Low code molecular property prediction
-
Updated
Dec 17, 2025 - Python
Low code molecular property prediction
A toolkit for working with coarse-grain systems
Chem-MRL: SMILES-based Matryoshka Representation Learning Embedding Model
pytoda - PaccMann PyTorch Dataset Classes. Read the docs: https://paccmann.github.io/paccmann_datasets/
Program to survey all possible molecular structures of fragment ion based on exact-mass and molecular formula of it. Ideal for ESI-Tandem MS/MS fragment's structure studies.
A Python library for efficient manipulation, conformer optimization, and molecular structure data.
ChemBERTa + RL pipeline for de novo EGFR inhibitor design with docking validation.
MCP server enabling AI agents to search for synthesizable building blocks and screening compounds
Collect adsorption isotherm data from the NIST/ARPA-E Database and train a ML model to predict uptake from pressure
⬢⬢⬢ Organizing and processing tables of chemical structures.
Access online services of chemical identifiers from Python
Generate synthetic chemical reactions from a retrosynthetic SMARTS template and a stock of molecules.
ModChemBERT: ModernBERT as a Chemical Language Model
Generates an SDF conformer ensemble from SMILES. This script creates an initial pool of 250 conformers (using RDKit ETKDG), optimizes them (MMFF94), and then applies a greedy diversity filter. The final ensemble contains a subset of conformers selected for both their low energy and geometric diversity (RMSD threshold).
Многомодальная нейросетевая система для предсказания биоактивности молекул и генерации новых структур с заданными свойствами. Проект разработан для поиска потенциальных сокристаллов теофиллина с использованием генеративных моделей и эволюционной оптимизации.
SLICES: An Invertible, Invariant, and String-based Crystal Representation [2023, Nature Communications] MatterGPT, SLICES-PLUS
⚗️ An all-in-one solution for chemical property retrieval from PubChem.
Add a description, image, and links to the smiles topic page so that developers can more easily learn about it.
To associate your repository with the smiles topic, visit your repo's landing page and select "manage topics."