This article is a book review on a book ’Lodgepole pine in North America’ by Peter Koch, which is based partly on a synthesis of more than 6,000 papers on lodgepole pine, and partly on a systematic collection and analysis of wood and bark from branches, stems, stumps, and roots, as well as of foliage, of lodgepole pines.
The existence and direction of causal relationships between the time series for the Finnish roundwood market for the period 1960–1994 is tested. Using simple bivariate analysis, we found evidence that for both logs and pulpwood, the lagged prices are helpful in forecasting quantity for the next year, but not vice versa. Saw log stumpage prices have significantly Granger-caused pulpwood prices over the business cycles, but the effect has diminished towards the present time. For quantities traded, the direction of causality was rather from pulpwood to saw logs. The consistency of bivariate test results was checked by the Granger-causality tests within trivariate VAR-models for both markets, and the results were found to be fairly similar to bivariate tests. The price fluctuations in the international markets for forest products have been found to be carried to domestic wood markets dominantly via the pulpwood part of the market.
Many kinds of planning systems have been labelled decision support systems (DSS), but few meet the most important features of real DSSs in planning and control of wood procurement. It has been concluded that many reasons exist to develop DSSs for wood procurement. The purchasing of timber seems to be one of the most promising areas for DSS, because there is no formal structure for these operations and decisions deal with human behaviour. Relations between DSSs and different features of the new approaches in wood procurement are also discussed, and hypotheses for future studies suggested.
Within the European Community snow damage affects an estimated 4 million m3 of timber every year, causing significant economic losses to forest owners. In Northern Europe, for example, the occurrence of snow damage has increased over the last few decades mainly due to the increase in total growing stock. The most common form of damage is stem breakage, but trees can also be bent or uprooted. Trees suffering snow damage are also more prone to consequential damage through insect or fungal attacks.
Snow accumulation on trees is strongly dependent upon weather and climatological conditions. Temperature influences the moisture content of snow and therefore the degree to which it can accumulate on branches. Wind can cause snow to be shed, but can also lead to large accumulations of wet snow, rime or freezing rain. Wet snow is most likely in late autumn or early spring. Geographic location and topography influence the occurrence of damaging forms of snow, and coastal locations and moderate to high elevations experience large accumulations. Slope plays a less important role and the evidence on the role of aspect is contradictory. The occurrence of damaging events can vary from every winter to once every 10 years or so depending upon regional climatology. In the future, assuming global warming in northern latitudes, the risk of snow damage could increase, because the relative occurrence of snowfall near temperatures of zero could increase.
The severity of snow damage is related to tree characteristics. Stem taper and crown characteristics are the most important factors controlling the stability of trees. Slightly tapering stems, asymmetric crowns, and rigid horizontal branching are all associated with high risk. However, the evidence on species differences is less clear due to the interaction with location. Management of forests can alter risk through choice of regeneration, tending, thinning and rotation. However, quantification and comparison of the absolute effect of these measures is not yet possible. An integrated risk model is required to allow the various locational and silvicultural factors to be assessed. Plans are presented to construct such a model, and gaps in knowledge are highlighted.
Linear programming (LP) is an important method for allocation of wood inventory stock. It is, for instance, used alone in tactical planning systems, which currently are in wide use at the higher hierarchical level in the functionally decentralized planning of the Finnish forest industry. Unfortunately, LP as a solution method has not been capable of handling spatial data that seem to characterize planning systems in geographical decentralization. In the present study, GIS was used to assimilate data from different wood procurement functions, to calculate transportation distances and cost figures, and to write the data in ASCII files, which were then used as input for the LP model. Using the experiments and methods of GIS on a planning system developed according to participatory planning, the results of this study suggest that the participatory method was faster than the conventional LP method, when solved using actual data. The participatory method was also capable of providing the same global optimum for a wood allocation problem. The implications of these results for improving operational and tactical planning of wood procurement in Finland are discussed.
Models for individual-tree basal area growth were constructed for Scots pine (Pinus sylvestris L.), pubescent birch (Betula pubescens Ehrh.) and Norway spruce (Picea abies (L.) Karst.) growing in drained peatland stands. The data consisted of two separate sets of permanent sample plots forming a large sample of drained peatland stands in Finland. The dependent variable in all models was the 5-year basal area growth of a tree. The independent tree-level variables were tree dbh, tree basal area, and the sum of the basal area of trees larger than the target tree. Independent stand-level variables were stand basal area, the diameter of the tree of median basal area, and temperature sum. Categorical variables describing the site quality, as well as the condition and age of drainage, were used. Differences in tree growth were used as criteria in reclassifying the a priori site types into new yield classes by tree species. All models were constructed as mixed linear models with a random stand effect. The models were tested against the modelling data and against independent data sets.
Cut-off importance sampling (CIS) is introduced as a means of sampling individual trees for the purpose of estimating bole volume. The novel feature of this variant of importance sampling is the establishment on the bole of a cut-off height, HC, above which sampling is precluded. An estimator of bole volume between predetermined heights HL and HU > HC is proposed, and its design-based bias and mean square error are derived. In an application of CIS as the second stage of a two-stage sample to estimate aggregate bole volume, the gain in precision realized from CIS more than offset its bias when compared to the precision of importance sampling when HC = HU.
Three most promising protection methods of pine pulp wood stacks against the attacks of Tomicus piniperda L. were compared. The methods were the covering of stacks by fibreglass-strengthened paper or twofold achrylene netting, removing the upper parts of stacks, and enhanced planning of the placement of the timber store using ARC/INFO GIS-software. T. piniperda was observed to strongly prefer the upper parts of the stacks: 90 % of the beetles occurred within 0.5 meters of the top of the stacks. Covering of the stacks decreased the attack density of T. piniperda, and the protection effect of covering was 80 %. Due to long transport distances and fragmentation of forest landscape the relocation of timber store was found to be an unsuitable method in the practical level. Also, taking into account the costs of the method, removing of the upper parts of stacks was considered to be the optimal solution.
Distribution and occurrence of bark beetles and other forest insects in relation to environmental variation were analysed by multivariate methods. Eight different forest edges were studied using 10 x 10 m sample plots that formed 200 m linear transects perpendicular to the forest edge. Forest edge affected the distribution of insect species only in the edges between mature, non-managed spruce stands and clear cuts or young seedling stands, but not in the pine stands. The occurrence of the selected forest insects mainly depended on variables associated with the amount and quality of suitable woody material. The most significant environmental variables were forest site type, crown canopy coverage, tree species, number of stumps, number of dead spruce trunks and amount of logging waste at site. Quantitative classification of species and sample plots showed that some specialized species (Xylechinus pilosus, Cryphalus saltuarius, Polygraphus poligraphus and P. subopacus) adapted to mature spruce forests, tended to withdraw from the forest edge to interior stand sites. By contrast many generalized species (Pityogenes chalcographus, P. quadridens, Pissodes spp., Hylurgops palliatus, Tomicus piniperda, Dryocoetes spp. and Trypodendron lineatum) benefitted from cuttings and spread over stand borders into mature forest.