Skip to content

su1phurd/UAV-WRF-LES-PPO-LSTM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

无人机自主溯源甲烷羽流系统
Autonomous UAV Methane Plume Tracing System

中文版本 | English Version
GitHub GitHub GitHub


中文版本 ↑返回顶部

项目背景

南京大学大学生创新计划项目,开发基于强化学习的无人机自主导航系统,用于:

  1. 追踪大气甲烷羽流至高斯中心
  2. 定位点源位置(误差<5米)
  3. 反演排放通量(误差<20%)

算法版本

PPO 1.0(基础版)

├── ppo1.0/
│   ├── ppo_basic/       # 标准PPO算法实现
│   ├── fixed_threshold/ # 经验浓度阈值(800-1200ppb停止)
│   └── gaussian_env/    # 高斯羽流仿真环境
  • 特点:首次实现PPO与化学阈值停止的融合

PPO 2.0(LSTM增强版)

├── ppo2.0/
│   ├── lstm_module/     # 浓度时间序列预测器
│   ├── dynamic_stop/    # 动态停止阈值(500-1500ppb)
│   └── nc_analyzer/     # 分析训练输出的阈值优化
  • 改进:LSTM预测最优停止阈值(测试集R²=0.82)

PPO 2.1(趋势分析版)

├── ppo2.1/
│   ├── gradient_detec/  # 基于∇[CH₄]的源定位
│   └── trend_predict/   # 通过dC/dt模式确认源区
  • 突破:完全摒弃固定阈值,采用微分趋势分析

技术参数

组件 实现细节
羽流模型 高斯扩散模型(σ_y=0.3x^0.71)
状态空间 [CH₄]、风速矢量、无人机位置
奖励函数 R = Δ[CH₄] - 0.2‖Δθ‖
训练硬件 NVIDIA RTX 3090(3840 CUDA核心)

↑返回顶部


English Version ↑Back to Top

Project Background

Nanjing University Innovation Program developing reinforcement learning UAV system for:

  1. Tracing methane plumes to Gaussian centers
  2. Locating point sources (<5m error)
  3. Quantifying emission fluxes (<20% error)

Algorithm Versions

PPO 1.0 (Baseline)

├── ppo1.0/
│   ├── ppo_basic/       # Standard PPO implementation  
│   ├── fixed_threshold/ # Empirical stop threshold (800-1200ppb)
│   └── gaussian_env/    # Gaussian plume simulation
  • Key Feature: First integration of PPO with chemical threshold stopping

PPO 2.0 (LSTM-enhanced)

├── ppo2.0/
│   ├── lstm_module/     # Concentration time-series predictor
│   ├── dynamic_stop/    # Adaptive stopping threshold (500-1500ppb)  
│   └── nc_analyzer/     # Threshold optimization from training outputs
  • Improvement: LSTM predicts optimal stop threshold (R²=0.82)

PPO 2.1 (Trend-based)

├── ppo2.1/  
│   ├── gradient_detec/  # Source localization via ∇[CH₄]
│   └── trend_predict/   # Source confirmation through dC/dt patterns
  • Breakthrough: Eliminates fixed thresholds using derivative analysis

Technical Specifications

Component Implementation Details
Plume Model Gaussian dispersion (σ_y=0.3x^0.71)
State Space [CH₄], wind vector, UAV position
Reward Function R = Δ[CH₄] - 0.2‖Δθ‖
Training Hardware NVIDIA RTX 3090 (3840 CUDA cores)

↑Back to Top


📝 Citation 引用格式
Nanjing University CH₄ UAV Team. (2023). Autonomous Plume Tracing System. Student Innovation Program.
```

About

无人机自主溯源甲烷羽流系统/Autonomous UAV Methane Plume Tracing System

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published