Implementations of various RL and Deep RL algorithms in TensorFlow, PyTorch and Keras.
-
Updated
Sep 18, 2024 - Python
Implementations of various RL and Deep RL algorithms in TensorFlow, PyTorch and Keras.
Deep Q-learning (DQL) for playing Snake game
The Double Inverted Pendulum consists of two joint pendulums connected to a cart that is moving on a track, the RL agent needs to keeps in equilibrium the Double Inverted Pendulum.
This repository contains code to train and test policies for a MPE environment (Simple Spread). Training is done using DQL for independent learning. Testing was done using 3 different policies: RL, Simple Policy, Complex Policy.
Reinforcement Learning-powered compiler autotuning system that learns optimal flag configurations for performance improvement across PolyBench benchmarks. Includes training, evaluation, and visualization tools.
Query OpenSearch logs and export them to CSV or JSON with high efficiency and speed.
This project explores Reinforcement Learning on FrozenLake using two approaches: Tabular Q-Learning and Deep Q-Learning with neural networks. It compares classical vs deep RL, includes training, validation, and visualizations, and highlights reward shaping, exploration-exploitation trade-offs, and model performance.
Reinforcement Learning (COMP 579) Course Project
HIkers est un projet SQL permettant la gestion d'une base de données relationnelle des randonneurs ainsi que tous leur parcours, offrant une interactivité avec l'utilisateur en lui donnant la possibilité d'effectuer des requêtes SQL de son choix .En un petit résumé , il s'agit d'un CRUD SQL/Python.
Query Made Human.
Play "Google Chrome Dinosaur" game via Deep Q Learning
Human-level control using Deep Reinforcement Learning (deep Q learning) in OpenAI's gym cartpole environment with pytorch
The question-answer paper discusses Data mining techniques in Data Science
Independent Project - I joined and manipulated data from disparate tables of movie information using Python & SQLite; defined schema, created tables/views, queried data, etc. Utilized CTE's, Window Functions, and other DDL, DQL, DML, and DCL scripts.
🐍 Implement deep Q-learning to enhance the Snake game experience, enabling smarter gameplay strategies and improved learning performance.
Add a description, image, and links to the dql topic page so that developers can more easily learn about it.
To associate your repository with the dql topic, visit your repo's landing page and select "manage topics."