Solution 1758448
Solution 1758448
Class 12 - Mathematics
Section A
1.
(b) ex cot ex
Explanation:
ex cot ex
y = log (sin ex)
log (sin ex)
dy d
=
dx dx
= 1
sine
x
dx
d
sin ex
my
= 1
cos e
x d ex
x
sine dx
= cot e x
(e )
x
= ex cot ex
e
2. (a) f ‘ (x) = g ‘ (x)
ad
Explanation:
1+x 1 (1−x).1−(1+x).(−1) 1
−1 ′
g(x) = tan ( ) ⇒ g (x) = =
1−x 1+x 2 2 2
(1−x) (1+ x )
1+(
1−x
)
Ac
3. (a) 2x (log 2)
Explanation:
Given that y = 2x
ine
= log 2 = log 2 × y
y dx e dx e
dy
Hence dx
= 2
x
loge 2
4.
(b) (tan x)cot x . cosec2 x (1 - log tan x)
dy
Explanation:
Given that y = (tan x)cot x
Taking log both sides, we obtain
Vi
5.
(b) 1
Explanation:
Given that, x = at2, y = 2at
dy
dx
dt
= 2at and dt
= 2a
dy
dy
Therefore, dx
= dt
dx
= 2a
2at
= 1
dt
1/5
Contact - +91-9999906710
6.
(c) tan θ
Explanation:
x = a(cos θ + θ sin θ) ,we get
dx
∴ = a(− sin θ + sin θ + θ cos θ)
dθ
dθ 1
⇒ =
dx aθ cos θ
my
7.
(b) 3 (xy2 + y1) y2
Explanation:
e
ax+b
y =
2
ad
x +c
⇒ y(x2 + c) = ax + b
Differentiating both sides w.r.t. x we get
y1 (x2 + c) + 2xy = a
Ac
Again differentiating w.r.t to x we get
y2 (x2 +c) + 2xy1 + 2y + 2xy1 = 0
y2 2x y1 +y
=
y 3x y +3y
3 2 1
8.
(c) a function of y only
Explanation:
Vi
y = ax2 + bx + c
dy
= 2ax + b
dx
2
d y
= 2a
dx2
2
d y
y
3
2
= 2ay
3
= A function of y only
dx
2x
) defined only for |x| < 1.
Hence, f(x) is neither continuous nor differentiable at x = 1.
10.
√3+1
(b) 2
Explanation:
2/5
Contact - +91-9999906710
Given, f(x) = |cos x - sin x|,
We know that, < x < , sin x > cos x π
4
π
−1
×
dx
(tan
−1
x) [Using chain rule]
tan x
1
=
2 −1
(1+ x ) tan x
So, dx
d
{log(tan
−1
x)} =
2
1
−1
(1+ x ) tan x
my
12. We have, f(x) = loge(logex)
differentiating both sides with respect x, we get,
1 d
′
f (x) =
loge x dx
(loge x) [using chain rule]
e
′ 1 1
⇒ f (x) = ( )
loge x x
1 1
ad
′
⇒ f (e) = ( ) [∵ x = e]
loge e e
′ 1
⇒ f (e) = [∵ loge e = 1]
e
= 3 sin 2
x ×
d
dx
(sin x) + 6 cos
5
x ×
dx
d
(cos x)
= 3 sin 2
x × cos x + 6 cos
5
x × (− sin x) [∵
d
(sin x) = cos x &
d
(cos x) = − sin x]
ine
dx dx
dy
4
∴ = 3 sin x cos x (sin x − 2 cos x)
dx
Section B
ash
2
14. Let y = e + 3 cos
sec
x
x −1
2 d 1
=e sec x
⋅ 2 sec x (sec x) + 3 (− )
dx √1−x2
2 1
= 2sec x (secxtanx) e sec x
+ 3 (− )
√1−x2
Vi
2 1
= 2sec 2
x tan x e
sec x
+ 3 (− )
√1−x2
Observe that the derivative of the given function is valid only in (– 1, 1) as the derivative of cos–1 x exists only in
(– 1, 1).
15. Let y = log (xx + cosec2x). Then,
dy
dx
=
x
1
2
×
d
dx
(x
x
+ cosec x)
2
[using chain rule]
x +cose c x
dy 1 d d
x 2
⇒ = { (x ) + (cosec x)}
dx x 2 dx dx
x +cose c x
[ ab = ebloga]
dy 1 d d
x log x 2
⇒ = { (e )+ (cosec x)}
dx x 2 dx dx
x +cose c x
dy 1 d d
x log x
⇒ = {e (x log x) + 2cosecx (cosecx)}
dx x 2 dx dx
x +cose c x
dy 1 x 2
⇒ = {x (1 + log x) − 2cosec x cot x}
dx x 2
x +cose c x
dx
= 1
3/5
Contact - +91-9999906710
Let v = cot x
Differentiating both sides with respect to x, we obtain
dv
dx
= -cosec2 x
Now, du
dv
= du
dx
×
dx
dv
= 1
x
× (−
1
2
)
cose c x
2
⇒
du
dv
=− sin
x
x
dx dx
= sec x (tan x - sec x)
dy dy
⇒
dx
= cos x
1
{-(sec x - tan x)} ⇒ cos x dx
= -y [From (i)] ....(ii)
Again Differentiating both sides of (ii) w.r.t. x,
2
d y dy dy
cos x ⋅
2
+
dx
(− sin x) =- dx
dx
2
d y dy dy
⇒ cos x ⋅ =− + sin x
dx2 dx dx
2
d y dy
my
⇒ cos x ⋅
2
= dx
(-1 + sin x)
dx
2
d y (sec x−tan x)
⇒ cos x ⋅
2
= {-(1 - sin x)} {− cos x
}
dx
2
d y 1−sin x
⇒ cos x ⋅
2
=( cos x
) (sec x - tan x)
dx
e
2
d y
⇒ cos x ⋅
2
= (sec x - tan x) (sec x - tan x)
dx
ad
2
= y2
d y
∴ cos x ⋅
dx2
Section C
18. According to the question, x y x−y
= e
Ac
Taking log both sides ,
⇒ ylo ge x = (x − y)lo ge e
⇒ ylo ge x = (x − y)
⇒ y(1 + logx) = x
ine
x
⇒ y =
1+log x
dx (1+log x)
1
1+log x−x⋅ 1+log x−1
=
2
x
= 2
(1+log x) (1+log x)
dy log x
∴ =
dx 2
(1+log x)
Hence Proved
dy
= tan( )
dx 2
C+D D−C
θ+2θ 2θ−θ
2 sin( ) sin( ) ⎡ ∵ cos C − cos D = 2 sin( ) sin( ) ⎤
2 2
2 2
= ⎢ ⎥
2θ+θ 2θ−θ
C+D C−D
2[cos(
2
) sin(
2
)]
⎣ and sin C − sin D = 2 cos(
2
) sin(
2
) ⎦
3θ θ
sin( ) sin( )
2 2
=
3θ θ
cos( ) sin( )
2 2
3θ
= tan( )
2
20. We have,
y2 = a2 cos2 x + b2 sin2 x
⇒ 2y2 = a2 (2 cos2 x) + b2 (2 sin2 x)
4/5
Contact - +91-9999906710
⇒ 2y2 = a2 (1 + cos 2x) + b2 (1 - cos 2x)
⇒ 2y2 = (a2 + b2) + (a2 - b2) cos 2x ....(i)
Differentiating with respect to x, we get
= -2 (a2 - b2) sin 2x
dy
4y dx
= -4a2b2
my
dy
2 2 2 2
⇒ 4y {( ) + y − (a + b )}
dx
2 2 2
dy a b
2 2 2
⇒ ( ) + y − (a + b )= −
dx y2
e
2 2 2
dy d y dy 2a b dy
2( ) + 2y =
dx 2 dx 3 dx
dx y
ad
2 2 2
d y dy
⇒
2
+ y =
a b
3
..[Dividing both side by 2 dx
]
dx y
Ac
ine
ash
dy
Vi
5/5
Contact - +91-9999906710