryptography and average-case complexity by (i) making worst-case hardness assumptions beyond $\mathsf{P}\neq \mathsf{NP}$, and...
Leftover Hash Lemma(s) Over Cyclotomic Rings
Katharina Boudgoust, Oleksandra Lapiha
Foundations
In this work, we propose a novel systematic approach for obtaining leftover hash lemmas (LHLs) over cyclotomic rings. Such LHLs build a fundamental tool in lattice-based cryptography, both in theoretical reductions as well as in the design of cryptographic primitives. The scattered set of prior works makes it difficult to navigate the landscape and requires a substantial effort to understand the mathematical constraints under which the LHL holds over cyclotomic rings. This is especially...
Full Anonymity in the Asynchronous Setting from Peony Onion Encryption
Megumi Ando, Miranda Christ, Kashvi Gupta, Tal Malkin, Dane Smith
Cryptographic protocols
Onion routing is a popular practical approach to anonymous communication, and the subject of a growing body of foundational theoretical work aiming to design efficient schemes with provable anonymity, the strongest notion of which is full anonymity.
Unfortunately, all previous schemes that achieve full anonymity assume the synchronous communication setting, which is unrealistic as real networks may experience message loss and timing attacks that render such schemes insecure. Recently,...
Adding Feeding Forward Back to the Sponge Construction
Chun Guo, Kai Hu, Yanhong Fan, Yong Fu, Meiqin Wang
Secret-key cryptography
Avoiding feeding forward seems to be a major goal of the sponge construction. We make a step back and investigate adding feeding forward back to sponge. The obtained sponge-with-feeding-forward construction has a number of benefits: (1) In the random permutation model, its preimage and second preimage security bounds are much better than the standard sponge with the same capacity, while collision and indifferentiability security bounds are comparable; (2) Its collision and (second) preimage...
Insecurity of One Ring Signature Scheme with Batch Verification for Applications in VANETs
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis
We show that the Negi-Kumar certificateless ring signature scheme [Wirel. Pers. Commun. 134(4): 1987-2011 (2024)] is insecure against forgery attack. The signer's public key $PK_j$ and secret key $PSK_j$ are simply invoked to compute the hash value $H_{2_j}=h_5(m_j\|PSK_j\|PK_j\|t_j)$, which cannot be retrieved by the verifier for checking their dependency. The explicit dependency between the public key and secret key is not properly used to construct some intractable problems, such...
NIZK Amplification via Leakage-Resilient Secure Computation
Benny Applebaum, Eliran Kachlon
Cryptographic protocols
Suppose that we are given a weak \emph{Non-Interactive Zero-Knowledge} (NIZK) proof system for NP with non-negligible soundness and zero-knowledge errors, denoted by $\alpha$ and $\beta$, respectively. Is it possible to to reduce these errors to a negligible level? This problem, known as NIZK amplification, was introduced by Goyal, Jain, and Sahai (Crypto'19) and was further studied by Bitansky and Geier (Crypto'24).
The latter work provides amplification theorems for proofs and arguments,...
Collision Attacks on Reduced RIPEMD-128
Zhengrong Lu, Hongbo Yu, Xiaoen Lin, Sitong Yuan
Attacks and cryptanalysis
RIPEMD-128 is an ISO/IEC standard hash function based on a double-branch Merkle-Damgård structure. Its compression function includes two branches with distinct Boolean functions and message expansion permutations. To perform a collision attack, differential characteristics must be constructed simultaneously for both branches under the same message word difference, and the message modification order must align with conditions in both branches. These factors make collision attacks on (reduced)...
The Large Block Cipher Family Vistrutah
Roberto Avanzi, Bishwajit Chakraborty, Eik List
Secret-key cryptography
Vistrutah is a large block cipher with block sizes of 256 and 512 bits. It iterates a step function that applies two AES rounds to each 128-bit block of the state, followed by a state-wide cell permutation. Like Simpira, Haraka, Pholkos, and ASURA, Vistrutah leverages AES instructions to achieve high performance.
For each component of Vistrutah, we conduct a systematic evaluation of functions that can be efficiently implemented on both Intel and Arm architectures. We therefore expect...
Permutation-Based Hashing with Stronger (Second) Preimage Resistance - Application to Hash-Based Signature Schemes
Siwei Sun, Shun Li, Zhiyu Zhang, Charlotte Lefevre, Bart Mennink, Zhen Qin, Dengguo Feng
Secret-key cryptography
The sponge is a popular construction of hash function design. It operates with a $b$-bit permutation on a $b$-bit state, that is split into a $c$-bit inner part and an $r$-bit outer part. However, the security bounds of the sponge are most often dominated by the capacity $c$: If the length of the digest is $n$ bits, the construction achieves $\min\{n/2,c/2\}$-bit collision resistance and $\min\{n,c/2\}$-bit second preimage resistance (and a slightly more complex but similar bound for...
Poseidon and Neptune: Gröbner Basis Cryptanalysis Exploiting Subspace Trails
Lorenzo Grassi, Katharina Koschatko, Christian Rechberger
Attacks and cryptanalysis
At the current state of the art, algebraic attacks are the most efficient method for finding preimages and collisions for arithmetization-oriented hash functions, such as the closely related primitives Poseidon/Poseidon2 and Neptune. In this paper, we revisit Gröbner basis (GB) attacks that exploit subspace trails to linearize some partial rounds, considering both sponge and compression modes.
Starting from Poseidon's original security evaluation, we identified some inaccuracies in the...
A Provably Secure W-OTS$^+$ based on MQ Problem
Zijun Zhuang, Yingjie Zhang, Jintai Ding
Public-key cryptography
In 2022, Antonov showed that SHA-256 does not satisfy some secure property that SPHINCS$^+$ needs, and a fogery attack based on this observation reduces the concrete classical security by approximately 40 bits of security. This illustrates a more general concern: the provable security of some hash-based signature schemes can be compromised when implemented with certain real-world hash functions, and motivates the need to design new functions with rigorous, provable security guarantees....
Breaking Poseidon Challenges with Graeffe Transforms and Complexity Analysis by FFT Lower Bounds
Ziyu Zhao, Jintai Ding
Attacks and cryptanalysis
Poseidon and Poseidon2 are cryptographic hash functions designed for efficient zero-knowledge proof protocols and have been widely adopted in Ethereum applications. To encourage security research, the Ethereum Foundation announced a bounty program in November 2024 for breaking the Poseidon challenges, i.e. solving the CICO (Constrained Input, Constrained Output) problems for round-reduced Poseidon constructions. In this paper, we explain how to apply the Graeffe transform to univariate...
Succinct Witness Encryption for Batch Languages and Applications
Lalita Devadas, Abhishek Jain, Brent Waters, David J. Wu
Foundations
Witness encryption allows one to encrypt a message to an $\mathsf{NP}$ relation $\mathcal{R}$ and a statement $x$. The corresponding decryption key is any valid $\mathsf{NP}$ witness $w$. In a succinct witness encryption scheme, we require that the size of the ciphertext be sublinear in the size of the $\mathsf{NP}$ relation. Currently, all realizations of succinct witness encryption for $\mathsf{NP}$ rely on strong assumptions such as pseudorandom obfuscation, extractable witness...
On the (in)security of Proofs-of-Space based Longest-Chain Blockchains
Mirza Ahad Baig, Krzysztof Pietrzak
Foundations
The Nakamoto consensus protocol underlying the Bitcoin blockchain uses proof of work as a voting mechanism. Honest miners who contribute hashing power towards securing the chain try to extend the longest chain they are aware of. Despite its simplicity, Nakamoto consensus achieves meaningful security guarantees assuming that at any point in time, a majority of the hashing power is controlled by honest parties. This also holds under ``resource variability'', i.e., if the total hashing power...
Proof of Exponentiation: Enhanced Prover Efficiency for Algebraic Statements
Zhuo Wu, Shi Qi, Xinxuan Zhang, Yi Deng, Kun Lai, Hailong Wang
Cryptographic protocols
Recent years have seen the widespread adoption of zkSNARKs constructed over small fields, including but not limited to, the Goldilocks field, small Mersenne prime fields, and tower of binary fields. Their appeal stems primarily from their efficacy in proving computations with small bit widths, which facilitates efficient proving of general computations and offers significant advantages, notably yielding remarkably fast proving efficiency for tasks such as proof of knowledge of hash...
Polocolo: A ZK-Friendly Hash Function Based on S-boxes Using Power Residues (Full Version)
Jincheol Ha, Seongha Hwang, Jooyoung Lee, Seungmin Park, Mincheol Son
Secret-key cryptography
Conventional hash functions are often inefficient in zero-knowledge proof settings, leading to design of several ZK-friendly hash functions. On the other hand, lookup arguments have recently been incorporated into zero-knowledge protocols, allowing for more efficient handling of ``ZK-unfriendly'' operations, and hence ZK-friendly hash functions based on lookup tables.
In this paper, we propose a new ZK-friendly hash function, dubbed $\mathsf{Polocolo}$, that employs an S-box constructed...
Tweakable Permutation-based Luby-Rackoff Constructions
Bishwajit Chakraborty, Abishanka Saha
Secret-key cryptography
Liskov, Rivest, and Wagner, in their seminal work, formulated tweakable blockciphers and proposed two blockcipher-based design paradigms, LRW1 and LRW2, where the basic design strategy is to xor the masked tweak to the input and output of a blockcipher. The 2-round cascaded LRW2 and 4-round cascaded LRW1 have been proven to be secure up to $\mathcal{O}(2^{3n/4})$ queries, but $n$-bit optimal security still remains elusive for these designs. In their paper, Liskov also posed an open challenge...
New Framework for Structure-Aware PSI From Distributed Function Secret Sharing
Dung Bui, Gayathri Garimella, Peihan Miao, Phuoc Van Long Pham
Cryptographic protocols
Private set intersection (PSI) allows two parties to jointly compute the intersection of their private sets without revealing any additional information. Structure-aware PSI (sa-PSI), introduced by Garimella et al. (Crypto'22), is a variant where Alice's input set has a publicly known structure and Bob's input set remains unstructured, enabling new applications like fuzzy PSI. Their construction relies solely on lightweight cryptographic primitives such as symmetric-key primitives and...
One Bit to Rule Them All – Imperfect Randomness Harms Lattice Signatures
Simon Damm, Nicolai Kraus, Alexander May, Julian Nowakowski, Jonas Thietke
Attacks and cryptanalysis
The Fiat-Shamir transform is one of the most widely applied methods for secure signature construction. Fiat-Shamir starts with an interactive zero-knowledge identification protocol and transforms this via a hash function into a non-interactive signature. The protocol's zero-knowledge property ensures that a signature does not leak information on its secret key $\mathbf s$, which is achieved by blinding $\mathbf s$ via proper randomness $\mathbf y$.
Most prominent Fiat-Shamir examples are...
Groebner Basis Cryptanalysis of Anemoi
Luca Campa, Arnab Roy
Attacks and cryptanalysis
Arithmetization-Oriented (AO) symmetric primitives play an important role in the efficiency and security of zero-knowledge (ZK) proof systems. The design and cryptanalysis of AO symmetric-key primitives is a new topic particularly focusing on algebraic aspects. An efficient AO hash function aims at lowering the multiplicative complexity in the arithmetic circuit of the hash function over a suitable finite field. The AO hash function Anemoi was proposed in CRYPTO 2023.
In this work we...
Putting Sybils on a Diet: Securing Distributed Hash Tables using Proofs of Space
Christoph U. Günther, Krzysztof Pietrzak
Applications
Distributed Hash Tables (DHTs) are peer-to-peer protocols that serve as building blocks for more advanced applications. Recent examples, motivated by blockchains, include decentralized storage networks (e.g., IPFS), data availability sampling, or Ethereum's peer discovery protocol.
In the blockchain context, DHTs are vulnerable to Sybil attacks, where an adversary compromises the network by joining with many malicious nodes. Mitigating such attacks requires restricting the adversary's...
Scrutinizing the Security of AES-based Hashing and One-way Functions
Shiyao Chen, Jian Guo, Eik List, Danping Shi, Tianyu Zhang
Attacks and cryptanalysis
AES has cemented its position as the primary symmetric-key primitive for a wide range of cryptographic applications, which motivates the analysis on the concrete security of AES in practical instantiations, for instance, the collision resistance of AES-based hashing, the key commitment security of AES-based authenticated encryption schemes, and the one-wayness of AES-based one-way functions in ZK and MPC protocols. In this work, we introduce single-color initial structures (SCIS) into...
Improving the Round Complexity of MiniCast
Thomas Locher, Victor Shoup
Cryptographic protocols
For very long messages, the reliable broadcast protocol with the best communication complexity to date is the Minicast protocol of Locher & Shoup [2024]. To reliably broadcast a message $m$ to $n$ parties, Minicast has communication complexity $\sim 1.5 |m| n$, when $|m|$ is large. However, the round complexity of Minicast is 4, which is worse than the 3 rounds of the classical protocol of Bracha. We give a new reliable broadcast protocol whose communication complexity is essentially the...
Finding the Inverse of some Shift Invariant Transformations
Fukang Liu, Vaibhav Dixit, Santanu Sarkar, Willi Meier, Takanori Isobe
Foundations
We study the problem of how to find the inverse of shift invariant (SI) transformations proposed in Daemen's thesis. In particular, two of them have been used in practice: $y_i=x_i\oplus \overline{x_{i+1}}x_{i+2}$ and $y_i=x_i\oplus \overline{x_{i+1}}x_{i+2}x_{i+3}$. The first one is the well-known $\chi$ transformation used in \textsf{SHA-3}, \textsf{Subterranean 2.0} and \textsf{Rasta}, while the second one is used in a recently proposed ZK-friendly hash function called Monolith. While the...
Unbiasable Verifiable Random Functions from Generic Assumptions
Nicholas Brandt
Public-key cryptography
We present conceptually simple and practically competitive constructions of verifiable random functions (VRF) that fulfill strong notions of unbiasability recently introduced by Giunta and Stewart. VRFs with such strong properties were previously only known in the random oracle model or from the decisional Diffie–Hellman assumption with preprocessing. In contrast, our constructions are based on generic assumptions and are thus the first to be plausibly post-quantum secure in the standard...
The Sponge is Quantum Indifferentiable
Gorjan Alagic, Joseph Carolan, Christian Majenz, Saliha Tokat
Foundations
The sponge is a cryptographic construction that turns a public permutation into a hash function. When instantiated with the Keccak permutation, the sponge forms the NIST SHA-3 standard. SHA-3 is a core component of most post-quantum public-key cryptography schemes slated for worldwide adoption.
While one can consider many security properties for the sponge, the ultimate one is \emph{indifferentiability from a random oracle}, or simply \emph{indifferentiability}. The sponge was proved...
Time-Space Tradeoffs of Truncation with Preprocessing
Krzysztof Pietrzak, Pengxiang Wang
Foundations
Truncation of cryptographic outputs is a technique that was recently introduced in Baldimtsi et al. [BCCK22]. The general idea is to try out many inputs to some cryptographic algorithm until the output (e.g. a public-key or some hash value) falls into some sparse set and thus can be compressed: by trying out an expected $2^k$ different inputs one will find an output that starts with $k$ zeros.
Using such truncation one can for example save substantial gas fees on Blockchains where...
Let us walk on the 3-isogeny graph: efficient, fast, and simple
Jesús-Javier Chi-Domínguez, Eduardo Ochoa-Jimenez, Ricardo-Neftalí Pontaza-Rodas
Public-key cryptography
Constructing and implementing isogeny-based cryptographic primitives is an active research. In particular, performing length-$n$ isogenies walks over quadratic field extensions of $\mathbb{F}_p$ plays an exciting role in some constructions, including
Hash functions, Verifiable Delay Functions, Key-Encapsulation Mechanisms, and generic proof systems for isogeny knowledge.
Remarkably, many isogeny-based constructions, for efficiency, perform $2$-isogenies through square root...
Adaptive Robustness of Hypergrid Johnson-Lindenstrauss
Andrej Bogdanov, Alon Rosen, Neekon Vafa, Vinod Vaikuntanathan
Foundations
Johnson and Lindenstrauss (Contemporary Mathematics, 1984) showed that for $n > m$, a scaled random projection $\mathbf{A}$ from $\mathbb{R}^n$ to $\mathbb{R}^m$ is an approximate isometry on any set $S$ of size at most exponential in $m$. If $S$ is larger, however, its points can contract arbitrarily under $\mathbf{A}$. In particular, the hypergrid $([-B, B] \cap \mathbb{Z})^n$ is expected to contain a point that is contracted by a factor of $\kappa_{\mathsf{stat}} = \Theta(B)^{-1/\alpha}$,...
Hybrid-query bounds with partial input control - framework and application to tight M-eTCR
Andreas Hülsing, Mikhail Kudinov, Christian Majenz
Foundations
In this paper, we present an improved framework for proving query bounds in the Quantum Random Oracle Model (QROM) for algorithms with both quantum and classical query interfaces, where the classical input is partially controlled by the adversary. By extending existing techniques, we develop a method to bound the progress an adversary can make with such partial-control classical queries. While this framework is applicable to different hash function properties, we decided to demonstrate the...
Trapdoor one-way functions from tensors
Anand Kumar Narayanan
Public-key cryptography
Weyman and Zelevinsky generalised Vandermonde matrices to higher dimensions, which we call Vandermonde-Weyman-Zelevinsky tensors.
We generalise Lagrange interpolation to higher dimensions by devising a nearly linear time algorithm that given a Vandermonde-Weyman-Zelevinsky tensor and a sparse target vector, finds a tuple of vectors that hit the target under tensor evaluation. Tensor evaluation to us means evaluating the usual multilinear form associated with the tensor in all but one...
CertainSync: Rateless Set Reconciliation with Certainty
Tomer Keniagin, Eitan Yaakobi, Ori Rottenstreich
Applications
Set reconciliation is a fundamental task in distributed systems, particularly in blockchain networks, where it enables the synchronization of transaction pools among peers and facilitates block dissemination. Existing traditional set reconciliation schemes are either statistical, providing success probability as a function of the communication overhead and the size of the symmetric difference, or require parametrization and estimation of the size of the symmetric difference, which can be...
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature Algorithm
Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer, Yunheung Paek
Implementation
This work presents SPHINCSLET, the first fully standard-compliant and area-efficient hardware implementation of the SLH-DSA algorithm, formerly known as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed to be parameterizable across different security levels and hash functions, offering a balanced trade-off between area efficiency and performance. Existing hardware implementations either feature a large area footprint to achieve fast signing and verification or adopt a...
Random Oracle Combiners: Merkle-Damgård Style
Yevgeniy Dodis, Eli Goldin, Peter Hall
Foundations
A Random Oracle Combiner (ROC), introduced by Dodis et al. (CRYPTO ’22), takes two hash functions $h_1, h_2$ from m bits to n bits and outputs a new hash function $C$ from $m$' to $n$' bits. This function C is guaranteed to be indifferentiable from a fresh random oracle as long as one of $h_1$ and $h_2$ (say, $h_1$) is a random oracle, while the other h2 can “arbitrarily depend” on $h_1$.
The work of Dodis et al. also built the first length-preserving ROC, where $n$′ = $n$. Unfortunately,...
Lattice-Based Sanitizable Signature Schemes: Chameleon Hash Functions and More
Sebastian Clermont, Samed Düzlü, Christian Janson, Laurens Porzenheim, Patrick Struck
Public-key cryptography
Sanitizable Signature Schemes (SSS) enable a designated party, the sanitizer, to modify predefined parts of a signed message without invalidating the signature, making them useful for applications like pseudonymization and redaction. Since their introduction by Ateniese et al. (ESORICS'05), several classical SSS constructions have been proposed, but none have been instantiated from quantum-resistant assumptions. In this work, we develop the first quantum-secure sanitizable signature schemes...
Efficient Garbled Pseudorandom Functions and Lookup Tables from Minimal Assumption
Wei-Kai Lin, Zhenghao Lu, Hong-Sheng Zhou
Cryptographic protocols
Yao's garbled circuits have received huge attention in both theory and practice. While garbled circuits can be constructed using minimal assumption (i.e., the existence of pseudorandom functions or one-way functions), the state-of-the-art constructions (e.g., Rosulek-Roy, Crypto 2021) are based on stronger assumptions. In particular, the ``Free-XOR'' technique (Kolesnikov-Schneider, ICALP 2008) is essential in these state-of-the-art constructions, and their security can only be proven in the...
Making GCM Great Again: Toward Full Security and Longer Nonces
Woohyuk Chung, Seongha Hwang, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee
Secret-key cryptography
The GCM authenticated encryption (AE) scheme is one of the most widely used AE schemes in the world, while it suffers from risk of nonce misuse, short message length per encryption and an insufficient level of security. The goal of this paper is to design new AE schemes achieving stronger provable security in the standard model and accepting longer nonces (or providing nonce misuse resistance), with the design rationale behind GCM.
As a result, we propose two enhanced variants of GCM and...
Universally Composable Relaxed Asymmetric Password-Authenticated Key Exchange
Shuya Hanai, Keisuke Tanaka, Masayuki Tezuka, Yusuke Yoshida
Cryptographic protocols
Password-Authenticated Key Exchange (PAKE) establishes a secure channel between two parties who share a password. Asymmetric PAKE is a variant of PAKE, where one party stores a hash of the password to preserve security under the situation that the party is compromised. The security of PAKE and asymmetric PAKE is often analyzed in the framework of universal composability (UC).
Abdalla et al. (CRYPTO '20) relaxed the UC security of PAKE and showed that the relaxed security still guarantees...
A Fiat-Shamir Transformation From Duplex Sponges
Alessandro Chiesa, Michele Orrù
Cryptographic protocols
The Fiat-Shamir transformation underlies numerous non-interactive arguments, with variants that differ in important ways. This paper addresses a gap between variants analyzed by theoreticians and variants implemented (and deployed) by practitioners. Specifically, theoretical analyses typically assume parties have access to random oracles with sufficiently large input and output size, while cryptographic hash functions in practice have fixed input and output sizes (pushing practitioners...
Designated-Verifier SNARGs with One Group Element
Gal Arnon, Jesko Dujmovic, Yuval Ishai
Cryptographic protocols
We revisit the question of minimizing the proof length of designated-verifier succinct non-interactive arguments (dv-SNARGs) in the generic group model. Barta et al. (Crypto 2020) constructed such dv-SNARGs with inverse-polynomial soundness in which the proof consists of only two group elements. For negligible soundness, all previous constructions required a super-constant number of group elements.
We show that one group element suffices for negligible soundness. Concretely, we obtain...
Capitalized Bitcoin Fork for National Strategic Reserve
Charanjit Singh Jutla, Arnab Roy
Cryptographic protocols
We describe a strategy for a nation to acquire majority stake in Bitcoin with zero cost to the taxpayers of the nation. We propose a bitcoin fork sponsored by the the government of the nation, and backed by the full faith of treasury of the nation, such that the genesis block of this fork attributes fixed large amount of new kinds of tokens called strategic-reserve-bitcoin tokens (SRBTC) to the nation's treasury, which is some multiple (greater than one) of the amount of all Bitcoin tokens...
On One-Shot Signatures, Quantum vs Classical Binding, and Obfuscating Permutations
Omri Shmueli, Mark Zhandry
Foundations
One-shot signatures (OSS) were defined by Amos, Georgiou, Kiayias, and Zhandry (STOC'20). These allow for signing exactly one message, after which the signing key self-destructs, preventing a second message from ever being signed. While such an object is impossible classically, Amos et al observe that OSS may be possible using quantum signing keys by leveraging the no-cloning principle. OSS has since become an important conceptual tool with many applications in decentralized settings and for...
Black-Box Constant-Round Secure 2PC with Succinct Communication
Michele Ciampi, Ankit Kumar Misra, Rafail Ostrovsky, Akash Shah
Cryptographic protocols
The most fundamental performance metrics of secure multi-party computation (MPC) protocols are related to the number of messages the parties exchange (i.e., round complexity), the size of these messages (i.e., communication complexity), and the overall computational resources required to execute the protocol (i.e., computational complexity). Another quality metric of MPC protocols is related to the black-box or non-black-box use of the underlying cryptographic primitives. Indeed, the design...
SoK: Efficient Design and Implementation of Polynomial Hash Functions over Prime Fields
Jean Paul Degabriele, Jan Gilcher, Jérôme Govinden, Kenneth G. Paterson
Implementation
Poly1305 is a widely-deployed polynomial hash function. The rationale behind its design was laid out in a series of papers by Bernstein, the last of which dates back to 2005. As computer architectures evolved, some of its design features became less relevant, but implementers found new ways of exploiting these features to boost its performance. However, would we still converge to this same design if we started afresh with today's computer architectures and applications? To answer this...
Preimage Attacks on up to 5 Rounds of SHA-3 Using Internal Differentials
Zhongyi Zhang, Chengan Hou, Meicheng Liu
Attacks and cryptanalysis
In this paper, we study preimage resistance of the SHA-3 standard. We propose a squeeze meet-in-the-middle attack as a new preimage attack method for the sponge functions. This attack combines the squeeze attack and meet-in-the-middle attack, and is implemented by internal differentials. We analyze the inverse operation of the SHA-3 round function, and develop a new target internal differential algorithm as well as a linearization technique for the Sbox in the backward phase. In addition, we...
The Algebraic One-More MISIS Problem and Applications to Threshold Signatures
Chenzhi Zhu, Stefano Tessaro
Public-key cryptography
This paper introduces a new one-more computational problem for lattice-based cryptography, which we refer to as the Algebraic One-More MISIS problem, or AOM-MISIS for short. It is a modification of the AOM-MLWE problem recently introduced by Espitau et al. (CRYPTO '24) to prove security of new two-round threshold signatures.
Our first main result establishes that the hardness of AOM-MISIS is implied by the hardness of MSIS and MLWE (with suitable parameters), both of which are standard...
Trapdoor Hash Functions and PIR from Low-Noise LPN
Damiano Abram, Giulio Malavolta, Lawrence Roy
Public-key cryptography
Trapdoor hash functions (TDHs) are compressing hash functions, with an additional trapdoor functionality: Given a encoding key for a function $f$, a hash on $x$ together with a (small) input encoding allow one to recover $f(x)$. TDHs are a versatile tool and a useful building block for more complex cryptographic protocols.
In this work, we propose the first TDH construction assuming the (quasi-polynomial) hardness of the LPN problem with noise rate $\epsilon = O(\log^{1+\beta} n / n)$ for...
SNARKs for Stateful Computations on Authenticated Data
Johannes Reinhart, Erik-Oliver Blass, Bjoern Annighoefer
Cryptographic protocols
We present a new generalization of (zk-)SNARKs specifically designed for the application domain of safety-critical control systems. These need to be protected against adversarial tampering as well as non-malicious but unintended system failures due to random faults in components. Our SNARKs combine two additional features at the same time. Besides the verification of correct computation, they also allow, first, the verification of input data authenticity. Specifically, a verifier can confirm...
Monotone-Policy BARGs and More from BARGs and Quadratic Residuosity
Shafik Nassar, Brent Waters, David J. Wu
Foundations
A tuple of NP statements $(x_1, \ldots, x_k)$ satisfies a monotone policy $P \colon \{0,1\}^k \to \{0,1\}$ if $P(b_1,\ldots,b_k)=1$, where $b_i = 1$ if and only if $x_i$ is in the NP language. A monotone-policy batch argument (monotone-policy BARG) for NP is a natural extension of regular batch arguments (BARGs) that allows a prover to prove that $x_1, \ldots, x_k$ satisfy a monotone policy $P$ with a proof of size $\mathsf{poly}(\lambda, |\mathcal{R}|, \log k)$, where $|\mathcal{R}|$ is the...
KLPT²: Algebraic Pathfinding in Dimension Two and Applications
Wouter Castryck, Thomas Decru, Péter Kutas, Abel Laval, Christophe Petit, Yan Bo Ti
Public-key cryptography
Following Ibukiyama, Katsura and Oort, all principally polarized superspecial abelian surfaces over $\overline{\mathbb{F}}_p$ can be represented by a certain type of $2 \times 2$ matrix $g$, having entries in the quaternion algebra $B_{p,\infty}$. We present a heuristic polynomial-time algorithm which, upon input of two such matrices $g_1, g_2$, finds a "connecting matrix" representing a polarized isogeny of smooth degree between the corresponding surfaces. Our algorithm should be thought...
The Security of Hash-and-Sign with Retry against Superposition Attacks
Haruhisa Kosuge, Keita Xagawa
Public-key cryptography
Considering security against quantum adversaries, while it is important to consider the traditional existential unforgeability (EUF-CMA security), it is desirable to consider security against adversaries making quantum queries to the signing oracle: Plus-one security (PO security) and blind unforgeability (BU security) proposed by Boneh and Zhandry (Crypto 2013) and Alagic et al. (EUROCRYPT 2020), respectively. Hash-and-sign is one of the most common paradigms for constructing EUF-CMA-secure...
Succinct Oblivious Tensor Evaluation and Applications: Adaptively-Secure Laconic Function Evaluation and Trapdoor Hashing for All Circuits
Damiano Abram, Giulio Malavolta, Lawrence Roy
Public-key cryptography
We propose the notion of succinct oblivious tensor evaluation (OTE), where two parties compute an additive secret sharing of a tensor product of two vectors $\mathbf{x} \otimes \mathbf{y}$, exchanging two simultaneous messages. Crucially, the size of both messages and of the CRS is independent of the dimension of $\mathbf{x}$.
We present a construction of OTE with optimal complexity from the standard learning with errors (LWE) problem. Then we show how this new technical tool enables a...
Towards a White-Box Secure Fiat-Shamir Transformation
Gal Arnon, Eylon Yogev
Cryptographic protocols
The Fiat–Shamir transformation is a fundamental cryptographic technique widely used to convert public-coin interactive protocols into non-interactive ones. This transformation is crucial in both theoretical and practical applications, particularly in the construction of succinct non-interactive arguments (SNARKs). While its security is well-established in the random oracle model, practical implementations replace the random oracle with a concrete hash function, where security is merely...
On the Adaptive Security of Free-XOR-based Garbling Schemes in the Plain Model
Anasuya Acharya, Karen Azari, Chethan Kamath
Foundations
A Garbling Scheme is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since its inception by Yao (FOCS'82, '86), optimizing the communication and computation complexities of securely garbling circuits has been an area of active research. One such optimization, and perhaps the most fundamental, is the `Free-XOR' technique (Kolesnikov and Schneider, ICALP'08) which allows XOR gates in a function garbling to not require representation, and therefore...
Committing Authenticated Encryption: Generic Transforms with Hash Functions
Shan Chen, Vukašin Karadžić
Secret-key cryptography
Recent applications and attacks have highlighted the need for authenticated encryption (AE) schemes to achieve the so-called committing security beyond privacy and authenticity. As a result, several generic solutions have been proposed to transform a non-committing AE scheme to a committing one, for both basic unique-nonce security and advanced misuse-resistant (MR) security. We observe that all existing practical generic transforms are subject to at least one of the following limitations:...
The Malice of ELFs: Practical Anamorphic-Resistant Encryption without Random Oracles
Gennaro Avitabile, Vincenzo Botta, Emanuele Giunta, Marcin Mielniczuk, Francesco Migliaro
Public-key cryptography
The concept of Anamorphic Encryption (Persiano, Phan and Yung, Eurocrypt '22), aims to enable private communication in settings where the usage of encryption is heavily controlled by a central authority (henceforth called the dictator) who can obtain users' secret keys.
Since then, various works have improved our understanding of AE in several aspects, including its limitations. To this regard, two recent works constructed various Anamorphic-Resistant Encryption (ARE) schemes, i.e., schemes...
Securely Instantiating 'Half Gates' Garbling in the Standard Model
Anasuya Acharya, Karen Azari, Mirza Ahad Baig, Dennis Hofheinz, Chethan Kamath
Foundations
Garbling is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since the first construction by Yao (FOCS’82, ’86), a line of work has concerned itself with reducing the communication and computational complexity of that construction. One of the most efficient garbling schemes presently is the ‘Half Gates’ scheme by Zahur, Rosulek, and Evans (Eurocrypt’15). Despite its widespread adoption, the provable security of this scheme has been based on...
Quantum Security Evaluation of ASCON
Yujin Oh, Kyungbae Jang, Hwajeong Seo
Implementation
Grover's algorithm, which reduces the search complexity of symmetric-key ciphers and hash functions, poses a significant security challenge in cryptography. Recent research has focused on estimating Grover's search complexity and assessing post-quantum security. This paper analyzes a quantum circuit implementation of ASCON, including ASCON-AEAD, hash functions, and ASCON-80pq, in alignment with NIST’s lightweight cryptography standardization efforts. We place particular emphasis on circuit...
Improved Resultant Attack against Arithmetization-Oriented Primitives
Augustin Bariant, Aurélien Boeuf, Pierre Briaud, Maël Hostettler, Morten Øygarden, Håvard Raddum
Attacks and cryptanalysis
In the last decade, the introduction of advanced cryptographic protocols operating on large finite fields $\mathbb{F}_q$ has raised the need for efficient cryptographic primitives in this setting, commonly referred to as Arithmetization-Oriented (AO). The cryptanalysis of AO hash functions is essentially done through the study of the CICO problem on the underlying permutation. Two recent works at Crypto 2024 and Asiacrypt 2024 managed to solve the CICO problem much more efficiently than...
Garbled Lookup Tables from Homomorphic Secret Sharing
Liqiang Liu, Tianren Liu, Bo Peng
Cryptographic protocols
Garbled Circuit (GC) is a fundamental tool in cryptography, especially in secure multiparty computation. Most garbling schemes follow a gate-by-gate paradigm. The communication cost is proportional to the circuit size times the security parameter $\lambda$.
Recently, Heath, Kolesnikov and Ng (Eurocrypt 2024) partially transcend the circuit size barrier by considering large gates. To garble an arbitrary $n$-input $m$-output gate, their scheme requires $O(nm\lambda) + 2^nm$ bits of...
On the Power of Polynomial Preprocessing: Proving Computations in Sublinear Time, and More
Matteo Campanelli, Mario Carrillo, Ignacio Cascudo, Dario Fiore, Danilo Francati, Rosario Gennaro
Cryptographic protocols
Cryptographic proof systems enable a verifier to be convinced of a computation's correctness without re-executing it; common efficiency requirements include both succinct proofs and fast verification. In this work we put forth the general study of cryptographic proof systems with \textit{sublinear} proving time (after a preprocessing).
Prior work has achieved sublinear proving only for limited computational settings (e.g., vector commitments and lookup arguments), relying on specific...
Binary Codes for Error Detection and Correction in a Computationally Bounded World
Jad Silbak, Daniel Wichs
Foundations
We study error detection and correction in a computationally bounded world, where errors are introduced by an arbitrary $\textit{polynomial-time}$ adversarial channel. Our focus is on $\textit{seeded}$ codes, where the encoding and decoding procedures can share a public random seed, but are otherwise deterministic. We can ask for either $\textit{selective}$ or $\textit{adaptive}$ security, depending on whether the adversary can choose the message being encoded before or after seeing the...
Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM
Jeremiah Blocki, Seunghoon Lee
Public-key cryptography
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
How to Prove False Statements: Practical Attacks on Fiat-Shamir
Dmitry Khovratovich, Ron D. Rothblum, Lev Soukhanov
Cryptographic protocols
The Fiat-Shamir (FS) transform is a prolific and powerful technique for compiling public-coin interactive protocols into non-interactive ones. Roughly speaking, the idea is to replace the random coins of the verifier with the evaluations of a complex hash function.
The FS transform is known to be sound in the random oracle model (i.e., when the hash function is modeled as a totally random function). However, when instantiating the random oracle using a concrete hash function, there...
Simultaneous-Message and Succinct Secure Computation
Elette Boyle, Abhishek Jain, Sacha Servan-Schreiber, Akshayaram Srinivasan
Cryptographic protocols
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$.
Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
CAPSS: A Framework for SNARK-Friendly Post-Quantum Signatures
Thibauld Feneuil, Matthieu Rivain
Cryptographic protocols
In this paper, we present a general framework for constructing SNARK-friendly post-quantum signature schemes based on minimal assumptions, specifically the security of an arithmetization-oriented family of permutations. The term "SNARK-friendly" here refers to the efficiency of the signature verification process in terms of SNARK constraints, such as R1CS constraints. Within the CAPSS framework, signature schemes are designed as proofs of knowledge of a secret preimage of a one-way function,...
Skyscraper-v2: Fast Hashing on Big Primes
Clémence Bouvier, Lorenzo Grassi, Dmitry Khovratovich, Katharina Koschatko, Christian Rechberger, Fabian Schmid, Markus Schofnegger
Secret-key cryptography
Arithmetic hash functions defined over prime fields have been actively developed and used in verifiable computation (VC) protocols. Among those, elliptic-curve-based SNARKs require large (256-bit and higher) primes. Such hash functions are notably slow, losing a factor of up to 1000 compared to regular constructions like SHA-2/3.
In this paper, we present the hash function Skyscraper-v2, which is aimed at large prime fields and provides major improvements compared to Reinforced Concrete...
Hash-Based Multi-Signatures for Post-Quantum Ethereum
Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner
Public-key cryptography
With the threat posed by quantum computers on the horizon, systems like Ethereum must transition to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives is the non-interactive multi-signature scheme used in Ethereum's proof-of-stake consensus, currently implemented with BLS signatures. This primitive enables validators to independently sign blocks, with their signatures then publicly aggregated into a compact aggregate signature.
In this...
Black-Box Registered ABE from Lattices
Ziqi Zhu, Kai Zhang, Zhili Chen, Junqing Gong, Haifeng Qian
Public-key cryptography
This paper presents the first black-box registered ABE for circuit from lattices. The selective security is based on evasive LWE assumption [EUROCRYPT'22, CRYPTO'22]. The unique prior Reg-ABE scheme from lattices is derived from non-black-box construction based on function-binding hash and witness encryption [CRYPTO'23]. Technically, we first extend the black-box registration-based encryption from standard LWE [CRYPTO'23] so that we can register a public key with a function; this yields a...
Round-Optimal Compiler for Semi-Honest to Malicious Oblivious Transfer via CIH
Varun Madathil, Alessandra Scafuro, Tanner Verber
Foundations
A central question in the theory of cryptography is whether we can build protocols that achieve stronger security guarantees, e.g., security against malicious adversaries, by combining building blocks that achieve much weaker security guarantees, e.g., security only against semi-honest adversaries; and with the minimal number of rounds. An additional focus is whether these building blocks can be used only as a black-box. Since Oblivious Transfer (OT) is the necessary and sufficient building...
Compact Key Storage in the Standard Model
Yevgeniy Dodis, Daniel Jost
Cryptographic protocols
In recent work [Crypto'24], Dodis, Jost, and Marcedone introduced Compact Key Storage (CKS) as a modern approach to backup for end-to-end (E2E) secure applications. As most E2E-secure applications rely on a sequence of secrets $(s_1,...,s_n)$ from which, together with the ciphertexts sent over the network, all content can be restored, Dodis et al. introduced CKS as a primitive for backing up $(s_1,...,s_n)$. The authors provided definitions as well as two practically efficient schemes (with...
A Note on the Minimality of One-Way Functions in Post-Quantum Cryptography
Sam Buxbaum, Mohammad Mahmoody
Foundations
In classical cryptography, one-way functions (OWFs) play a central role as the minimal primitive that (almost) all primitives imply. The situation is more complicated in quantum cryptography, in which honest parties and adversaries can use quantum computation and communication, and it is known that analogues of OWFs in the quantum setting might not be minimal.
In this work we ask whether OWFs are minimal for the intermediate setting of post-quantum cryptography, in which the protocols...
Zero Knowledge Memory-Checking Techniques for Stacks and Queues
Alexander Frolov
Cryptographic protocols
There are a variety of techniques for implementing read/write memory inside of zero-knowledge proofs and validating consistency of memory accesses. These techniques are generally implemented with the goal of implementing a RAM or ROM. In this paper, we present memory techniques for more specialized data structures: queues and stacks. We first demonstrate a technique for implementing queues in arithmetic circuits that requires 3 multiplication gates and 1 advice value per read and 2...
Optimally Secure TBC Based Accordion Mode
Nilanjan Datta, Avijit Dutta, Shibam Ghosh, Hrithik Nandi
Secret-key cryptography
The design of tweakable wide block ciphers has advanced significantly over the past two decades. This evolution began with the approach of designing a wide block cipher by Naor and Reingold. Since then, numerous tweakable wide block ciphers have been proposed, many of which build on existing block ciphers and are secure up to the birthday bound for the total number of blocks queried. Although there has been a slowdown in the development of tweakable wide block cipher modes in last couple of...
Hash-Prune-Invert: Improved Differentially Private Heavy-Hitter Detection in the Two-Server Model
Borja Balle, James Bell, Albert Cheu, Adria Gascon, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Thomas Steinke
Cryptographic protocols
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
Ring Ring! Who's There? A Privacy Preserving Mobile Number Search
Akshit Aggarwal
Applications
Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main limitations of their protocols are 1) high communication complexity, that is, $O(xlogy)$ (where $x$ is total number of...
Universal SNARGs for NP from Proofs of Correctness
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Surya Mathialagan
Cryptographic protocols
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness.
Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
SoK: Security of the Ascon Modes
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of...
Proof of Time: A Method for Verifiable Temporal Commitments Without Timestamp Disclosure
Alexander John Lee
Cryptographic protocols
This paper introduces a cryptographic method that enables users to prove that an event occurred in the past and that a specified amount of time has since elapsed, without disclosing the exact timestamp of the event. The method leverages zero-knowledge proofs and an on-chain Incremental Merkle Tree to store hash commitments. By utilizing the Poseidon hash function and implementing zero-knowledge circuits in Noir, this approach ensures both the integrity and confidentiality of temporal information.
Vote&Check: Secure Postal Voting with Reduced Trust Assumptions
Véronique Cortier, Alexandre Debant, Pierrick Gaudry, Léo Louistisserand
Applications
Postal voting is a frequently used alternative to on-site voting. Traditionally, its security relies on organizational measures, and voters have to trust many entities. In the recent years, several schemes have been proposed to add verifiability properties to postal voting, while preserving vote privacy.
Postal voting comes with specific constraints. We conduct a systematic analysis of this setting and we identify a list of generic attacks, highlighting that some attacks seem unavoidable....
DGMT: A Fully Dynamic Group Signature From Symmetric-key Primitives
Mojtaba Fadavi, Sabyasachi Karati, Aylar Erfanian, Reihaneh Safavi-Naini
Foundations
A group signatures allows a user to sign a message anonymously on behalf of a group and provides accountability by using an opening authority who can ``open'' a signature and reveal the signer's identity. Group signatures have been widely used in privacy-preserving applications including anonymous attestation and anonymous authentication. Fully dynamic group signatures allow new members to join the group and existing members to be revoked if needed. Symmetric-key based group signature...
Generic Security of GCM-SST
Akiko Inoue, Ashwin Jha, Bart Mennink, Kazuhiko Minematsu
Secret-key cryptography
Authenticated encryption schemes guarantee that parties who share a secret key can communicate confidentially and authentically. One of the most popular and widely used authenticated encryption schemes is GCM by McGrew and Viega (INDOCRYPT 2004). However, despite its simplicity and efficiency, GCM also comes with its deficiencies, most notably devastating insecurity against nonce-misuse and imperfect security for short tags.
Very recently, Campagna, Maximov, and Mattsson presented GCM-SST...
Deletions and Dishonesty: Probabilistic Data Structures in Adversarial Settings
Mia Filić, Keran Kocher, Ella Kummer, Anupama Unnikrishnan
Applications
Probabilistic data structures (PDS) are compact representations of high-volume data that provide approximate answers to queries about the data. They are commonplace in today's computing systems, finding use in databases, networking and more. While PDS are designed to perform well under benign inputs, they are frequently used in applications where inputs may be adversarially chosen. This may lead to a violation of their expected behaviour, for example an increase in false positive rate.
In...
On the Insecurity of Bloom Filter-Based Private Set Intersections
Jelle Vos, Jorrit van Assen, Tjitske Koster, Evangelia Anna Markatou, Zekeriya Erkin
Attacks and cryptanalysis
Private set intersections are cryptographic protocols that compute the intersection of multiple parties' private sets without revealing elements that are not in the intersection. These protocols become less efficient when the number of parties grows, or the size of the sets increases. For this reason, many protocols are based on Bloom filters, which speed up the protocol by approximating the intersections, introducing false positives with a small but non-negligible probability. These false...
Opening the Blackbox: Collision Attacks on Round-Reduced Tip5, Tip4, Tip4' and Monolith
Fukang Liu, Katharina Koschatko, Lorenzo Grassi, Hailun Yan, Shiyao Chen, Subhadeep Banik, Willi Meier
Attacks and cryptanalysis
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...
Cryptography Experiments In Lean 4: SHA-3 Implementation
Gérald Doussot
Implementation
In this paper we explain how we implemented the Secure Hash Algorithm-3 (SHA-3) family of functions in Lean 4, a functional programming language and theorem prover. We describe how we used several Lean facilities including type classes, dependent types, macros, and formal verification, and then refined the design to provide a simple one-shot and streaming API for hashing, and Extendable-output functions (XOFs), to reduce potential for misuse by users, and formally prove properties about the...
On the Black-Box Complexity of Private-Key Inner-Product Functional Encryption
Mohammad Hajiabadi, Roman Langrehr, Adam O'Neill, Mingyuan Wang
Foundations
We initiate the study of the black-box complexity of private-key functional encryption (FE). Of central importance in the private-key setting is the inner-product functionality, which is currently only known from assumptions that imply public-key encryption, such as Decisional Diffie-Hellman or Learning-with-Errors. As our main result, we rule out black-box constructions of private-key inner-product FE from random oracles. This implies a black-box separation between private-key...
Black-box Collision Attacks on Widely Deployed Perceptual Hash Functions
Diane Leblanc-Albarel, Bart Preneel
Attacks and cryptanalysis
Perceptual hash functions identify multimedia content by mapping similar inputs to similar outputs. They are widely used for detecting copyright violations and illegal content but lack transparency, as their design details are typically kept secret.
Governments are considering extending the application of these functions to Client-Side Scanning (CSS) for end-to-end encrypted services: multimedia content would be verified against known illegal content before applying encryption.
In 2021,...
Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD: More Applications of Pseudo-Random Injections
Mustafa Khairallah
Secret-key cryptography
Pseudo-Random Injections (PRIs) have been used in several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committing scheme by encrypting part of the plaintext...
ColliderScript: Covenants in Bitcoin via 160-bit hash collisions
Ethan Heilman, Victor I. Kolobov, Avihu M. Levy, Andrew Poelstra
Cryptographic protocols
We introduce a method for enforcing covenants on Bitcoin outputs without requiring any changes to Bitcoin by designing a hash collision based equivalence check which bridges Bitcoin's limited Big Script to Bitcoin's Small Script. This allows us evaluate the signature of the spending transaction (available only to Big Script) in Small Script. As Small Script enables arbitrary computations, we can introspect into the spending transaction and enforce covenants on it.
Our approach leverages...
An Efficient and Secure Boolean Function Evaluation Protocol
Sushmita Sarkar, Vikas Srivastava, Tapaswini Mohanty, Nibedita Kundu, Sumit Kumar Debnath
Cryptographic protocols
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
Black-Box Timed Commitments from Time-Lock Puzzles
Hamza Abusalah, Gennaro Avitabile
Cryptographic protocols
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck.
In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
An efficient collision attack on Castryck-Decru-Smith’s hash function
Ryo Ohashi, Hiroshi Onuki
Attacks and cryptanalysis
In 2020, Castryck-Decru-Smith constructed a hash function using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices quite "close" to the square of a supersingular elliptic curve with a known endomorphism ring. In this paper, we propose an algorithm for recovering a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
Observing the growing popularity of random permutation (RP)-based designs (e.g, Sponge), Bart Mennink in CRYPTO 2019 has initiated an interesting research in the direction of RP-based pseudorandom functions (PRFs). Both are claimed to achieve beyond-the-birthday-bound (BBB) security of $2n/3$ bits ($n$ being the input block size in bits) but require two instances of RPs and can handle only one-block inputs. In this work, we extend research in this direction by providing two new BBB-secure...
One-Time Pad (OTP), introduced by Shannon, is well-known as an unconditionally secure encryption algorithm and has become the cornerstone of modern cryptography. However, the unconditional security of OTP applies solely to confidentiality and does not extend to integrity. Hash functions such as SHA2, SHA3 or SM3 applies only to integrity but not to confidentiality and also can not obtain unconditional security. Encryption and digital signatures based on asymmetric cryptography can provide...
Constructing a committing authenticated encryption (AE) satisfying the CMT-4 security notion is an ongoing research challenge. We propose a new mode KIVR, a black-box conversion for adding the CMT-4 security to existing AEs. KIVR is a generalization of the Hash- then-Enc (HtE) [Bellare and Hoang, EUROCRYPT 2022] and uses a collision-resistant hash function to generate an initial value (or nonce) and a mask for redundant bits, in addition to a temporary key. We ob- tain a general bound...
This paper studies the security of key derivation functions (KDFs), a central class of cryptographic algorithms used to derive multiple independent-looking keys (each associated with a particular context) from a single secret. The main security requirement is that these keys are pseudorandom (i.e., the KDF is a pseudorandom function). This paper initiates the study of an additional security property, called key control (KC) security, first informally put forward in a recent update to NIST...
One of the main shortcomings of classical distributed cryptography is its reliance on a certain fraction of participants remaining honest. Typically, honest parties are assumed to follow the protocol and not leak any information, even if behaving dishonestly would benefit them economically. More realistic models used in blockchain consensus rely on weaker assumptions, namely that no large coalition of corrupt parties exists, although every party can act selfishly. This is feasible since, in...
This paper presents a novel approach to zero-trust anonymous reputation update in crowd sensing IoT applications. We use a suite of cryptographic functions to achieve anonymity, including unlinkability of sensing reports to the principals that submit them and to one another, while enabling the infrastructure to reliably quantify the degree of trust expressed as a reputation level. The protocol is low-cost for the anonymous participant due to the use of cheap standard algorithms: low-exponent...
We study several problems in the intersection of cryptography and complexity theory based on the following high-level thesis. 1) Obfuscation can serve as a general-purpose worst-case to average-case reduction, reducing the existence of various forms of cryptography to corresponding worst-case assumptions. 2) We can therefore hope to overcome barriers in cryptography and average-case complexity by (i) making worst-case hardness assumptions beyond $\mathsf{P}\neq \mathsf{NP}$, and...
In this work, we propose a novel systematic approach for obtaining leftover hash lemmas (LHLs) over cyclotomic rings. Such LHLs build a fundamental tool in lattice-based cryptography, both in theoretical reductions as well as in the design of cryptographic primitives. The scattered set of prior works makes it difficult to navigate the landscape and requires a substantial effort to understand the mathematical constraints under which the LHL holds over cyclotomic rings. This is especially...
Onion routing is a popular practical approach to anonymous communication, and the subject of a growing body of foundational theoretical work aiming to design efficient schemes with provable anonymity, the strongest notion of which is full anonymity. Unfortunately, all previous schemes that achieve full anonymity assume the synchronous communication setting, which is unrealistic as real networks may experience message loss and timing attacks that render such schemes insecure. Recently,...
Avoiding feeding forward seems to be a major goal of the sponge construction. We make a step back and investigate adding feeding forward back to sponge. The obtained sponge-with-feeding-forward construction has a number of benefits: (1) In the random permutation model, its preimage and second preimage security bounds are much better than the standard sponge with the same capacity, while collision and indifferentiability security bounds are comparable; (2) Its collision and (second) preimage...
We show that the Negi-Kumar certificateless ring signature scheme [Wirel. Pers. Commun. 134(4): 1987-2011 (2024)] is insecure against forgery attack. The signer's public key $PK_j$ and secret key $PSK_j$ are simply invoked to compute the hash value $H_{2_j}=h_5(m_j\|PSK_j\|PK_j\|t_j)$, which cannot be retrieved by the verifier for checking their dependency. The explicit dependency between the public key and secret key is not properly used to construct some intractable problems, such...
Suppose that we are given a weak \emph{Non-Interactive Zero-Knowledge} (NIZK) proof system for NP with non-negligible soundness and zero-knowledge errors, denoted by $\alpha$ and $\beta$, respectively. Is it possible to to reduce these errors to a negligible level? This problem, known as NIZK amplification, was introduced by Goyal, Jain, and Sahai (Crypto'19) and was further studied by Bitansky and Geier (Crypto'24). The latter work provides amplification theorems for proofs and arguments,...
RIPEMD-128 is an ISO/IEC standard hash function based on a double-branch Merkle-Damgård structure. Its compression function includes two branches with distinct Boolean functions and message expansion permutations. To perform a collision attack, differential characteristics must be constructed simultaneously for both branches under the same message word difference, and the message modification order must align with conditions in both branches. These factors make collision attacks on (reduced)...
Vistrutah is a large block cipher with block sizes of 256 and 512 bits. It iterates a step function that applies two AES rounds to each 128-bit block of the state, followed by a state-wide cell permutation. Like Simpira, Haraka, Pholkos, and ASURA, Vistrutah leverages AES instructions to achieve high performance. For each component of Vistrutah, we conduct a systematic evaluation of functions that can be efficiently implemented on both Intel and Arm architectures. We therefore expect...
The sponge is a popular construction of hash function design. It operates with a $b$-bit permutation on a $b$-bit state, that is split into a $c$-bit inner part and an $r$-bit outer part. However, the security bounds of the sponge are most often dominated by the capacity $c$: If the length of the digest is $n$ bits, the construction achieves $\min\{n/2,c/2\}$-bit collision resistance and $\min\{n,c/2\}$-bit second preimage resistance (and a slightly more complex but similar bound for...
At the current state of the art, algebraic attacks are the most efficient method for finding preimages and collisions for arithmetization-oriented hash functions, such as the closely related primitives Poseidon/Poseidon2 and Neptune. In this paper, we revisit Gröbner basis (GB) attacks that exploit subspace trails to linearize some partial rounds, considering both sponge and compression modes. Starting from Poseidon's original security evaluation, we identified some inaccuracies in the...
In 2022, Antonov showed that SHA-256 does not satisfy some secure property that SPHINCS$^+$ needs, and a fogery attack based on this observation reduces the concrete classical security by approximately 40 bits of security. This illustrates a more general concern: the provable security of some hash-based signature schemes can be compromised when implemented with certain real-world hash functions, and motivates the need to design new functions with rigorous, provable security guarantees....
Poseidon and Poseidon2 are cryptographic hash functions designed for efficient zero-knowledge proof protocols and have been widely adopted in Ethereum applications. To encourage security research, the Ethereum Foundation announced a bounty program in November 2024 for breaking the Poseidon challenges, i.e. solving the CICO (Constrained Input, Constrained Output) problems for round-reduced Poseidon constructions. In this paper, we explain how to apply the Graeffe transform to univariate...
Witness encryption allows one to encrypt a message to an $\mathsf{NP}$ relation $\mathcal{R}$ and a statement $x$. The corresponding decryption key is any valid $\mathsf{NP}$ witness $w$. In a succinct witness encryption scheme, we require that the size of the ciphertext be sublinear in the size of the $\mathsf{NP}$ relation. Currently, all realizations of succinct witness encryption for $\mathsf{NP}$ rely on strong assumptions such as pseudorandom obfuscation, extractable witness...
The Nakamoto consensus protocol underlying the Bitcoin blockchain uses proof of work as a voting mechanism. Honest miners who contribute hashing power towards securing the chain try to extend the longest chain they are aware of. Despite its simplicity, Nakamoto consensus achieves meaningful security guarantees assuming that at any point in time, a majority of the hashing power is controlled by honest parties. This also holds under ``resource variability'', i.e., if the total hashing power...
Recent years have seen the widespread adoption of zkSNARKs constructed over small fields, including but not limited to, the Goldilocks field, small Mersenne prime fields, and tower of binary fields. Their appeal stems primarily from their efficacy in proving computations with small bit widths, which facilitates efficient proving of general computations and offers significant advantages, notably yielding remarkably fast proving efficiency for tasks such as proof of knowledge of hash...
Conventional hash functions are often inefficient in zero-knowledge proof settings, leading to design of several ZK-friendly hash functions. On the other hand, lookup arguments have recently been incorporated into zero-knowledge protocols, allowing for more efficient handling of ``ZK-unfriendly'' operations, and hence ZK-friendly hash functions based on lookup tables. In this paper, we propose a new ZK-friendly hash function, dubbed $\mathsf{Polocolo}$, that employs an S-box constructed...
Liskov, Rivest, and Wagner, in their seminal work, formulated tweakable blockciphers and proposed two blockcipher-based design paradigms, LRW1 and LRW2, where the basic design strategy is to xor the masked tweak to the input and output of a blockcipher. The 2-round cascaded LRW2 and 4-round cascaded LRW1 have been proven to be secure up to $\mathcal{O}(2^{3n/4})$ queries, but $n$-bit optimal security still remains elusive for these designs. In their paper, Liskov also posed an open challenge...
Private set intersection (PSI) allows two parties to jointly compute the intersection of their private sets without revealing any additional information. Structure-aware PSI (sa-PSI), introduced by Garimella et al. (Crypto'22), is a variant where Alice's input set has a publicly known structure and Bob's input set remains unstructured, enabling new applications like fuzzy PSI. Their construction relies solely on lightweight cryptographic primitives such as symmetric-key primitives and...
The Fiat-Shamir transform is one of the most widely applied methods for secure signature construction. Fiat-Shamir starts with an interactive zero-knowledge identification protocol and transforms this via a hash function into a non-interactive signature. The protocol's zero-knowledge property ensures that a signature does not leak information on its secret key $\mathbf s$, which is achieved by blinding $\mathbf s$ via proper randomness $\mathbf y$. Most prominent Fiat-Shamir examples are...
Arithmetization-Oriented (AO) symmetric primitives play an important role in the efficiency and security of zero-knowledge (ZK) proof systems. The design and cryptanalysis of AO symmetric-key primitives is a new topic particularly focusing on algebraic aspects. An efficient AO hash function aims at lowering the multiplicative complexity in the arithmetic circuit of the hash function over a suitable finite field. The AO hash function Anemoi was proposed in CRYPTO 2023. In this work we...
Distributed Hash Tables (DHTs) are peer-to-peer protocols that serve as building blocks for more advanced applications. Recent examples, motivated by blockchains, include decentralized storage networks (e.g., IPFS), data availability sampling, or Ethereum's peer discovery protocol. In the blockchain context, DHTs are vulnerable to Sybil attacks, where an adversary compromises the network by joining with many malicious nodes. Mitigating such attacks requires restricting the adversary's...
AES has cemented its position as the primary symmetric-key primitive for a wide range of cryptographic applications, which motivates the analysis on the concrete security of AES in practical instantiations, for instance, the collision resistance of AES-based hashing, the key commitment security of AES-based authenticated encryption schemes, and the one-wayness of AES-based one-way functions in ZK and MPC protocols. In this work, we introduce single-color initial structures (SCIS) into...
For very long messages, the reliable broadcast protocol with the best communication complexity to date is the Minicast protocol of Locher & Shoup [2024]. To reliably broadcast a message $m$ to $n$ parties, Minicast has communication complexity $\sim 1.5 |m| n$, when $|m|$ is large. However, the round complexity of Minicast is 4, which is worse than the 3 rounds of the classical protocol of Bracha. We give a new reliable broadcast protocol whose communication complexity is essentially the...
We study the problem of how to find the inverse of shift invariant (SI) transformations proposed in Daemen's thesis. In particular, two of them have been used in practice: $y_i=x_i\oplus \overline{x_{i+1}}x_{i+2}$ and $y_i=x_i\oplus \overline{x_{i+1}}x_{i+2}x_{i+3}$. The first one is the well-known $\chi$ transformation used in \textsf{SHA-3}, \textsf{Subterranean 2.0} and \textsf{Rasta}, while the second one is used in a recently proposed ZK-friendly hash function called Monolith. While the...
We present conceptually simple and practically competitive constructions of verifiable random functions (VRF) that fulfill strong notions of unbiasability recently introduced by Giunta and Stewart. VRFs with such strong properties were previously only known in the random oracle model or from the decisional Diffie–Hellman assumption with preprocessing. In contrast, our constructions are based on generic assumptions and are thus the first to be plausibly post-quantum secure in the standard...
The sponge is a cryptographic construction that turns a public permutation into a hash function. When instantiated with the Keccak permutation, the sponge forms the NIST SHA-3 standard. SHA-3 is a core component of most post-quantum public-key cryptography schemes slated for worldwide adoption. While one can consider many security properties for the sponge, the ultimate one is \emph{indifferentiability from a random oracle}, or simply \emph{indifferentiability}. The sponge was proved...
Truncation of cryptographic outputs is a technique that was recently introduced in Baldimtsi et al. [BCCK22]. The general idea is to try out many inputs to some cryptographic algorithm until the output (e.g. a public-key or some hash value) falls into some sparse set and thus can be compressed: by trying out an expected $2^k$ different inputs one will find an output that starts with $k$ zeros. Using such truncation one can for example save substantial gas fees on Blockchains where...
Constructing and implementing isogeny-based cryptographic primitives is an active research. In particular, performing length-$n$ isogenies walks over quadratic field extensions of $\mathbb{F}_p$ plays an exciting role in some constructions, including Hash functions, Verifiable Delay Functions, Key-Encapsulation Mechanisms, and generic proof systems for isogeny knowledge. Remarkably, many isogeny-based constructions, for efficiency, perform $2$-isogenies through square root...
Johnson and Lindenstrauss (Contemporary Mathematics, 1984) showed that for $n > m$, a scaled random projection $\mathbf{A}$ from $\mathbb{R}^n$ to $\mathbb{R}^m$ is an approximate isometry on any set $S$ of size at most exponential in $m$. If $S$ is larger, however, its points can contract arbitrarily under $\mathbf{A}$. In particular, the hypergrid $([-B, B] \cap \mathbb{Z})^n$ is expected to contain a point that is contracted by a factor of $\kappa_{\mathsf{stat}} = \Theta(B)^{-1/\alpha}$,...
In this paper, we present an improved framework for proving query bounds in the Quantum Random Oracle Model (QROM) for algorithms with both quantum and classical query interfaces, where the classical input is partially controlled by the adversary. By extending existing techniques, we develop a method to bound the progress an adversary can make with such partial-control classical queries. While this framework is applicable to different hash function properties, we decided to demonstrate the...
Weyman and Zelevinsky generalised Vandermonde matrices to higher dimensions, which we call Vandermonde-Weyman-Zelevinsky tensors. We generalise Lagrange interpolation to higher dimensions by devising a nearly linear time algorithm that given a Vandermonde-Weyman-Zelevinsky tensor and a sparse target vector, finds a tuple of vectors that hit the target under tensor evaluation. Tensor evaluation to us means evaluating the usual multilinear form associated with the tensor in all but one...
Set reconciliation is a fundamental task in distributed systems, particularly in blockchain networks, where it enables the synchronization of transaction pools among peers and facilitates block dissemination. Existing traditional set reconciliation schemes are either statistical, providing success probability as a function of the communication overhead and the size of the symmetric difference, or require parametrization and estimation of the size of the symmetric difference, which can be...
This work presents SPHINCSLET, the first fully standard-compliant and area-efficient hardware implementation of the SLH-DSA algorithm, formerly known as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed to be parameterizable across different security levels and hash functions, offering a balanced trade-off between area efficiency and performance. Existing hardware implementations either feature a large area footprint to achieve fast signing and verification or adopt a...
A Random Oracle Combiner (ROC), introduced by Dodis et al. (CRYPTO ’22), takes two hash functions $h_1, h_2$ from m bits to n bits and outputs a new hash function $C$ from $m$' to $n$' bits. This function C is guaranteed to be indifferentiable from a fresh random oracle as long as one of $h_1$ and $h_2$ (say, $h_1$) is a random oracle, while the other h2 can “arbitrarily depend” on $h_1$. The work of Dodis et al. also built the first length-preserving ROC, where $n$′ = $n$. Unfortunately,...
Sanitizable Signature Schemes (SSS) enable a designated party, the sanitizer, to modify predefined parts of a signed message without invalidating the signature, making them useful for applications like pseudonymization and redaction. Since their introduction by Ateniese et al. (ESORICS'05), several classical SSS constructions have been proposed, but none have been instantiated from quantum-resistant assumptions. In this work, we develop the first quantum-secure sanitizable signature schemes...
Yao's garbled circuits have received huge attention in both theory and practice. While garbled circuits can be constructed using minimal assumption (i.e., the existence of pseudorandom functions or one-way functions), the state-of-the-art constructions (e.g., Rosulek-Roy, Crypto 2021) are based on stronger assumptions. In particular, the ``Free-XOR'' technique (Kolesnikov-Schneider, ICALP 2008) is essential in these state-of-the-art constructions, and their security can only be proven in the...
The GCM authenticated encryption (AE) scheme is one of the most widely used AE schemes in the world, while it suffers from risk of nonce misuse, short message length per encryption and an insufficient level of security. The goal of this paper is to design new AE schemes achieving stronger provable security in the standard model and accepting longer nonces (or providing nonce misuse resistance), with the design rationale behind GCM. As a result, we propose two enhanced variants of GCM and...
Password-Authenticated Key Exchange (PAKE) establishes a secure channel between two parties who share a password. Asymmetric PAKE is a variant of PAKE, where one party stores a hash of the password to preserve security under the situation that the party is compromised. The security of PAKE and asymmetric PAKE is often analyzed in the framework of universal composability (UC). Abdalla et al. (CRYPTO '20) relaxed the UC security of PAKE and showed that the relaxed security still guarantees...
The Fiat-Shamir transformation underlies numerous non-interactive arguments, with variants that differ in important ways. This paper addresses a gap between variants analyzed by theoreticians and variants implemented (and deployed) by practitioners. Specifically, theoretical analyses typically assume parties have access to random oracles with sufficiently large input and output size, while cryptographic hash functions in practice have fixed input and output sizes (pushing practitioners...
We revisit the question of minimizing the proof length of designated-verifier succinct non-interactive arguments (dv-SNARGs) in the generic group model. Barta et al. (Crypto 2020) constructed such dv-SNARGs with inverse-polynomial soundness in which the proof consists of only two group elements. For negligible soundness, all previous constructions required a super-constant number of group elements. We show that one group element suffices for negligible soundness. Concretely, we obtain...
We describe a strategy for a nation to acquire majority stake in Bitcoin with zero cost to the taxpayers of the nation. We propose a bitcoin fork sponsored by the the government of the nation, and backed by the full faith of treasury of the nation, such that the genesis block of this fork attributes fixed large amount of new kinds of tokens called strategic-reserve-bitcoin tokens (SRBTC) to the nation's treasury, which is some multiple (greater than one) of the amount of all Bitcoin tokens...
One-shot signatures (OSS) were defined by Amos, Georgiou, Kiayias, and Zhandry (STOC'20). These allow for signing exactly one message, after which the signing key self-destructs, preventing a second message from ever being signed. While such an object is impossible classically, Amos et al observe that OSS may be possible using quantum signing keys by leveraging the no-cloning principle. OSS has since become an important conceptual tool with many applications in decentralized settings and for...
The most fundamental performance metrics of secure multi-party computation (MPC) protocols are related to the number of messages the parties exchange (i.e., round complexity), the size of these messages (i.e., communication complexity), and the overall computational resources required to execute the protocol (i.e., computational complexity). Another quality metric of MPC protocols is related to the black-box or non-black-box use of the underlying cryptographic primitives. Indeed, the design...
Poly1305 is a widely-deployed polynomial hash function. The rationale behind its design was laid out in a series of papers by Bernstein, the last of which dates back to 2005. As computer architectures evolved, some of its design features became less relevant, but implementers found new ways of exploiting these features to boost its performance. However, would we still converge to this same design if we started afresh with today's computer architectures and applications? To answer this...
In this paper, we study preimage resistance of the SHA-3 standard. We propose a squeeze meet-in-the-middle attack as a new preimage attack method for the sponge functions. This attack combines the squeeze attack and meet-in-the-middle attack, and is implemented by internal differentials. We analyze the inverse operation of the SHA-3 round function, and develop a new target internal differential algorithm as well as a linearization technique for the Sbox in the backward phase. In addition, we...
This paper introduces a new one-more computational problem for lattice-based cryptography, which we refer to as the Algebraic One-More MISIS problem, or AOM-MISIS for short. It is a modification of the AOM-MLWE problem recently introduced by Espitau et al. (CRYPTO '24) to prove security of new two-round threshold signatures. Our first main result establishes that the hardness of AOM-MISIS is implied by the hardness of MSIS and MLWE (with suitable parameters), both of which are standard...
Trapdoor hash functions (TDHs) are compressing hash functions, with an additional trapdoor functionality: Given a encoding key for a function $f$, a hash on $x$ together with a (small) input encoding allow one to recover $f(x)$. TDHs are a versatile tool and a useful building block for more complex cryptographic protocols. In this work, we propose the first TDH construction assuming the (quasi-polynomial) hardness of the LPN problem with noise rate $\epsilon = O(\log^{1+\beta} n / n)$ for...
We present a new generalization of (zk-)SNARKs specifically designed for the application domain of safety-critical control systems. These need to be protected against adversarial tampering as well as non-malicious but unintended system failures due to random faults in components. Our SNARKs combine two additional features at the same time. Besides the verification of correct computation, they also allow, first, the verification of input data authenticity. Specifically, a verifier can confirm...
A tuple of NP statements $(x_1, \ldots, x_k)$ satisfies a monotone policy $P \colon \{0,1\}^k \to \{0,1\}$ if $P(b_1,\ldots,b_k)=1$, where $b_i = 1$ if and only if $x_i$ is in the NP language. A monotone-policy batch argument (monotone-policy BARG) for NP is a natural extension of regular batch arguments (BARGs) that allows a prover to prove that $x_1, \ldots, x_k$ satisfy a monotone policy $P$ with a proof of size $\mathsf{poly}(\lambda, |\mathcal{R}|, \log k)$, where $|\mathcal{R}|$ is the...
Following Ibukiyama, Katsura and Oort, all principally polarized superspecial abelian surfaces over $\overline{\mathbb{F}}_p$ can be represented by a certain type of $2 \times 2$ matrix $g$, having entries in the quaternion algebra $B_{p,\infty}$. We present a heuristic polynomial-time algorithm which, upon input of two such matrices $g_1, g_2$, finds a "connecting matrix" representing a polarized isogeny of smooth degree between the corresponding surfaces. Our algorithm should be thought...
Considering security against quantum adversaries, while it is important to consider the traditional existential unforgeability (EUF-CMA security), it is desirable to consider security against adversaries making quantum queries to the signing oracle: Plus-one security (PO security) and blind unforgeability (BU security) proposed by Boneh and Zhandry (Crypto 2013) and Alagic et al. (EUROCRYPT 2020), respectively. Hash-and-sign is one of the most common paradigms for constructing EUF-CMA-secure...
We propose the notion of succinct oblivious tensor evaluation (OTE), where two parties compute an additive secret sharing of a tensor product of two vectors $\mathbf{x} \otimes \mathbf{y}$, exchanging two simultaneous messages. Crucially, the size of both messages and of the CRS is independent of the dimension of $\mathbf{x}$. We present a construction of OTE with optimal complexity from the standard learning with errors (LWE) problem. Then we show how this new technical tool enables a...
The Fiat–Shamir transformation is a fundamental cryptographic technique widely used to convert public-coin interactive protocols into non-interactive ones. This transformation is crucial in both theoretical and practical applications, particularly in the construction of succinct non-interactive arguments (SNARKs). While its security is well-established in the random oracle model, practical implementations replace the random oracle with a concrete hash function, where security is merely...
A Garbling Scheme is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since its inception by Yao (FOCS'82, '86), optimizing the communication and computation complexities of securely garbling circuits has been an area of active research. One such optimization, and perhaps the most fundamental, is the `Free-XOR' technique (Kolesnikov and Schneider, ICALP'08) which allows XOR gates in a function garbling to not require representation, and therefore...
Recent applications and attacks have highlighted the need for authenticated encryption (AE) schemes to achieve the so-called committing security beyond privacy and authenticity. As a result, several generic solutions have been proposed to transform a non-committing AE scheme to a committing one, for both basic unique-nonce security and advanced misuse-resistant (MR) security. We observe that all existing practical generic transforms are subject to at least one of the following limitations:...
The concept of Anamorphic Encryption (Persiano, Phan and Yung, Eurocrypt '22), aims to enable private communication in settings where the usage of encryption is heavily controlled by a central authority (henceforth called the dictator) who can obtain users' secret keys. Since then, various works have improved our understanding of AE in several aspects, including its limitations. To this regard, two recent works constructed various Anamorphic-Resistant Encryption (ARE) schemes, i.e., schemes...
Garbling is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since the first construction by Yao (FOCS’82, ’86), a line of work has concerned itself with reducing the communication and computational complexity of that construction. One of the most efficient garbling schemes presently is the ‘Half Gates’ scheme by Zahur, Rosulek, and Evans (Eurocrypt’15). Despite its widespread adoption, the provable security of this scheme has been based on...
Grover's algorithm, which reduces the search complexity of symmetric-key ciphers and hash functions, poses a significant security challenge in cryptography. Recent research has focused on estimating Grover's search complexity and assessing post-quantum security. This paper analyzes a quantum circuit implementation of ASCON, including ASCON-AEAD, hash functions, and ASCON-80pq, in alignment with NIST’s lightweight cryptography standardization efforts. We place particular emphasis on circuit...
In the last decade, the introduction of advanced cryptographic protocols operating on large finite fields $\mathbb{F}_q$ has raised the need for efficient cryptographic primitives in this setting, commonly referred to as Arithmetization-Oriented (AO). The cryptanalysis of AO hash functions is essentially done through the study of the CICO problem on the underlying permutation. Two recent works at Crypto 2024 and Asiacrypt 2024 managed to solve the CICO problem much more efficiently than...
Garbled Circuit (GC) is a fundamental tool in cryptography, especially in secure multiparty computation. Most garbling schemes follow a gate-by-gate paradigm. The communication cost is proportional to the circuit size times the security parameter $\lambda$. Recently, Heath, Kolesnikov and Ng (Eurocrypt 2024) partially transcend the circuit size barrier by considering large gates. To garble an arbitrary $n$-input $m$-output gate, their scheme requires $O(nm\lambda) + 2^nm$ bits of...
Cryptographic proof systems enable a verifier to be convinced of a computation's correctness without re-executing it; common efficiency requirements include both succinct proofs and fast verification. In this work we put forth the general study of cryptographic proof systems with \textit{sublinear} proving time (after a preprocessing). Prior work has achieved sublinear proving only for limited computational settings (e.g., vector commitments and lookup arguments), relying on specific...
We study error detection and correction in a computationally bounded world, where errors are introduced by an arbitrary $\textit{polynomial-time}$ adversarial channel. Our focus is on $\textit{seeded}$ codes, where the encoding and decoding procedures can share a public random seed, but are otherwise deterministic. We can ask for either $\textit{selective}$ or $\textit{adaptive}$ security, depending on whether the adversary can choose the message being encoded before or after seeing the...
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
The Fiat-Shamir (FS) transform is a prolific and powerful technique for compiling public-coin interactive protocols into non-interactive ones. Roughly speaking, the idea is to replace the random coins of the verifier with the evaluations of a complex hash function. The FS transform is known to be sound in the random oracle model (i.e., when the hash function is modeled as a totally random function). However, when instantiating the random oracle using a concrete hash function, there...
We put forth and instantiate a new primitive we call simultaneous-message and succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern for secure computation in the following scenario: Alice has a large private input X, Bob has a small private input y, and Charlie wants to learn $f(X, y)$ for some public function $f$. Given a common reference string (CRS) setup phase, an SMS scheme for a function f is instantiated with two parties holding inputs $X$ and...
In this paper, we present a general framework for constructing SNARK-friendly post-quantum signature schemes based on minimal assumptions, specifically the security of an arithmetization-oriented family of permutations. The term "SNARK-friendly" here refers to the efficiency of the signature verification process in terms of SNARK constraints, such as R1CS constraints. Within the CAPSS framework, signature schemes are designed as proofs of knowledge of a secret preimage of a one-way function,...
Arithmetic hash functions defined over prime fields have been actively developed and used in verifiable computation (VC) protocols. Among those, elliptic-curve-based SNARKs require large (256-bit and higher) primes. Such hash functions are notably slow, losing a factor of up to 1000 compared to regular constructions like SHA-2/3. In this paper, we present the hash function Skyscraper-v2, which is aimed at large prime fields and provides major improvements compared to Reinforced Concrete...
With the threat posed by quantum computers on the horizon, systems like Ethereum must transition to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives is the non-interactive multi-signature scheme used in Ethereum's proof-of-stake consensus, currently implemented with BLS signatures. This primitive enables validators to independently sign blocks, with their signatures then publicly aggregated into a compact aggregate signature. In this...
This paper presents the first black-box registered ABE for circuit from lattices. The selective security is based on evasive LWE assumption [EUROCRYPT'22, CRYPTO'22]. The unique prior Reg-ABE scheme from lattices is derived from non-black-box construction based on function-binding hash and witness encryption [CRYPTO'23]. Technically, we first extend the black-box registration-based encryption from standard LWE [CRYPTO'23] so that we can register a public key with a function; this yields a...
A central question in the theory of cryptography is whether we can build protocols that achieve stronger security guarantees, e.g., security against malicious adversaries, by combining building blocks that achieve much weaker security guarantees, e.g., security only against semi-honest adversaries; and with the minimal number of rounds. An additional focus is whether these building blocks can be used only as a black-box. Since Oblivious Transfer (OT) is the necessary and sufficient building...
In recent work [Crypto'24], Dodis, Jost, and Marcedone introduced Compact Key Storage (CKS) as a modern approach to backup for end-to-end (E2E) secure applications. As most E2E-secure applications rely on a sequence of secrets $(s_1,...,s_n)$ from which, together with the ciphertexts sent over the network, all content can be restored, Dodis et al. introduced CKS as a primitive for backing up $(s_1,...,s_n)$. The authors provided definitions as well as two practically efficient schemes (with...
In classical cryptography, one-way functions (OWFs) play a central role as the minimal primitive that (almost) all primitives imply. The situation is more complicated in quantum cryptography, in which honest parties and adversaries can use quantum computation and communication, and it is known that analogues of OWFs in the quantum setting might not be minimal. In this work we ask whether OWFs are minimal for the intermediate setting of post-quantum cryptography, in which the protocols...
There are a variety of techniques for implementing read/write memory inside of zero-knowledge proofs and validating consistency of memory accesses. These techniques are generally implemented with the goal of implementing a RAM or ROM. In this paper, we present memory techniques for more specialized data structures: queues and stacks. We first demonstrate a technique for implementing queues in arithmetic circuits that requires 3 multiplication gates and 1 advice value per read and 2...
The design of tweakable wide block ciphers has advanced significantly over the past two decades. This evolution began with the approach of designing a wide block cipher by Naor and Reingold. Since then, numerous tweakable wide block ciphers have been proposed, many of which build on existing block ciphers and are secure up to the birthday bound for the total number of blocks queried. Although there has been a slowdown in the development of tweakable wide block cipher modes in last couple of...
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main limitations of their protocols are 1) high communication complexity, that is, $O(xlogy)$ (where $x$ is total number of...
We give new constructions of succinct non-interactive arguments ($\mathsf{SNARG}$s) for $\mathsf{NP}$ in the settings of both non-adaptive and adaptive soundness. Our construction of non-adaptive $\mathsf{SNARG}$ is universal assuming the security of a (leveled or unleveled) fully homomorphic encryption ($\mathsf{FHE}$) scheme as well as a batch argument ($\mathsf{BARG}$) scheme. Specifically, for any choice of parameters $\ell$ and $L$, we construct a candidate $\mathsf{SNARG}$ scheme...
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of...
This paper introduces a cryptographic method that enables users to prove that an event occurred in the past and that a specified amount of time has since elapsed, without disclosing the exact timestamp of the event. The method leverages zero-knowledge proofs and an on-chain Incremental Merkle Tree to store hash commitments. By utilizing the Poseidon hash function and implementing zero-knowledge circuits in Noir, this approach ensures both the integrity and confidentiality of temporal information.
Postal voting is a frequently used alternative to on-site voting. Traditionally, its security relies on organizational measures, and voters have to trust many entities. In the recent years, several schemes have been proposed to add verifiability properties to postal voting, while preserving vote privacy. Postal voting comes with specific constraints. We conduct a systematic analysis of this setting and we identify a list of generic attacks, highlighting that some attacks seem unavoidable....
A group signatures allows a user to sign a message anonymously on behalf of a group and provides accountability by using an opening authority who can ``open'' a signature and reveal the signer's identity. Group signatures have been widely used in privacy-preserving applications including anonymous attestation and anonymous authentication. Fully dynamic group signatures allow new members to join the group and existing members to be revoked if needed. Symmetric-key based group signature...
Authenticated encryption schemes guarantee that parties who share a secret key can communicate confidentially and authentically. One of the most popular and widely used authenticated encryption schemes is GCM by McGrew and Viega (INDOCRYPT 2004). However, despite its simplicity and efficiency, GCM also comes with its deficiencies, most notably devastating insecurity against nonce-misuse and imperfect security for short tags. Very recently, Campagna, Maximov, and Mattsson presented GCM-SST...
Probabilistic data structures (PDS) are compact representations of high-volume data that provide approximate answers to queries about the data. They are commonplace in today's computing systems, finding use in databases, networking and more. While PDS are designed to perform well under benign inputs, they are frequently used in applications where inputs may be adversarially chosen. This may lead to a violation of their expected behaviour, for example an increase in false positive rate. In...
Private set intersections are cryptographic protocols that compute the intersection of multiple parties' private sets without revealing elements that are not in the intersection. These protocols become less efficient when the number of parties grows, or the size of the sets increases. For this reason, many protocols are based on Bloom filters, which speed up the protocol by approximating the intersections, introducing false positives with a small but non-negligible probability. These false...
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...
In this paper we explain how we implemented the Secure Hash Algorithm-3 (SHA-3) family of functions in Lean 4, a functional programming language and theorem prover. We describe how we used several Lean facilities including type classes, dependent types, macros, and formal verification, and then refined the design to provide a simple one-shot and streaming API for hashing, and Extendable-output functions (XOFs), to reduce potential for misuse by users, and formally prove properties about the...
We initiate the study of the black-box complexity of private-key functional encryption (FE). Of central importance in the private-key setting is the inner-product functionality, which is currently only known from assumptions that imply public-key encryption, such as Decisional Diffie-Hellman or Learning-with-Errors. As our main result, we rule out black-box constructions of private-key inner-product FE from random oracles. This implies a black-box separation between private-key...
Perceptual hash functions identify multimedia content by mapping similar inputs to similar outputs. They are widely used for detecting copyright violations and illegal content but lack transparency, as their design details are typically kept secret. Governments are considering extending the application of these functions to Client-Side Scanning (CSS) for end-to-end encrypted services: multimedia content would be verified against known illegal content before applying encryption. In 2021,...
Pseudo-Random Injections (PRIs) have been used in several applications in symmetric-key cryptography, such as in the idealization of Authenticated Encryption with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in converting a committing AEAD scheme into a succinctly committing AEAD scheme. In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already committing, it can be transformed into a succinctly committing scheme by encrypting part of the plaintext...
We introduce a method for enforcing covenants on Bitcoin outputs without requiring any changes to Bitcoin by designing a hash collision based equivalence check which bridges Bitcoin's limited Big Script to Bitcoin's Small Script. This allows us evaluate the signature of the spending transaction (available only to Big Script) in Small Script. As Small Script enables arbitrary computations, we can introspect into the spending transaction and enforce covenants on it. Our approach leverages...
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck. In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by...
In 2020, Castryck-Decru-Smith constructed a hash function using the (2,2)-isogeny graph of superspecial principally polarized abelian surfaces. In their construction, the initial surface was chosen from vertices quite "close" to the square of a supersingular elliptic curve with a known endomorphism ring. In this paper, we propose an algorithm for recovering a collision on their hash function. Under some heuristic assumptions, the time complexity and space complexity of our algorithm are...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...