Skip to content

Microsoft Windows screensaver, simulating and displaying the principle of bivariate regression or correlation as part of the SCHRAUSSER-MAT tool compilation. 

License

Notifications You must be signed in to change notification settings

Schrausser/SCR-CLR7r

Repository files navigation

SCR-CLR7r

Microsoft Windows screensaver, simulating and displaying the principle of bivariate regression or correlation (Pearson, 1904, 1905)

$$r_{xy}=\frac{\overline{xy}-(\overline x ⋅\overline y)}{n⋅ \sigma_x⋅\sigma_y},$$

as part of the SCHRAUSSER-MAT tool compilation (c.f. Schrausser, 2022, p. 38).

In context of the historical development of the correlation coefficient see also Bravais (1844) and Galton (1877).

References

Bravais, A. (1844). Analyse Mathematique. Sur les probabilités des erreurs de situation d’un point. Paris: Imprimerie Royale. https://books.google.com/books/about/Analyse_math%C3%A9matique_sur_les_probabilit.html?id=7g_hAQAACAAJ

Galton, F. (1877). Typical Laws of Heredity 1. Nature, 15, 492–95. https://doi.org/10.1038/015492a0

Pearson, K. (1904). Mathematical contributions to the theory of evolution. XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation. Drapers’ Company research memoirs. Biometric Series, I. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL24168960M

———. (1905). Mathematical contributions to the theory of evolution. XIV. On the general theory of skew correlation and non-linear regression. Drapers’ Company research memoirs. Biometric Series, II. Department of Applied Mathematics. University College, University of London: Dulau & Co. https://openlibrary.org/books/OL6555066M

Schrausser, D. G. (2022). Mathematical-Statistical Algorithm Interpreter, SCHRAUSSER-MAT: Function Index, Manual. Handbooks. Academia. https://www.academia.edu/81395688