19 results sorted by ID
Massive Superpoly Recovery with a Meet-in-the-middle Framework -- Improved Cube Attacks on Trivium and Kreyvium
Jiahui He, Kai Hu, Hao Lei, Meiqin Wang
Attacks and cryptanalysis
The cube attack extracts the information of secret key bits by recovering the coefficient called superpoly in the output bit with respect to a subset of plaintexts/IV, which is called a cube. While the division property provides an efficient way to detect the structure of the superpoly, superpoly recovery could still be prohibitively costly if the number of rounds is sufficiently high. In particular, Core Monomial Prediction (CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of...
An Improved Method for Evaluating Secret Variables and Its Application to WAGE
Weizhe Wang, Haoyang Wang, Deng Tang
Attacks and cryptanalysis
The cube attack is a powerful cryptanalysis technique against symmetric ciphers, especially stream ciphers. The adversary aims to recover secret key bits by solving equations that involve the key. To simplify the equations, a set of plaintexts called a cube is summed up together. Traditional cube attacks use only linear or quadratic superpolies, and the size of cube is limited to an experimental range, typically around 40. However, cube attack based on division property, proposed by Todo et...
Key Filtering in Cube Attacks from the Implementation Aspect
Hao Fan, Yonglin Hao, Qingju Wang, Xinxin Gong, Lin Jiao
Attacks and cryptanalysis
In cube attacks, key filtering is a basic step of identifying the correct key candidates by referring to the truth tables of superpolies. When terms of superpolies get massive, the truth table lookup complexity of key filtering increases significantly. In this paper, we propose the concept of implementation dependency dividing all cube attacks into two categories: implementation dependent and implementation independent. The implementation dependent cube attacks can only be feasible when the...
Correlation Cube Attack Revisited: Improved Cube Search and Superpoly Recovery Techniques
Jianhua Wang, Lu Qin, Baofeng Wu
Attacks and cryptanalysis
In this paper, we improve the cube attack by exploiting low-degree factors of the superpoly w.r.t. certain "special" index set of cube (ISoC). This can be viewed as a special case of the correlation cube attack proposed at Eurocrypt 2018, but under our framework more beneficial equations on the key variables can be obtained in the key-recovery phase. To mount our attack, one has two challenging problems: (1) effectively recover algebraic normal form of the superpoly and extract out its...
More Balanced Polynomials: Cube Attacks on 810- and 825-Round Trivium with Practical Complexities
Hao Lei, Jiahui He, Kai Hu, Meiqin Wang
Secret-key cryptography
The key step of the cube attack is to recover the special polynomial, the superpoly, of the target cipher. In particular, the balanced superpoly, in which there exists at least one secret variable as a single monomial and none of the other monomials contain this variable, can be exploited to reveal one-bit information about the key bits. However, as the number of rounds grows, it becomes increasingly difficult to find such balanced superpolies. Consequently, traditional methods of searching...
An Experimentally Verified Attack on 820-Round Trivium (Full Version)
Cheng Che, Tian Tian
Secret-key cryptography
The cube attack is one of the most important cryptanalytic techniques against Trivium. As the method of recovering superpolies becomes more and more effective, another problem of cube attacks, i.e., how to select cubes corresponding to balanced superpolies, is attracting more and more attention. It is well-known that a balanced superpoly could be used in both theoretical and practical analyses. In this paper, we present a novel framework to search for valuable cubes whose superpolies have an...
Stretching Cube Attacks: Improved Methods to Recover Massive Superpolies
Jiahui He, Kai Hu, Bart Preneel, Meiqin Wang
Secret-key cryptography
Cube attacks exploit the algebraic properties of symmetric ciphers by recovering a special polynomial, the superpoly, and subsequently the secret key. When the algebraic normal forms of the corresponding Boolean functions are not available, the division property based approach allows to recover the exact superpoly in a clever way. However, the computational cost to recover the superpoly becomes prohibitive as the number of rounds of the cipher increases. For example, the nested monomial...
Massive Superpoly Recovery with Nested Monomial Predictions
Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, Qingju Wang
Secret-key cryptography
Determining the exact algebraic structure or some partial information of the superpoly for a given cube is a necessary step in the cube attack -- a generic cryptanalytic technique for symmetric-key primitives with some secret and public tweakable inputs.
Currently, the division property based approach is the most powerful tool for exact superpoly recovery. However, as the algebraic normal form (ANF) of the targeted output bit gets increasingly complicated as the number of rounds grows,...
A Simpler Model for Recovering Superpoly onTrivium
Stéphanie Delaune, Patrick Derbez, Arthur Gontier, Charles Prud'homme
Secret-key cryptography
The cube attack is a powerful cryptanalysis technique against symmetric cryptosystems, especially for stream ciphers. One of the key step in a cube attack is recovering the superpoly. The division property has been introduced to cube attacks with the aim first to identify variables/monomials that are not involved in the superpoly. Recently,some improved versions of this technique allowing the recovery of the exact superpoly have been developed and applied on...
Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon
Raghvendra Rohit, Kai Hu, Sumanta Sarkar, Siwei Sun
Secret-key cryptography
Being one of the winning algorithms of the CAESAR competition and currently
a second round candidate of the NIST lightweight cryptography standardization project,
the authenticated encryption scheme Ascon (designed by Dobraunig, Eichlseder,
Mendel, and Schl{ä}ffer) has withstood extensive
self and third-party cryptanalysis.
The best known attack on Ascon could only penetrate up to $7$ (out of $12$) rounds
due to Li et al. (ToSC Vol I, 2017). However, it violates the data limit of $2^{64}$...
2020/1128
Last updated: 2020-11-21
Searching Cubes in Division Property Based Cube Attack: Applications to Round-Reduced ACORN
Jingchun Yang, Dongdai Lin
Secret-key cryptography
Recently, division property based cube attack has acheived new progress and some cryptanalytic results against well-known stream ciphers. At EUROCRYPT 2020, Hao~\emph{et~al.} proposed a new modeling method for three-subset division property without unknown subset. With this method, the exact expression of the superpoly in cube attack can be recovered.
In this paper, we propose a method to search good cubes for both distinguishing attacks and key recovery attacks in the division property...
Modeling for Three-Subset Division Property without Unknown Subset
Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, Qingju Wang
Secret-key cryptography
A division property is a generic tool to search for integral distinguishers, and automatic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently.
In the application to stream ciphers, it enables us to estimate the security of cube attacks theoretically, and it leads to the best key-recovery attacks against well-known stream ciphers.
However, it was reported that some of the key-recovery attacks based on the division property degenerate to distinguishing attacks due...
2019/1226
Last updated: 2020-11-21
Cube Cryptanalysis of Round-Reduced ACORN
Jingchun Yang, Meicheng Liu, Dongdai Lin
Secret-key cryptography
The cube attack is one of the most powerful techniques in cryptanalysis of symmetric cryptographic primitives. The basic idea of cube attack is to determine the value of a polynomial in key bits by summing over a cube (a subset of public variables, e.g., plaintext bits or IV bits). If the degree of the polynomial is relatively low, then we can obtain a low-degree equation in key bits, thus may contribute to reducing the complexity of key recovery.
In this paper, we use cube cryptanalysis to...
A Practical Method to Recover Exact Superpoly in Cube Attack
SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, TaiRong Shi
Secret-key cryptography
Cube attack is an important cryptanalytic technique against symmetric cryptosystems, especially for stream ciphers. The key step in cube attack is recovering superpoly. However, when cube size is large, the large time complexity of recovering the exact algebraic normal form (ANF) of superpoly confines cube attack. At CRYPTO 2017, Todo et al. applied conventional bit-based division property (CBDP) into cube attack which could exploit large cube sizes. However, CBDP based cube attacks cannot...
An Algebraic Method to Recover Superpolies in Cube Attacks
Chen-Dong Ye, Tian Tian
Secret-key cryptography
Cube attacks are an important type of key recovery attacks against NFSR-based cryptosystems. The key step in cube attacks closely related to key recovery is recovering superpolies. However, in the previous cube attacks including original, division property based, and correlation cube attacks, the algebraic normal form of superpolies could hardly be shown to be exact due to an unavoidable failure probability or a requirement of large time complexity. In this paper, we propose an algebraic...
A New Framework for Finding Nonlinear Superpolies in Cube Attacks against Trivium-Like Ciphers
Chen-Dong Ye, Tian Tian
Secret-key cryptography
In this paper, we study experimental cube attacks against Trivium-like ciphers and we focus on improving nonlinear superpolies recovery. We first present a general framework in cube attacks to test nonlinear superpolies, by exploiting a kind of linearization technique. It worth noting that, in the new framework, the complexities of testing and recovering nonlinear superpolies are almost the same as those of testing and recovering linear superpolies. To demonstrate the effectiveness of our...
Correlation Cube Attacks: From Weak-Key Distinguisher to Key Recovery
Meicheng Liu, Jingchun Yang, Wenhao Wang, Dongdai Lin
In this paper, we describe a new variant of cube attacks called correlation cube attack. The new attack recovers the secret key of a cryptosystem by exploiting conditional correlation properties between the superpoly of a cube and a specific set of low-degree polynomials that we call a basis, which satisfies that the superpoly is a zero constant when all the polynomials in the basis are zeros. We present a detailed procedure of correlation cube attack for the general case, including how to...
Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly (Full Version)
Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, Willi Meier
The cube attack is an important technique for the cryptanalysis of symmetric key primitives, especially for stream ciphers.
Aiming at recovering some secret key bits, the adversary reconstructs a superpoly with the secret key bits involved, by summing over a set of the plaintexts/IV which is called a cube.
Traditional cube attack only exploits linear/quadratic superpolies. Moreover, for a long time after its proposal, the size of the cubes has been largely confined to an experimental range,...
Improving Key Recovery to 784 and 799 rounds of Trivium using Optimized Cube Attacks
Pierre-Alain Fouque, Thomas Vannet
Secret-key cryptography
Dinur and Shamir have described cube attacks at EUROCRYPT ’09 and they have shown how efficient they are on the stream cipher Trivium up to 767 rounds. These attacks have been extended to distinguishers but since this seminal work, no better results on the complexity of key recovery attacks on Trivium have been presented. It appears that the time complexity to compute cubes is expensive and the discovery of linear superpoly also requires the computation of many cubes. In this paper, we...
The cube attack extracts the information of secret key bits by recovering the coefficient called superpoly in the output bit with respect to a subset of plaintexts/IV, which is called a cube. While the division property provides an efficient way to detect the structure of the superpoly, superpoly recovery could still be prohibitively costly if the number of rounds is sufficiently high. In particular, Core Monomial Prediction (CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of...
The cube attack is a powerful cryptanalysis technique against symmetric ciphers, especially stream ciphers. The adversary aims to recover secret key bits by solving equations that involve the key. To simplify the equations, a set of plaintexts called a cube is summed up together. Traditional cube attacks use only linear or quadratic superpolies, and the size of cube is limited to an experimental range, typically around 40. However, cube attack based on division property, proposed by Todo et...
In cube attacks, key filtering is a basic step of identifying the correct key candidates by referring to the truth tables of superpolies. When terms of superpolies get massive, the truth table lookup complexity of key filtering increases significantly. In this paper, we propose the concept of implementation dependency dividing all cube attacks into two categories: implementation dependent and implementation independent. The implementation dependent cube attacks can only be feasible when the...
In this paper, we improve the cube attack by exploiting low-degree factors of the superpoly w.r.t. certain "special" index set of cube (ISoC). This can be viewed as a special case of the correlation cube attack proposed at Eurocrypt 2018, but under our framework more beneficial equations on the key variables can be obtained in the key-recovery phase. To mount our attack, one has two challenging problems: (1) effectively recover algebraic normal form of the superpoly and extract out its...
The key step of the cube attack is to recover the special polynomial, the superpoly, of the target cipher. In particular, the balanced superpoly, in which there exists at least one secret variable as a single monomial and none of the other monomials contain this variable, can be exploited to reveal one-bit information about the key bits. However, as the number of rounds grows, it becomes increasingly difficult to find such balanced superpolies. Consequently, traditional methods of searching...
The cube attack is one of the most important cryptanalytic techniques against Trivium. As the method of recovering superpolies becomes more and more effective, another problem of cube attacks, i.e., how to select cubes corresponding to balanced superpolies, is attracting more and more attention. It is well-known that a balanced superpoly could be used in both theoretical and practical analyses. In this paper, we present a novel framework to search for valuable cubes whose superpolies have an...
Cube attacks exploit the algebraic properties of symmetric ciphers by recovering a special polynomial, the superpoly, and subsequently the secret key. When the algebraic normal forms of the corresponding Boolean functions are not available, the division property based approach allows to recover the exact superpoly in a clever way. However, the computational cost to recover the superpoly becomes prohibitive as the number of rounds of the cipher increases. For example, the nested monomial...
Determining the exact algebraic structure or some partial information of the superpoly for a given cube is a necessary step in the cube attack -- a generic cryptanalytic technique for symmetric-key primitives with some secret and public tweakable inputs. Currently, the division property based approach is the most powerful tool for exact superpoly recovery. However, as the algebraic normal form (ANF) of the targeted output bit gets increasingly complicated as the number of rounds grows,...
The cube attack is a powerful cryptanalysis technique against symmetric cryptosystems, especially for stream ciphers. One of the key step in a cube attack is recovering the superpoly. The division property has been introduced to cube attacks with the aim first to identify variables/monomials that are not involved in the superpoly. Recently,some improved versions of this technique allowing the recovery of the exact superpoly have been developed and applied on...
Being one of the winning algorithms of the CAESAR competition and currently a second round candidate of the NIST lightweight cryptography standardization project, the authenticated encryption scheme Ascon (designed by Dobraunig, Eichlseder, Mendel, and Schl{ä}ffer) has withstood extensive self and third-party cryptanalysis. The best known attack on Ascon could only penetrate up to $7$ (out of $12$) rounds due to Li et al. (ToSC Vol I, 2017). However, it violates the data limit of $2^{64}$...
Recently, division property based cube attack has acheived new progress and some cryptanalytic results against well-known stream ciphers. At EUROCRYPT 2020, Hao~\emph{et~al.} proposed a new modeling method for three-subset division property without unknown subset. With this method, the exact expression of the superpoly in cube attack can be recovered. In this paper, we propose a method to search good cubes for both distinguishing attacks and key recovery attacks in the division property...
A division property is a generic tool to search for integral distinguishers, and automatic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently. In the application to stream ciphers, it enables us to estimate the security of cube attacks theoretically, and it leads to the best key-recovery attacks against well-known stream ciphers. However, it was reported that some of the key-recovery attacks based on the division property degenerate to distinguishing attacks due...
The cube attack is one of the most powerful techniques in cryptanalysis of symmetric cryptographic primitives. The basic idea of cube attack is to determine the value of a polynomial in key bits by summing over a cube (a subset of public variables, e.g., plaintext bits or IV bits). If the degree of the polynomial is relatively low, then we can obtain a low-degree equation in key bits, thus may contribute to reducing the complexity of key recovery. In this paper, we use cube cryptanalysis to...
Cube attack is an important cryptanalytic technique against symmetric cryptosystems, especially for stream ciphers. The key step in cube attack is recovering superpoly. However, when cube size is large, the large time complexity of recovering the exact algebraic normal form (ANF) of superpoly confines cube attack. At CRYPTO 2017, Todo et al. applied conventional bit-based division property (CBDP) into cube attack which could exploit large cube sizes. However, CBDP based cube attacks cannot...
Cube attacks are an important type of key recovery attacks against NFSR-based cryptosystems. The key step in cube attacks closely related to key recovery is recovering superpolies. However, in the previous cube attacks including original, division property based, and correlation cube attacks, the algebraic normal form of superpolies could hardly be shown to be exact due to an unavoidable failure probability or a requirement of large time complexity. In this paper, we propose an algebraic...
In this paper, we study experimental cube attacks against Trivium-like ciphers and we focus on improving nonlinear superpolies recovery. We first present a general framework in cube attacks to test nonlinear superpolies, by exploiting a kind of linearization technique. It worth noting that, in the new framework, the complexities of testing and recovering nonlinear superpolies are almost the same as those of testing and recovering linear superpolies. To demonstrate the effectiveness of our...
In this paper, we describe a new variant of cube attacks called correlation cube attack. The new attack recovers the secret key of a cryptosystem by exploiting conditional correlation properties between the superpoly of a cube and a specific set of low-degree polynomials that we call a basis, which satisfies that the superpoly is a zero constant when all the polynomials in the basis are zeros. We present a detailed procedure of correlation cube attack for the general case, including how to...
The cube attack is an important technique for the cryptanalysis of symmetric key primitives, especially for stream ciphers. Aiming at recovering some secret key bits, the adversary reconstructs a superpoly with the secret key bits involved, by summing over a set of the plaintexts/IV which is called a cube. Traditional cube attack only exploits linear/quadratic superpolies. Moreover, for a long time after its proposal, the size of the cubes has been largely confined to an experimental range,...
Dinur and Shamir have described cube attacks at EUROCRYPT ’09 and they have shown how efficient they are on the stream cipher Trivium up to 767 rounds. These attacks have been extended to distinguishers but since this seminal work, no better results on the complexity of key recovery attacks on Trivium have been presented. It appears that the time complexity to compute cubes is expensive and the discovery of linear superpoly also requires the computation of many cubes. In this paper, we...