Lists (8)
Sort Name ascending (A-Z)
- All languages
- Agda
- Assembly
- AutoIt
- Batchfile
- Bikeshed
- Bluespec
- Brainfuck
- C
- C#
- C++
- CMake
- COBOL
- CSS
- Classic ASP
- Clojure
- Common Lisp
- Coq
- Cuda
- Cython
- D
- DIGITAL Command Language
- Dart
- Dockerfile
- Dune
- Earthly
- Eiffel
- Emacs Lisp
- Erlang
- F#
- F*
- Fortran
- Futhark
- G-code
- GCC Machine Description
- GLSL
- Gnuplot
- Go
- Groovy
- HTML
- Hack
- Handlebars
- Haskell
- Haxe
- Idris
- Inno Setup
- Java
- JavaScript
- Jinja
- Julia
- Jupyter Notebook
- Koka
- Kotlin
- LLVM
- Lean
- Logos
- Lua
- MATLAB
- MDX
- MLIR
- Makefile
- Markdown
- Mathematica
- Mermaid
- Mojo
- MoonBit
- Nunjucks
- OCaml
- Objective-C
- OpenQASM
- OpenSCAD
- PHP
- PLpgSQL
- Perl
- PostScript
- PowerShell
- Processing
- Python
- R
- Racket
- Raku
- ReScript
- Reason
- Rez
- Rich Text Format
- Rocq Prover
- Roff
- Ruby
- Rust
- SCSS
- SMT
- SQL
- SWIG
- Scala
- Scheme
- Shell
- Solidity
- SourcePawn
- Standard ML
- Starlark
- Svelte
- Swift
- SystemVerilog
- TLA
- TSQL
- Tcl
- TeX
- Tree-sitter Query
- TypeScript
- Typst
- VBScript
- VHDL
- Verilog
- Vim Script
- Vue
- WebAssembly
- XSLT
- Zig
- reStructuredText
Starred repositories
The CompCert formally-verified C compiler
Formal verification tool for Rust: check 100% of execution cases of your programs π¦ to make super safe applications!
This rocq library aims to formalize a substantial body of mathematics using the univalent point of view.
Tricks you wish the Coq manual told you [maintainer=@tchajed]
A core language for rule-based hardware design π¦
Modeling and Proving in Computational Type Theory
The mathematical study of type theories, in univalent foundations
Formalization of Machine Learning Theory with Applications to Program Synthesis
Companion Coq development for Xavier Leroy's 2021 lectures on program logics
Problem Sets for MIT 6.512 Formal Reasoning About Programs, Spring 2023
A Coq formalization of the textbook Categories and Toposes: Visualized and Explained
Programs and Proofs -- Spring 2025 -- IITM
Problem Sets for MIT 6.822 Formal Reasoning About Programs, Spring 2020