0% found this document useful (0 votes)
33 views9 pages

IRF7413

Power Mosfet

Uploaded by

sudogroot777
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views9 pages

IRF7413

Power Mosfet

Uploaded by

sudogroot777
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

PD - 91330I

IRF7413
HEXFET® Power MOSFET
l Generation V Technology A
A
l Ultra Low On-Resistance S
1 8
D
l N-Channel Mosfet
l Surface Mount S
2 7
D VDSS = 30V
l Available in Tape & Reel S
3 6
D
l Dynamic dv/dt Rating
4
l Fast Switching G 5
D
l 100% RG Tested RDS(on) = 0.011Ω
Top View
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized


leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of power SO-8
applications. With these improvements, multiple devices
can be used in an application with dramatically reduced
board space. The package is designed for vapor phase,
infra red, or wave soldering techniques. Power dissipation
of greater than 0.8W is possible in a typical PCB mount
application.

Absolute Maximum Ratings


Symbol Parameter Max Units
VDS Drain-to-Source Voltage 30
V
VGS Gate-to-Source Voltage ± 20
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 13
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 9.2 A
IDM Pulsed Drain Current c 58
PD @TA = 25°C Power Dissipation 2.5 W
Linear Derating Factor 0.02 mW/°C
EAS Single Pulse Avalanche Energency d 260 mJ
dv/dt Peak Diode Recovery dv/dt e 5.0 V/ns
TJ, TSTG Junction and Storage Temperature Range -55 to +150 °C
Thermal Resistance Ratings
Symbol Parameter Typ Max Units
RθJL h
Junction-to-Drain Lead ––– 20
RθJA Junction-to-Ambient gh ––– 50
°C/W

02/14/07
IRF7413

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)


Symbol Parameter Min Typ Max Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 30 ––– ––– V VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.034 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 0.011 VGS = 10V, ID = 7.3Af
RDS(on) Static Drain-to-Source On-Resistance
––– ––– 0.018

f
VGS = 4.5V, ID = 3.7A
VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 10 ––– ––– S VDS = 10V, ID = 3.7A
––– ––– 12 VDS = 30V, VGS = 0V
IDSS Drain-to-Source Leakage Current µA
––– ––– 25 VDS = 24V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– -100 VGS = -20V
IGSS nA
Gate-to-Source Reverse Leakage ––– ––– 100 VGS = 20V
Qg Total Gate Charge ––– 52 79 ID = 7.3A
Qgs Gate-to-Source Charge ––– 6.1 9.2 VDS = 24V
Qgd Gate-to-Drain ("Miller") Charge ––– 16 23
nC
VGS = 10V, See Fig. 6 and 9 f
RG Gate Resistance 1.2 ––– 3.7
td(on) Turn-On Delay Time ––– 8.6 ––– VDD = 15V
tr Rise Time ––– 50 ––– ID = 7.3A
ns
td(off) Turn-Off Delay Time ––– 52 ––– RG = 6.2 Ω
tf Fall Time ––– 46 ––– RG = 2.0Ω, See Fig. 10 f
Ciss Input Capacitance ––– 1800 ––– VGS = 0V
Coss Output Capacitance ––– 680 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 240 ––– ƒ = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics


Symbol Parameter Min. Typ. Max. Units Conditions
Continuous Source Current MOSFET symbol
IS ––– ––– 3.1
(Body Diode) showing the
A
Pulsed Source Current integral reverse
ISM
(Body Diode) c ––– ––– 58
p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 7.3A, VGS = 0V e
trr Reverse Recovery Time ––– 74 110 ns TJ = 25°C, IF = 7.3A
Qrr Reverse Recovery Charge ––– 200 300 nC di/dt = 100A/µse

Notes:
 Repetitive rating; pulse width limited by ƒ ISD ≤ 7.3A, di/dt ≤ 100A/µs, VDD ≤ V(BR)DSS,
max. junction temperature. ( See fig. 11 ) T J ≤ 150°C

‚ Starting TJ = 25°C, L =9.8mH „ Pulse width ≤ 300µs; duty cycle ≤ 2%.


RG = 25Ω, IAS =7.3A. (See Figure 12) Surface mounted on FR-4 board
† Rθ is measured at TJ approximately 90°C
IRF7413

100 100
VGS VGS
TOP 15V TOP 15V
10V 10V
7.0V 7.0V
5.5V 5.5V
4.5V 4.5V
I D , Drain-to-Source Current (A)

I D, Drain-to-Source Current (A)


4.0V 4.0V
3.5V 3.5V
BOTTOM 3.0V BOTTOM 3.0V

10 10 3.0V

3.0V

20µs PULSE WIDTH 20µs PULSE WIDTH


TJ = 25°C A TJ = 150°C A
1 1
0.1 1 10 0.1 1 10
V DS , Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics

100 2.0
I D = 7.3A
R DS(on) , Drain-to-Source On Resistance
I D , Drain-to-Source Current (A)

1.5
TJ = 150°C
TJ = 25°C
(Normalized)

10 1.0

0.5

V DS = 10V
20µs PULSE WIDTH VGS = 10V
1 0.0 A
A
3.0 3.5 4.0 4.5 -60 -40 -20 0 20 40 60 80 100 120 140 160

VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature (°C)

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance


Vs. Temperature
IRF7413

3200 20
V GS = 0V, f = 1MHz I D = 7.3A
C iss = Cgs + C gd , Cds SHORTED V DS = 24V
2800 C rss = C gd

V GS , Gate-to-Source Voltage (V)


V DS = 15V
Ciss C oss = C ds + C gd 16
2400
C, Capacitance (pF)

2000 Coss
12

1600

8
1200

800
Crss
4
400
FOR TEST CIRCUIT
SEE FIGURE 9
0 A 0 A
1 10 100 0 10 20 30 40 50 60
VDS , Drain-to-Source Voltage (V) Q G , Total Gate Charge (nC)

Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs.


Drain-to-Source Voltage Gate-to-Source Voltage

100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ISD , Reverse Drain Current (A)

TJ = 25°C
ID , Drain Current (A)

TJ = 150°C
100

10
100us

10
1ms

TC = 25 ° C
10ms
TJ = 150 ° C
VGS = 0V Single Pulse
1 A 1
0.4 1.2 2.0 2.8 3.6 0.1 1 10 100
VSD , Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V)

Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area


Forward Voltage
IRF7413
RD
QG V DS

10V VGS
QGS QGD D.U.T.
RG
+
- VDD
VG
10V
Pulse Width ≤ 1 µs
Charge Duty Factor ≤ 0.1 %

Fig 9a. Basic Gate Charge Waveform Fig 10a. Switching Time Test Circuit
Current Regulator
Same Type as D.U.T.

VDS
50KΩ
90%
12V .2µF
.3µF

+
V
D.U.T. - DS
10%
VGS
VGS
3mA td(on) tr t d(off) tf

IG ID
Current Sampling Resistors

Fig 9b. Gate Charge Test Circuit Fig 10b. Switching Time Waveforms

100
Thermal Response (Z thJA )

D = 0.50

10 0.20

0.10

0.05

0.02 PDM
1
0.01 t1

SINGLE PULSE t2
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJA + TA
0.1
0.0001 0.001 0.01 0.1 1 10 100
t1 , Rectangular Pulse Duration (sec)

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient


IRF7413
600
ID

EAS , Single Pulse Avalanche Energy (mJ)


TOP 3.3A
15V
500 6.0A
BOTTOM 7.3A

L DRIVER 400
VDS

300
RG D.U.T +
- VDD
IAS A
20V 200
tp 0.01Ω

Fig 12a. Unclamped Inductive Test Circuit 100

V(BR)DSS 0
25 50 75 100 125 150
tp Starting T J, Junction Temperature ( oC)

Fig 12c. Maximum Avalanche Energy


Vs. Drain Current

I AS

Fig 12b. Unclamped Inductive Waveforms


IRF7413

Peak Diode Recovery dv/dt Test Circuit

+ Circuit Layout Considerations


D.U.T
• Low Stray Inductance
• Ground Plane
ƒ
• Low Leakage Inductance
Current Transformer
-

+
‚
„
- +
-


RG • dv/dt controlled by RG +
• Driver same type as D.U.T. VDD
-
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test

Driver Gate Drive


P.W.
Period D=
P.W. Period

VGS=10V *

D.U.T. ISD Waveform

Reverse
Recovery Body Diode Forward
Current Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
VDD

Re-Applied
Voltage Body Diode Forward Drop
Inductor Curent

Ripple ≤ 5% ISD

* VGS = 5V for Logic Level Devices

Fig 13. For N-Channel HEXFETS


IRF7413
SO-8 Package Details
Dimensions are shown in milimeters (inches)
INCHES MILLIMETERS
DIM
D B MIN MAX MIN MAX
A 5 A .0532 .0688 1.35 1.75
A1 .0040 .0098 0.10 0.25
b .013 .020 0.33 0.51
8 7 6 5 c .0075 .0098 0.19 0.25
6 H D .189 .1968 4.80 5.00
E
0.25 [.010] A E .1497 .1574 3.80 4.00
1 2 3 4
e .050 BAS IC 1.27 BAS IC
e1 .025 BAS IC 0.635 BAS IC
H .2284 .2440 5.80 6.20
K .0099 .0196 0.25 0.50
6X e
L .016 .050 0.40 1.27
y 0° 8° 0° 8°

e1 K x 45°
A
C y

0.10 [.004]
8X b A1 8X L 8X c

0.25 [.010] C A B 7

FOOT PRINT
NOT ES :
1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006].
6.46 [.255]
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010].
7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O
A S UBS T RAT E.

3X 1.27 [.050]
8X 1.78 [.070]

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)


DATE CODE (YWW)
P = DESIGNATES LEAD-FREE
PRODUCT (OPT IONAL)
Y = LAS T DIGIT OF THE YEAR
XXXX WW = WEEK
INTERNATIONAL F7101 A = AS SEMBLY S IT E CODE
RECTIFIER LOT CODE
LOGO
PART NUMBER
IRF7413
SO-8 Tape and Reel
TERMINAL NUMBER 1

12.3 ( .484 )
11.7 ( .461 )

8.1 ( .318 )
7.9 ( .312 ) FEED DIRECTION

NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

330.00
(12.992)
MAX.

14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2007

You might also like