Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 56 no. 2 | 2022

Category : Editorial

article id 10763, category Editorial
Matti Maltamo. (2022). Silva Fennica has improved publishing services by changing manuscript handling system. Silva Fennica vol. 56 no. 2 article id 10763. https://doi.org/10.14214/sf.10763
Full text in HTML | Full text in PDF | Author Info
  • Maltamo, University of Eastern Finland, School of Forest Sciences, Joensuu E-mail: matti.maltamo@uef.fi (email)

Category : Research article

article id 10707, category Research article
Martin Goude, Urban Nilsson, Euan Mason, Giulia Vico. (2022). Comparing basal area growth models for Norway spruce and Scots pine dominated stands. Silva Fennica vol. 56 no. 2 article id 10707. https://doi.org/10.14214/sf.10707
Keywords: Pinus sylvestris; basal area; Picea abies; National Forest Inventory; regression; difference equation; long-term experiment
Highlights: Models were developed that predict basal area growth for Scot pine and Norway spruce stands in Sweden; There were no apparent differences in the ability to predict basal area development between a linear regression model for basal area growth or a compatible growth and yields model for basal area; The model based on data from the 80s had similar performance as the models with data from the 2000s, showing that both can reliably be used to predict forest development.
Abstract | Full text in HTML | Full text in PDF | Author Info

Models that predict forest development are essential for sustainable forest management. Constructing growth models via regression analysis or fitting a family of sigmoid equations to construct compatible growth and yield models are two ways these models can be developed. In this study, four species-specific models were developed and compared. A compatible growth and yield stand basal area model and a five-year stand basal area growth model were developed for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). The models were developed using data from permanent inventory plots from the Swedish national forest inventory and long-term experiments. The species-specific models were compared, using independent data from long-term experiments, with a stand basal area growth model currently used in the Swedish forest planning system Heureka (Elfving model). All new models had a good, relatively unbiased fit. There were no apparent differences between the models in their ability to predict basal area development, except for the slightly worse predictions for the Norway spruce growth model. The lack of difference in the model comparison showed that despite the simplicity of the compatible growth and yield models, these models could be recommended, especially when data availability is limited. Also, despite using more and newer data for model development in this study, the currently used Elfving model was equally good at predicting basal area. The lack of model difference indicate that future studies should instead focus on model development for heterogeneous forests which are common but lack in growth and yield modelling research.

  • Goude, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden ORCID https://orcid.org/0000-0002-2179-292X E-mail: martin.goude@slu.se (email)
  • Nilsson, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden E-mail: urban.nilsson@slu.se
  • Mason, School of Forestry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand E-mail: euan.mason@canterbury.ac.nz
  • Vico, Department of Crop Production Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden E-mail: giulia.vico@slu.se
article id 10695, category Research article
Ana de Lera Garrido, Terje Gobakken, Hans Ole Ørka, Erik Næsset, Ole M. Bollandsås. (2022). Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models. Silva Fennica vol. 56 no. 2 article id 10695. https://doi.org/10.14214/sf.10695
Keywords: forest inventory; LIDAR; calibration; area-based approach; spatial transferability; temporal transferability
Highlights: Three approaches to calibrate temporal and spatial external models using field observations from different numbers of local plots are presented; Calibration produced satisfactory results, reducing the mean difference between estimated and observed values in 89% of all trials; Using few calibration plots, ratio-calibration provided the lowest mean difference; Calibration using 20 plots gave comparable results to a local forest inventory.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest management inventories assisted by airborne laser scanner data rely on predictive models traditionally constructed and applied based on data from the same area of interest. However, forest attributes can also be predicted using models constructed with data external to where the model is applied, both temporal and geographically. When external models are used, many factors influence the predictions’ accuracy and may cause systematic errors. In this study, volume, stem number, and dominant height were estimated using external model predictions calibrated using a reduced number of up-to-date local field plots or using predictions from reparametrized models. We assessed and compared the performance of three different calibration approaches for both temporally and spatially external models. Each of the three approaches was applied with different numbers of calibration plots in a simulation, and the accuracy was assessed using independent validation data. The primary findings were that local calibration reduced the relative mean difference in 89% of the cases, and the relative root mean squared error in 56% of the cases. Differences between application of temporally or spatially external models were minor, and when the number of local plots was small, calibration approaches based on the observed prediction errors on the up-to-date local field plots were better than using the reparametrized models. The results showed that the estimates resulting from calibrating external models with 20 plots were at the same level of accuracy as those resulting from a new inventory.

  • de Lera Garrido, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ana.de.lera@nmbu.no (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Bollandsås, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ole.martin.bollandsas@nmbu.no
article id 10663, category Research article
Back Tomas Ersson, Lars-Göran Sundblad, Jussi Manner. (2022). Cost analysis of seedling supply systems adapted for mechanized tree planting: a case study from southern Sweden. Silva Fennica vol. 56 no. 2 article id 10663. https://doi.org/10.14214/sf.10663
Keywords: logistics; silviculture; reforestation; tree planting machine; containerized seedling; seedling handling; system analysis
Highlights: The total cost of cardboard box concepts that increase the productivity of tree planting machines is higher than of the cultivation tray system (5–49% in the basic scenario); Increasing the boxes’ packing densities and/or the planting machines’ hourly cost increases the boxes’ cost-competitiveness; Packing density is a key factor in achieving highly cost-efficient seedling supply systems for mechanized tree planting.
Abstract | Full text in HTML | Full text in PDF | Author Info

Because today’s tree planting machines do a good job silviculturally, the Nordic forest sector is interested in finding ways to increase the planting machines’ productivity. Faster seedling reloading increases machine productivity, but that solution might require investments in specially designed seedling packaging. The objective of our study was to compare the cost-efficiency of cardboard box concepts that increase the productivity of tree planting machines with that of today’s two most common seedling packaging systems in southern Sweden. We modelled the total cost of these five different seedling packaging systems using data from numerous sources including manufacturers, nurseries, contractors, and forest companies. Under these southern Swedish conditions, the total cost of cardboard box concepts that increase the productivity of intermittently advancing tree planting machines was higher than the cost of the cultivation tray system (5–49% in the basic scenario). However, the conceptual packaging system named ManBox_fast did show promise, especially with increasing primary transport distances and increased planting machine productivities and hourly costs. Thus, our results show that high seedling packing density is of fundamental importance for cost-efficiency of cardboard box systems designed for mechanized tree planting. Our results also illustrate how different factors in the seedling supply chain affect the cost-efficiency of tree planting machines. Consequently, our results underscore that the key development factor for mechanized tree planting in the Nordic countries is the development of cost-efficient seedling handling systems between nurseries and planting machines.

  • Ersson, SLU, School of Forest Management, SE-739 21 Skinnskatteberg, Sweden ORCID https://orcid.org/0000-0003-2442-7482 E-mail: back.tomas.ersson@slu.se (email)
  • Sundblad, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: lars-goran.sundblad@skogforsk.se
  • Manner, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID https://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se
article id 10620, category Research article
Tapani Repo, Virva Volanen, Pertti Pulkkinen. (2022). No difference in the maximum frost hardiness of different pedunculate oak populations in Finland. Silva Fennica vol. 56 no. 2 article id 10620. https://doi.org/10.14214/sf.10620
Keywords: climate change; differential thermal analysis; electrolyte leakage; low-temperature exotherm; species distribution; visual damage scoring
Highlights: Four pedunculate oak populations were compared for their maximum frost hardiness (FHmax) at two sampling times in midwinter; Based on the initiation of the low temperature exotherm (LTE), FHmax was an average of –41 °C; Based on the relative electrolyte leakage method, FHmax was an average of –46 °C and –41 °C in the first and second sampling time respectively; No significant differences were observed among the populations; Within-population variation in the LTE was high, providing potential for breeding; In extreme winters, FHmax may be critical for the growth and survival of oak in central and northern Finland.
Abstract | Full text in HTML | Full text in PDF | Author Info

The natural northern distribution limit for pedunculate oak (Quercus robur L.) is in southern Finland. We hypothesized that the maximum frost hardiness (FHmax) in the winter limited the cultivation of oaks in northern latitudes. We tested the hypothesis with controlled freezing tests in midwinter. The acorns for the experiment were collected from the four main oak populations in southernmost Finland. The seedlings were raised in the nursery, frost hardened in field conditions, and then moved to a growth chamber at –2 °C on two occasions in winter and tested for FHmax in controlled freezing tests. Frost hardiness was assessed by differential thermal analysis (DTA) based on the low temperature exotherm (LTE) and relative electrolyte leakage (REL) of the stem, and visual damage scoring (VD) of the buds and stem. The initiation and peak of the LTE took place at an average of –41 °C and –43 °C respectively, without differences among the populations. The variation in the initiation and peak of the LTE was high, ranging from –34.6 °C to –45.5 °C and from –37.1 °C to –46.9 °C respectively. According to the REL method, the frost hardiness of the populations ranged from –44.0 °C to –46.4 °C in February and from –40.6 °C to –41.6 °C in March, without significant differences among the populations. According to VD, the bud was the least frost hardy organ, with FH between –19 °C and –33 °C, depending on population and assessment time. We conclude that the maximum hardiness may set the limit for the distribution of pedunculate oak northwards, but the high within-population variation offers potential to breed more frost hardy genotypes.

  • Repo, Natural Resources Institute Finland (Luke), Natural Resources, Yliopistokatu 6b, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0002-7443-6275 E-mail: tapani.repo@luke.fi (email)
  • Volanen, Kalevankatu 4b B21, FI-80110 Joensuu, Finland E-mail: virva.volanen@siunsote.fi
  • Pulkkinen, Natural Resources Institute Finland (Luke), Production systems, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0002-1643-7691 E-mail: pertti.pulkkinen@luke.fi
article id 10617, category Research article
Yao Anicet Gervais Kouamé, Mathieu Millan, Aya Brigitte N'Dri, Tristan Charles-Dominique, Marcel Konan, Adama Bakayoko, Jacques Gignoux. (2022). Multispecies allometric equations for shrubs and trees biomass prediction in a Guinean savanna (West Africa). Silva Fennica vol. 56 no. 2 article id 10617. https://doi.org/10.14214/sf.10617
Keywords: carbon stocks; allometric equations; shrubs; trees; aboveground and belowground biomass; Guinean savannas
Highlights: New allometric equations were developed for predicting aboveground and belowground biomass (AGB and BGB) of trees and multi-stemmed shrubs in the Guinean savannas based on field measurements, providing information for West African mesic savannas and filling a critical knowledge gap; AGB and BGB of trees were better predicted from the quantity ρDb2H (with ρ the specific wood density in g cm–3, Db the stem basal diameter in cm, and H the tree height in m); Obtaining accurate estimates of AGB and BGB in multi-stemmed shrubs required additional consideration of the total number of stems; The root/shoot biomass ratio decreased with increasing of the stem size (measured by Db) for trees but remains relatively unchanged for shrubs.
Abstract | Full text in HTML | Full text in PDF | Author Info

Currently, tools to predict the aboveground and belowground biomass (AGB and BGB) of woody species in Guinean savannas (and the data to calibrate them) are still lacking. Multispecies allometric equations calibrated from direct measurements can provide accurate estimates of plant biomass in local ecosystems and can be used to extrapolate local estimates of carbon stocks to the biome scale. We developed multispecies models to estimate AGB and BGB of trees and multi-stemmed shrubs in a Guinean savanna of Côte d’Ivoire. The five dominant species of the area were included in the study. We sampled a total of 100 trees and 90 shrubs destructively by harvesting their biometric data (basal stem diameter Db, total stem height H, stump area SS, as well as total number of stems n for shrubs), and then measured their dry AGB and BGB. We fitted log-log linear models to predict AGB and BGB from the biometric measurements. The most relevant model for predicting AGB in trees was fitted as follows: AGB = 0.0471 (ρDb2H)0.915 (with AGB in kg and ρDb2H in g cm–1 m). This model had a bias of 19%, while a reference model for comparison (fitted from tree measurements in a similar savanna ecosystem, Ifo et al. 2018) overestimated the AGB of trees of our test savannas by 132%. The BGB of trees was also better predicted from ρDb2H as follows: BGB = 0.0125 (ρDb2H)0.6899 (BGB in kg and ρDb2H in g cm–1 m), with 6% bias, while the reference model had about 3% bias. In shrubs, AGB and BGB were better predicted from ρDb2H together with the total number of stems (n). The best fitted allometric equation for predicting AGB in shrubs was as follows: AGB = 0.0191 (ρDb2H)0.6227 n0.9271. This model had about 1.5% bias, while the reference model overestimated the AGB of shrubs of Lamto savannas by about 79%. The equation for predicting BGB of shrubs is: BGB = 0.0228 (ρDb2H)0.7205 n0.992 that overestimated the BGB of the shrubs of Lamto savannas with about 3% bias, while the reference model underestimated the BGB by about 14%. The reference model misses an important feature of fire-prone savannas, namely the strong imbalance of the BGB/AGB ratio between trees and multi-stemmed shrubs, which our models predict. The allometric equations we developed here are therefore relevant for C stocks inventories in trees and shrubs communities of Guinean savannas.

  • Kouamé, UFR Sciences de la Nature, UFR-SN/ Station d’Ecologie de Lamto (CRE), Pôle de recherche Environnement et Développement Durable, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire); Institute of Ecology and Environmental Sciences IEES-Paris (Sorbonne Université, CNRS, Université Paris Diderot, IRD, UPEC, INRA), 4 Place Jussieu, 75005, Paris, France ORCID https://orcid.org/0000-0002-0847-2569 E-mail: kouameyag@gmail.com (email)
  • Millan, Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, South Africa; Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Institute of Botany of the Czech Academy of Sciences, v.v.i, Dukelská 135, Třeboň, 379 01, Czech Republic ORCID https://orcid.org/0000-0002-0151-6055 E-mail: mathieu.millan@gmail.com
  • N'Dri, UFR Sciences de la Nature, UFR-SN/ Station d’Ecologie de Lamto (CRE), Pôle de recherche Environnement et Développement Durable, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire ORCID https://orcid.org/0000-0002-6333-6279 E-mail: brigitte.aya@gmail.com
  • Charles-Dominique, Institute of Ecology and Environmental Sciences IEES-Paris (Sorbonne Université, CNRS, Université Paris Diderot, IRD, UPEC, INRA), 4 Place Jussieu, 75005, Paris, France ORCID https://orcid.org/0000-0002-5767-0406 E-mail: tristan.charles-dominique@sorbonne-universite.fr
  • Konan, UFR Sciences de la Nature, UFR-SN/ Station d’Ecologie de Lamto (CRE), Pôle de recherche Environnement et Développement Durable, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire E-mail: marcelkonan.lamto@gmail.com
  • Bakayoko, UFR Sciences de la Nature, UFR-SN/ Station d’Ecologie de Lamto (CRE), Pôle de recherche Environnement et Développement Durable, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire E-mail: bakadamaci@yahoo.fr
  • Gignoux, Institute of Ecology and Environmental Sciences IEES-Paris (Sorbonne Université, CNRS, Université Paris Diderot, IRD, UPEC, INRA), 4 Place Jussieu, 75005, Paris, France ORCID https://orcid.org/0000-0003-3853-9282 E-mail: jacques.gignoux@upmc.fr
article id 10606, category Research article
Benjamin Allen, Michele Dalponte, Ari M. Hietala, Hans Ole Ørka, Erik Næsset, Terje Gobakken. (2022). Detection of Root, Butt, and Stem Rot presence in Norway spruce with hyperspectral imagery. Silva Fennica vol. 56 no. 2 article id 10606. https://doi.org/10.14214/sf.10606
Keywords: Picea abies; Heterobasidion; remote sensing; root rot; hyperspectral imagery; forest pathology
Highlights: Hyperspectral imagery can be used to detect Root, Butt, and Stem Rot in Picea abies with moderate accuracy; Spectral derivatives improved classification accuracy; Bands around 540, 700, and 1650 nm tended to be the most important for classification models.
Abstract | Full text in HTML | Full text in PDF | Author Info

Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic losses of eight hundred million euros per year. In conifers with low resinous heartwood such as species of Picea and Abies, these fungi are commonly confined to heartwood and thus external infection signs on the bark or foliage of trees are normally absent. Consequently, determining the extent of disease presence in a forest stand with field surveys is not practical for guiding forest management decisions such as optimal rotation time. Remote sensing technologies such as airborne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for classifying the presence or absence of rot in a single-tree-based framework. Ground reference data showing the presence of rot were collected by harvest machine operators during the harvest of forest stands. Random forest and support vector machine algorithms were used to classify the presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-absence classification of rot, although additional work remains to make the classifications usable for practical forest management.

  • Allen, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: benjamin.allen@nmbu.no (email)
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 San Michele all’Adige (TN), Italy E-mail: michele.dalponte@fmach.it
  • Hietala, Norwegian Institute of Bioeconomy Research, Innocamp Steinkjer, Skolegata 22, NO-7713 Steinkjer, Norway E-mail: Ari.Hietala@nibio.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 10599, category Research article
Anu Laakkonen, Teppo Hujala, Jouni Pykäläinen. (2022). Defining the systemic development of the Finnish pulp and paper industry’s business network. Silva Fennica vol. 56 no. 2 article id 10599. https://doi.org/10.14214/sf.10599
Keywords: forest cluster; competence; Actors-Resources-Activities framework; coopetition; historical pathways
Highlights: Systemic view helps to understand the phenomena reshaping business field networks; Forest sector companies operate in complex, dynamic, and international environment; Actors-Resources-Activities framework -based analysis of Finnish pulp and paper industry’s network development; The role of actors, resources, and activities have varied between different phases; Network structure altered due to radical changes in the operating environment.
Abstract | Full text in HTML | Full text in PDF | Author Info

Companies operate in a nested and complex system where global challenges shape their environments and put pressure on business activities. Systemic understanding of the past and ongoing changes within a national industry help to analyze the global influences and identify phenomena that reshape business collaborations. To address this issue in the case of a forest sector, this study constructs a systemic picture of the historical development of the Finnish pulp and paper industry’s business network and analyzes it qualitatively through the Actors-Resources-Activities framework. Books discussing the history of the Finnish forest industry were used as secondary data, which were analyzed with a theory-based content analysis method. The analysis revealed four development phases during which the network has evolved from rather simple one emphasizing cooperation organizations (1st) to a more complex one with stronger roles of the state and individual influencers (2nd), and then emphasizing export and advocacy associations (3rd), before returning to be rather simple, based around three large multinationals and the EU playing an important role (4th). The industry is concerned about securing its key resources, with varying foci. Research and technological innovation activities play an important role together with cooperative interactions. Overall, actors favor a business-as-usual strategy, which is overruled only by a radical change in the operating environment, leading to notable changes in the network. Thus, a suggestion for all actors within the forest sector is that actively detecting and interpreting change signals in the whole environment can help actors in pursuing sustainable activities.

  • Laakkonen, School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-6384-7773 E-mail: anu.laakkonen@uef.fi (email)
  • Hujala, School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-7905-7602 E-mail: teppo.hujala@uef.fi
  • Pykäläinen, School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: jouni.pykalainen@uef.fi

Category : Research note

article id 10683, category Research note
Aarne Hovi, Petr Lukeš, Lucie Homolová, Jussi Juola, Miina Rautiainen. (2022). Small geographical variability observed in Norway spruce needle spectra across Europe. Silva Fennica vol. 56 no. 2 article id 10683. https://doi.org/10.14214/sf.10683
Keywords: albedo; remote sensing; reflectance; transmittance; land surface modeling; leaf optical properties; radiative transfer modeling
Highlights: Spectra of Norway spruce needles were collected from three sites in Europe (49°–62°N); The same acquisition and processing parameters were applied throughout the campaign; Geographical variability in the needle spectra was small; Comparison of the spectra of coniferous needles and broadleaved tree foliage is also presented.
Abstract | Full text in HTML | Full text in PDF | Author Info

Foliage spectra form an important input to physically-based forest reflectance models. However, little is known about geographical variability of coniferous needle spectra. In this research note, we present an assessment of the geographical variability of Norway spruce (Picea abies (L.) H. Karst.) needle albedo, reflectance, and transmittance spectra across three study sites covering latitudes of 49–62°N in Europe. All spectra were measured and processed using exactly the same methodology and parameters, which guarantees reliable conclusions about geographical variability. Small geographical variability in Norway spruce needle spectra was observed, when compared to variability observed between previous measurement campaigns (employing slightly varying measurement and processing parameters), or to variability between plant functional types (broadleaved vs. coniferous). Our results suggest that variability of needle spectra is not a major factor introducing geographical variability to forest reflectance. The results also highlight the importance of harmonizing measurement protocols when collecting needle spectral libraries. Furthermore, the data collected for this study can be useful in studies where accurate information on spectral differences between broadleaved and coniferous tree foliage is needed.

  • Hovi, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland ORCID https://orcid.org/0000-0002-4384-5279 E-mail: aarne.hovi@aalto.fi (email)
  • Lukeš, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic ORCID https://orcid.org/0000-0002-3707-6557 E-mail: lukes.p@czechglobe.cz
  • Homolová, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic ORCID https://orcid.org/0000-0001-7455-2834 E-mail: homolova.l@czechglobe.cz
  • Juola, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland ORCID https://orcid.org/0000-0002-6050-7247 E-mail: jussi.juola@aalto.fi
  • Rautiainen, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland; Aalto University, School of Electrical Engineering, Department of Electronics and Nanoengineering, P.O. Box 15500, FI-00760 Aalto, Finland ORCID https://orcid.org/0000-0002-6568-3258 E-mail: miina.a.rautiainen@aalto.fi
article id 10679, category Research note
Jari Miina, Mikko Kurttila. (2022). A model for the sap yield of birches tapped by citizen scientists. Silva Fennica vol. 56 no. 2 article id 10679. https://doi.org/10.14214/sf.10679
Keywords: Betula spp.; non-timber forest product; linear mixed model; crowdsourcing
Highlights: Tree diameter and mean stand height positively affected the sap yield of birches; The sap yield varied between trees, stands, and years; The sap yield model can be utilised in profitability analyses for sap tapping.
Abstract | Full text in HTML | Full text in PDF | Author Info

The sap yield of birches (Betula pendula Roth and B. pubescens Ehrh.) was modelled as a function of tree diameter (girth) at breast height, as well as site and stand characteristics measured and reported by citizen scientists representing mainly non-industrial private forest owners in the South Savo, North Karelia, and Northern Ostrobothnia regions in Finland. Birches (tree species not recorded) growing on both mineral and peatland sites were tapped during the springs of 2019 and 2020. Citizen scientists were mainly voluntary forest owners who received the instructions and equipment (spouts, drop lines and buckets) for collecting sap from three birches of different diameters in the same birch stand. Citizen scientists were instructed to measure and report the sap yield and girth of the trees, as well as stand characteristics from the forest resource data, if available. Based on the linear mixed model fitted to the data, the sap yield increased with the increasing tree diameter and mean stand height, and varied between years, stands, and trees; between-region variation was not significant. In a birch stand, the simulated total sap yield ha–1 was depended on the average tree size and the stem number ha–1 and was at its highest just before the first commercial thinning and again before the second thinning. The sap model can be used to predict the necessary sap yield in profitability analyses for sap tapping.


Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles