Microsoft Windows screensaver, simulating and displaying the principle of bivariate regression or correlation (Pearson, 1904, 1905)
as part of the SCHRAUSSER-MAT tool compilation (c.f. Schrausser, 2022, p. 38).
In context of the historical development of the correlation coefficient see also Bravais (1844) and Galton (1877).
Bravais, A. (1844). Analyse Mathematique. Sur les probabilités des erreurs de situation d’un point. Paris: Imprimerie Royale. https://books.google.com/books/about/Analyse_math%C3%A9matique_sur_les_probabilit.html?id=7g_hAQAACAAJ
Galton, F. (1877). Typical Laws of Heredity 1. Nature, 15, 492–95. https://doi.org/10.1038/015492a0
Pearson, K. (1904). Mathematical contributions to the theory of evolution. XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. Drapers’ Company research memoirs. Biometric Series, I. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL24168960M
———. (1905). Mathematical contributions to the theory of evolution. XIV. On the general theory of skew correlation and non-linear regression. Drapers’ Company research memoirs. Biometric Series, II. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL6555066M
Schrausser, D. G. (2022). Mathematical-Statistical Algorithm Interpreter, SCHRAUSSER-MAT: Function Index, Manual. Handbooks. Academia. https://www.academia.edu/81395688