-
Tongji University
- shanghai
- https://mic.tongji.edu.cn/main.htm
Lists (6)
Sort Name ascending (A-Z)
Starred repositories
[ACM Multimedia'25 Dataset Track] A Multimodal Dataset for Neglected Tropical Skin Diseases
本项目设计了一个基于 RAG 与大模型技术的医疗问答系统,利用 DiseaseKG 数据集与 Neo4j 构 建知识图谱,结合 BERT 的命名实体识别和 34b 大模型的意图识别,通过精确的知识检索和问答生成, 提升系统在医疗咨询中的性能,解决大模型在医疗领域应用的可靠性问题。
[ACM MM 2025 🔥🔥 ] MIRA: A first-of-its-kind medical RAG framework that fuses image features and retrieved knowledge with dynamic context control to boost factual accuracy in multimodal medical reas…
An agentic RL framework to enhance retreival-augmented reasoning in Diagnostic Policy
MedResearcher-R1 is a deep research agent for medical scenarios, built on a knowledge-informed trajectory synthesis framework.
Complex Reasoning Rag System, Agentic Rag System
"RAG-Anything: All-in-One RAG Framework"
🦜🔗 The platform for reliable agents.
AutoRAG: An Open-Source Framework for Retrieval-Augmented Generation (RAG) Evaluation & Optimization with AutoML-Style Automation
A Deep Learning Python Toolkit for Healthcare Applications.
[COMMSENG'24, TMI'24] Interactive Computer-Aided Diagnosis using LLMs
Beyond the Model: Scaling Medical Capability with a Large Verifier System
基于医疗领域知识图谱的问答系统,同时使用了chatGPT、chatGLM4等方式生成医学知识图谱。
Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG.
MediVirtuoso ChatBot: An intelligent conversational agent powered by Google's Gemini LLM, featuring image recognition for drugs and medicines. Engage in natural language conversations, make queries…
[ACM MM2025] Official code of " HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation"
A Curated Benchmark Repository for Medical Vision-Language Models
Repo for "VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning"
Train your Agent model via our easy and efficient framework
SlideChat: A Large Vision-Language Assistant for Whole-Slide Pathology Image Understanding (CVPR2025)
"Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation" by Yifan Feng, Hao Hu, Xingliang Hou, Shiquan Liu, Shihui Ying, Shaoyi Du, Han Hu, and Yue Gao.
在RAG技术中,嵌入向量的生成和匹配是关键环节。本文介绍了一种基于CLIP/BLIP模型的嵌入服务,该服务支持文本和图像的嵌入生成与相似度计算,为多模态信息检索提供了基础能力。
An open-source RAG-based tool for chatting with your documents.