- Ohio, USA
-
18:52
(UTC -05:00) - https://jdblischak.com/
- https://orcid.org/0000-0003-2634-9879
- @jdblischak@rstats.me
Highlights
- Pro
Lists (21)
Sort Name ascending (A-Z)
bioinformatics
Bioinformatics toolsC
cli
conda
cpp
french
genetics
hpc
Tools for High Performance Computing environmentsjs-examples
Examples of JavaScript appsjs-learning
Resources for learning JavaScriptjs-tools
JavaScript development toolslinux
mobile
nlp
Natural Language Processing and Speech Processingpython-development
Tools and documentation for developing Python packagesrstats
rust
stats-learning
tiledb
webdev
windows
Stars
- All languages
- Astro
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Clojure
- Crystal
- Dart
- Dockerfile
- Elixir
- Emacs Lisp
- Gherkin
- Go
- HCL
- HTML
- Haskell
- Java
- JavaScript
- Julia
- Jupyter Notebook
- Linker Script
- Lua
- M4
- MATLAB
- MDX
- Makefile
- Markdown
- Nextflow
- Nim
- Nix
- Nunjucks
- OCaml
- Objective-C
- PHP
- Perl
- PostScript
- PowerShell
- Pug
- Python
- R
- RMarkdown
- Racket
- Raku
- Rebol
- Rez
- Rich Text Format
- Roff
- Ruby
- Rust
- SCSS
- Sass
- Scala
- Shell
- Stan
- Swift
- TSQL
- TeX
- Turing
- TypeScript
- VBA
- Vala
- Vim Script
- Vue
- WDL
- XSLT
- Yacc
- Zig
- mupad
NPM package for creating shiny-react applications
Create R/Python Shiny apps with a React frontend
Notes on the statistics background for statistical genetics trainees
🍼 Plugin driven WYSIWYG markdown editor framework.
Sample size and simulation for negative binomial outcomes
Deep learning framework for the mlr3 ecosystem based on torch
A TypeScript package for handling conda environments in a web page
KaiAragaki / suanselete3
Forked from lbraglia/suanselete3Datasets from Kleinbaum and Klein "Survival analysis - A self learning text" (3rd Ed., 2012)
Python library for using dplyr like syntax with pandas and SQL
Next generation frontend tooling. It's fast!
A minimal library for accessible Machine Learning workflows within the KDD framework. You can use a MLwrap tutorial at: https://psyarxiv.com/j6m4z
An implementation of the Grammar of Graphics in R
📊 The concise and progressive visualization grammar.