377 results sorted by ID
Possible spell-corrected query: em
Man-in-the-Middle and Key Recovery Attacks against QP-KEM
Nick Aquina, Simon Rommel, Idelfonso Tafur Monroy
Attacks and cryptanalysis
The Q-problem has been introduced as a new post-quantum hard problem. We present two man-in-the-middle and three key recovery attacks against the key exchange protocol based on the Q-problem. The man-in-the-middle attacks take negligible time and allow the attacker to recover the exchanged key. The most effective key recovery attack has a computational complexity of $2^{40}$. We also propose countermeasures against all attacks.
High-Order and Cortex-M4 First-Order Implementations of Masked FrodoKEM
François Gérard, Morgane Guerreau
Implementation
The key encapsulation mechanism FrodoKEM is a post-quantum algorithm based on plain LWE. While it has not been selected by the NIST for standardization, FrodoKEM shares a lot of similarities with the lattice-based standard ML-KEM and offers strong security assumptions by relying on the unstructured version of the LWE problem. This leads FrodoKEM to be recommended by European agencies ANSSI and BSI as a possible choice to obtain post-quantum security. In this paper, we discuss the practical...
Designing QC-MDPC Public Key Encryption Schemes with Niederreiter's Construction and a Bit Flipping Decoder with Bounded DFR
Alessandro Annechini, Alessandro Barenghi, Gerardo Pelosi, Simone Perriello
Public-key cryptography
Post-quantum public key encryption (PKE) schemes employing Quasi-cyclic (QC) sparse
parity-check matrix codes are enjoying significant success, thanks to their
good performance profile and reduction to believed-hard problems from coding
theory.
However, using QC sparse parity-check matrix codes (i.e., QC-MDPC/LDPC codes)
comes with a significant challenge: determining in closed-form their decoding
failure rate (DFR), as decoding failures are known to leak information on the
private...
MT-TMVP: Modular Tiled TMVP-based Polynomial Multiplication for Post-Quantum Cryptography on FPGAs
Shekoufeh Neisarian, Elif Bilge Kavun
Implementation
As quantum technology advances, developing cryptographic solutions resistant to quantum attacks is crucial. Post-Quantum Cryptography (PQC) provides a practical approach by running on classical computers. They rely on hard mathematical problems, with lattice-based being one of the National Institute of Standards and Technology (NIST)-recognized schemes known for its small key sizes. Hardware implementation of these schemes faces challenges due to the computational intensity of operations...
Post-Quantum Multi-Message Public Key Encryption from Extended Reproducible PKE
Hongxiao Wang, Ron Steinfeld, Markku-Juhani O. Saarinen, Muhammed F. Esgin, Siu-Ming Yiu
Public-key cryptography
A multi-message multi-recipient Public Key Encryption (mmPKE) enables batch encryption of multiple messages for multiple independent recipients in one go, significantly reducing costs, particularly bandwidth, compared to the trivial solution of encrypting each message individually. This capability is especially critical in the post-quantum setting, where ciphertext length is typically significantly larger than the corresponding plaintext.
In this work, we first observe that the generic...
Energy Consumption Framework and Analysis of Post-Quantum Key-Generation on Embedded Devices
J Cameron Patterson, William J Buchanan, Callum Turino
Applications
The emergence of quantum computing and Shor's algorithm necessitates an imminent shift from current public key cryptography techniques to post-quantum robust techniques. NIST has responded by standardising Post-Quantum Cryptography (PQC) algorithms, with ML-KEM (FIPS-203) slated to replace ECDH (Elliptic Curve Diffie-Hellman) for key exchange. A key practical concern for PQC adoption is energy consumption. This paper introduces a new framework for measuring the PQC energy consumption on a...
Practical Deniable Post-Quantum X3DH: A Lightweight Split-KEM for K-Waay
Guilhem Niot
Public-key cryptography
The Signal Protocol, underpinning secure messaging for billions, faces the challenge of migrating to a post-quantum world while preserving critical properties like asynchrony and deniability. While Signal’s PQXDH key exchange protocol addresses post-quantum confidentiality, full migration of the X3DH protocol remains elusive. Relying on a split KEM (K-Waay, USENIX ’24) offers a promising migration path, but it has so far suffered from size limitations compared to concurrent works...
Post-Quantum Cryptography in eMRTDs: Evaluating PAKE and PKI for Travel Documents
Nouri Alnahawi, Melissa Azouaoui, Joppe W. Bos, Gareth T. Davies, SeoJeong Moon, Christine van Vredendaal, Alexander Wiesmaier
Implementation
Passports, identity cards and travel visas are examples of machine readable travel documents (MRTDs) or eMRTDs for their electronic variants. The security of the data exchanged between these documents and a reader is secured with a standardized password authenticated key exchange (PAKE) protocol known as PACE.
A new world-wide protocol migration is expected with the arrival of post-quantum cryptography (PQC) standards. In this paper, we focus on the impact of this migration on constrained...
Side-Channel Power Trace Dataset for Kyber Pair-Pointwise Multiplication on Cortex-M4
Azade Rezaeezade, Trevor Yap, Dirmanto Jap, Shivam Bhasin, Stjepan Picek
Attacks and cryptanalysis
We present a dataset of side-channel power measurements captured during pair-pointwise multiplication in the decapsulation procedure of the Kyber Key Encapsulation Mechanism (KEM). The dataset targets the pair-pointwise multiplication step in the NTT domain, a key computational component of Kyber. The dataset is collected using the reference implementation from the PQClean project. We hope the dataset helps in research in ``classical'' power analysis and deep learning-based side-channel...
Efficient Noncommutative KEMs from Twisted Dihedral Group Ring
Ali Raya, Vikas Kumar, Sugata Gangopadhyay, Aditi Kar Gangopadhyay
Public-key cryptography
NTRU schemes have been extensively studied as post-quantum proposals within the category of lattice-based constructions.
Numerous designs have been introduced with security assumptions based on the NTRU hard problem; some focused on security, and others were motivated by faster computations. Recently, some proposals for noncommutative NTRU have appeared in the literature, claiming more resistance to some algebraic attacks. While these proposals provide practical cryptosystems, they fail to...
Incompleteness in Number-Theoretic Transforms: New Tradeoffs and Faster Lattice-Based Cryptographic Applications
Syed Mahbub Hafiz, Bahattin Yildiz, Marcos A. Simplicio Jr, Thales B. Paiva, Henrique Ogawa, Gabrielle De Micheli, Eduardo L. Cominetti
Cryptographic protocols
Lattices are the basis of most NIST-recommended post-quantum cryptography (PQC) schemes, required to thwart the threat posed by the eventual construction of large-scale quantum computers. At the same time, lattices enable more advanced cryptographic constructions, such as fully homomorphic encryption (FHE), which is increasingly used for privacy-preserving applications like machine learning. This work delves into the efficiency and trade-off assessment of polynomial multiplication algorithms...
Symphony of Speeds: Harmonizing Classic McEliece Cryptography with GPU Innovation
Wen Wu, Jiankuo Dong, Zhen Xu, Zhenjiang Dong, Dung Duong, Fu Xiao, Jingqiang Lin
Implementation
The Classic McEliece key encapsulation mechanism (KEM), a candidate in the fourth-round post-quantum cryptography (PQC) standardization process by the National Institute of Standards and Technology (NIST), stands out for its conservative design and robust security guarantees. Leveraging the code-based Niederreiter cryptosystem, Classic McEliece delivers high-performance encapsulation and decapsulation, making it well-suited for various applications. However, there has not been a systematic...
Zemlyanika — Module-LWE based KEM with the power-of-two modulus, explicit rejection and revisited decapsulation failures
Alexey S. Zelenetsky, Peter G. Klyucharev
Public-key cryptography
This work introduces Zemlyanika, a post-quantum IND-CCA secure key encapsulation mechanism based on the Module-LWE problem. The high-level design of Zemlyanika follows a well-known approach where a passively secure public-key encryption scheme is transformed into an actively secure key encapsulation mechanism using the Fujisaki-Okamoto transform.
Our scheme features three main elements: a power-of-two modulus, explicit rejection, and revised requirements for decapsulation error...
Seamless Post-Quantum Transition: Agile and Efficient Encryption for Data-at-Rest
Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Federico Valbusa
Cryptographic protocols
As quantum computing matures, its impact on traditional cryptographic protocols becomes increasingly critical, especially for data-at-rest scenarios where large data sets remain encrypted for extended periods of time.
This paper addresses the pressing need to transition away from pre-quantum algorithms by presenting an agile cryptosystem that securely and efficiently supports post-quantum Key Encapsulation Mechanisms (KEMs).
The proposed solution is based on combining a CCA-secure KEM with...
Let us walk on the 3-isogeny graph: efficient, fast, and simple
Jesús-Javier Chi-Domínguez, Eduardo Ochoa-Jimenez, Ricardo-Neftalí Pontaza-Rodas
Public-key cryptography
Constructing and implementing isogeny-based cryptographic primitives is an active research. In particular, performing length-$n$ isogenies walks over quadratic field extensions of $\mathbb{F}_p$ plays an exciting role in some constructions, including
Hash functions, Verifiable Delay Functions, Key-Encapsulation Mechanisms, and generic proof systems for isogeny knowledge.
Remarkably, many isogeny-based constructions, for efficiency, perform $2$-isogenies through square root...
Post-quantum Cryptographic Analysis of SSH
Benjamin Benčina, Benjamin Dowling, Varun Maram, Keita Xagawa
Cryptographic protocols
The Secure Shell (SSH) protocol is one of the first security protocols on the Internet to upgrade itself to resist attacks against future quantum computers, with the default adoption of the "quantum (otherwise, classically)" secure hybrid key exchange in OpenSSH from April 2022. However, there is a lack of a comprehensive security analysis of this quantum-resistant version of SSH in the literature: related works either focus on the hybrid key exchange in isolation and do not consider...
Efficient SPA Countermeasures using Redundant Number Representation with Application to ML-KEM
Rishub Nagpal, Vedad Hadžić, Robert Primas, Stefan Mangard
Attacks and cryptanalysis
Simple power analysis (SPA) attacks and their extensions,
profiled and soft-analytical side-channel attacks (SASCA), represent a
significant threat to the security of cryptographic devices and remain
among the most powerful classes of passive side-channel attacks. In this
work, we analyze how numeric representations of secrets can affect the
amount of exploitable information leakage available to the adversary.
We present an analysis of how mutual information changes as a result
of the...
Key Derivation Functions Without a Grain of Salt
Matilda Backendal, Sebastian Clermont, Marc Fischlin, Felix Günther
Applications
Key derivation functions (KDFs) are integral to many cryptographic protocols. Their functionality is to turn raw key material, such as a Diffie-Hellman secret, into a strong cryptographic key that is indistinguishable from random. This guarantee was formalized by Krawczyk together with the seminal introduction of HKDF (CRYPTO 2010), in a model where the KDF only takes a single key material input. Modern protocol designs, however, regularly need to combine multiple secrets, possibly even from...
PHOENIX: Crypto-Agile Hardware Sharing for ML-KEM and HQC
Antonio Ras, Antoine Loiseau, Mikaël Carmona, Simon Pontié, Guénaël Renault, Benjamin Smith, Emanuele Valea
Implementation
The transition to quantum-safe public-key cryptography has begun: for key agreement, NIST has standardized ML-KEM and selected HQC for future standardization. The relative immaturity of these schemes encourages crypto-agile implementations, to facilitate easy transitions between them. Intelligent crypto-agility requires efficient sharing strategies to compute operations from different cryptosystems using the same resources. This is particularly challenging for cryptosystems with distinct...
An Optimized Instantiation of Post-Quantum MQTT protocol on 8-bit AVR Sensor Nodes
YoungBeom Kim, Seog Chung Seo
Implementation
Since the selection of the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) standardization algorithms, research on integrating PQC into security protocols such as TLS/SSL, IPSec, and DNSSEC has been actively pursued. However, PQC migration for Internet of Things (IoT) communication protocols remains largely unexplored. Embedded devices in IoT environments have limited computational power and memory, making it crucial to optimize PQC algorithms for...
Security Analysis of Covercrypt: A Quantum-Safe Hybrid Key Encapsulation Mechanism for Hidden Access Policies
Théophile Brézot, Chloé Hébant, Paola de Perthuis, David Pointcheval
Cryptographic protocols
The ETSI Technical Specification 104 015 proposes a framework to build Key Encapsulation Mechanisms (KEMs) with access policies and attributes, in the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) vein. Several security guarantees and functionalities are claimed, such as pre-quantum and post-quantum hybridization to achieve security against Chosen-Ciphertext Attacks (CCA), anonymity, and traceability.
In this paper, we present a formal security analysis of a more generic...
Fast Scloud+: A Fast Hardware Implementation for the Unstructured LWE-based KEM - Scloud+
Jing Tian, Yaodong Wei, Dejun Xu, Kai Wang, Anyu Wang, Zhiyuan Qiu, Fu Yao, Guang Zeng
Implementation
Scloud+ is an unstructured LWE-based key encapsulation mechanism (KEM) with conservative quantum security, in which ternary secrets and lattice coding are incorporated for higher computational and communication efficiency. However, its efficiencies are still much inferior to those of the structured LWE-based KEM, like ML-KEM (standardized by NIST). In this paper, we present a configurable hardware architecture for Scloud+.KEM to improve the computational efficiency. Many algorithmic and...
CAKE requires programming - On the provable post-quantum security of (O)CAKE
Kathrin Hövelmanns, Andreas Hülsing, Mikhail Kudinov, Silvia Ritsch
In this work we revisit the post-quantum security of KEM-based password-authenticated key exchange (PAKE), specifically that of (O)CAKE. So far, these schemes evaded a security proof considering quantum adversaries. We give a detailed analysis of why this is the case, determining the missing proof techniques. To this end, we first provide a proof of security in the post-quantum setting, up to a single gap. This proof already turns out to be technically involved, requiring advanced techniques...
Verifiable Decapsulation: Recognizing Faulty Implementations of Post-Quantum KEMs
Lewis Glabush, Felix Günther, Kathrin Hövelmanns, Douglas Stebila
Public-key cryptography
Cryptographic schemes often contain verification steps that are essential for security. Yet, faulty implementations missing these steps can easily go unnoticed, as the schemes might still function correctly. A prominent instance of such a verification step is the re-encryption check in the Fujisaki-Okamoto (FO) transform that plays a prominent role in the post-quantum key encapsulation mechanisms (KEMs) considered in NIST's PQC standardization process. In KEMs built from FO, decapsulation...
Hybrid Obfuscated Key Exchange and KEMs
Felix Günther, Michael Rosenberg, Douglas Stebila, Shannon Veitch
Cryptographic protocols
Hiding the metadata in Internet protocols serves to protect user privacy, dissuade traffic analysis, and prevent network ossification. Fully encrypted protocols require even the initial key exchange to be obfuscated: a passive observer should be unable to distinguish a protocol execution from an exchange of random bitstrings. Deployed obfuscated key exchanges such as Tor's pluggable transport protocol obfs4 are Diffie–Hellman-based, and rely on the Elligator encoding for obfuscation....
Enabling Microarchitectural Agility: Taking ML-KEM & ML-DSA from Cortex-M4 to M7 with SLOTHY
Amin Abdulrahman, Matthias J. Kannwischer, Thing-Han Lim
Implementation
Highly-optimized assembly is commonly used to achieve the best performance for popular cryptographic schemes such as the newly standardized ML-KEM and ML-DSA.
The majority of implementations today rely on hand-optimized assembly for the core building blocks to achieve both security and performance.
However, recent work by Abdulrahman et al. takes a new approach, writing a readable base assembly implementation first and leaving the bulk of the optimization work to a tool named SLOTHY based...
Tight Multi-challenge Security Reductions for Key Encapsulation Mechanisms
Lewis Glabush, Kathrin Hövelmanns, Douglas Stebila
Public-key cryptography
A key encapsulation mechanism (KEM) allows two parties to establish a shared secret key using only public communication. For post-quantum KEMs, the most widespread approach is to design a passively secure public-key encryption (PKE) scheme and then apply the Fujisaki–Okamoto (FO) transform that turns any such PKE scheme into an IND-CCA secure KEM. While the base security requirement for KEMs is typically IND-CCA security, adversaries in practice can sometimes observe and attack many public...
Finding and Protecting the Weakest Link - On Side-Channel Attacks on y in Masked ML-DSA
Julius Hermelink, Kai-Chun Ning, Richard Petri
Attacks and cryptanalysis
NIST standardized ML-KEM and ML-DSA as post-quantum key exchanges and digital signatures. Both schemes have already seen analysis with respect to side-channels, and first fully masked implementations of ML-DSA have been published. Previous attacks focused on unprotected implementations or assumed only hiding countermeasures to be in-place. Thus, in contrast to ML-KEM, the threat of side-channel attacks for protected ML-DSA implementations is mostly unclear.
In this work, we analyze the...
NoIC: PAKE from KEM without Ideal Ciphers
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki
Cryptographic protocols
We show a generic compiler from KEM to (Universally Composable) PAKE in the Random Oracle Model (ROM) and without requiring an Ideal Cipher. The compiler is akin to Encrypted Key Exchange (EKE) by Bellovin-Merritt, but following the work of McQuoid et al. it uses only a 2-round Feistel to password-encrypt a KEM public key. The resulting PAKE incurs only insignificant cost overhead over the underlying KEM, and it is a secure UC PAKE if KEM is secure and key-anonymous under the...
Shadowfax: A Deniability-Preserving AKEM Combiner
Phillip Gajland, Vincent Hwang, Jonas Janneck
Cryptographic protocols
As cryptographic protocols transition to post-quantum security, most adopt hybrid solutions combining pre-quantum and post-quantum assumptions. However, this shift often introduces trade-offs in terms of efficiency, compactness, and in some cases, even security. One such example is deniability, which enables users, such as journalists or activists, to deny authorship of potentially incriminating messages. While deniability was once mainly of theoretical interest, protocols like X3DH, used in...
Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM
Jeremiah Blocki, Seunghoon Lee
Public-key cryptography
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
Treating dishonest ciphertexts in post-quantum KEMs -- explicit vs. implicit rejection in the FO transform
Kathrin Hövelmanns, Mikhail Kudinov
Public-key cryptography
We revisit a basic building block in the endeavor to migrate to post-quantum secure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment of a shared secret key, using only public communication. When targeting chosen-ciphertext security against quantum attackers, the go-to method is to design a Public-Key Encryption (PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-Okamoto (FO) transform, which we revisit in this work....
PQConnect: Automated Post-Quantum End-to-End Tunnels
Daniel J. Bernstein, Tanja Lange, Jonathan Levin, Bo-Yin Yang
Applications
This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect.
Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a...
Simple Power Analysis assisted Chosen Cipher-Text Attack on ML-KEM
Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, David Vigilant
Attacks and cryptanalysis
Recent work proposed by Bernstein et al. (from EPRINT 2024) identified two timing attacks, KyberSlash1 and KyberSlash2, targeting ML-KEM decryption and encryption algorithms, respectively, enabling efficient recovery of secret keys. To mitigate these vulnerabilities, correctives were promptly applied across implementations. In this paper, we demonstrate a very simple side-channel-assisted power analysis attack on the patched implementations of ML-KEM. Our result showed that original timing...
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Gareth T. Davies, Alexander Wiesmaier
Cryptographic protocols
Password Authenticated Key Exchange (PAKE) is a fundamental
cryptographic component that allows two parties to establish a
shared key using only (potentially low-entropy) passwords. The interest
in realizing generic KEM-based PAKEs has increased significantly in the
last few years as part of the global migration effort to quantum-resistant
cryptography. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on
the...
OT-PCA: New Key-Recovery Plaintext-Checking Oracle Based Side-Channel Attacks on HQC with Offline Templates
Haiyue Dong, Qian Guo
Attacks and cryptanalysis
In this paper, we introduce OT-PCA, a novel approach for conducting Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we build offline templates that enable efficient extraction of soft information for hundreds of secret positions with just a single PC oracle call. Our method addresses critical challenges in optimizing key-related information extraction, including maximizing...
Modelings for generic PoK and Applications: Shorter SD and PKP based Signatures
Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni
Public-key cryptography
The Multi-Party Computation in the Head (MPCitH) paradigm has proven to be a versatile tool to design proofs of knowledge (PoK) based on variety of computationally hard problems. For instance, many post-quantum signatures have been designed from MPC based proofs combined with the Fiat-Shamir transformation. Over the years, MPCitH has evolved significantly with developments based on techniques such as threshold computing and other optimizations. Recently, Vector Oblivious Linear Evaluation...
Tighter Proofs for PKE-to-KEM Transformation in the Quantum Random Oracle Model
Jinrong Chen, Yi Wang, Rongmao Chen, Xinyi Huang, Wei Peng
Public-key cryptography
In this work, we provide new, tighter proofs for the $T_{RH}$-transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA security, a variant of typical IND-CCA security where only a single decapsulation query is allowed. Such KEMs are efficient and have been shown sufficient for real-world applications by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.'s $T_{RH}$-transformation in both the random oracle model (ROM) and...
Mind the Faulty Keccak: A Practical Fault Injection Attack Scheme Apply to All Phases of ML-KEM and ML-DSA
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis
ML-KEM and ML-DSA are NIST-standardized lattice-based post-quantum cryptographic algorithms. In both algorithms, Keccak is the designated hash algorithm extensively used for deriving sensitive information, making it a valuable target for attackers. In the field of fault injection attacks, few works targeted Keccak, and they have not fully explored its impact on the security of ML-KEM and ML-DSA. Consequently, many attacks remain undiscovered. In this article, we first identify various fault...
Optimized Software Implementation of Keccak, Kyber, and Dilithium on RV{32,64}IM{B}{V}
Jipeng Zhang, Yuxing Yan, Junhao Huang, Çetin Kaya Koç
Implementation
With the standardization of NIST post-quantum cryptographic (PQC) schemes, optimizing these PQC schemes across various platforms presents significant research value. While most existing software implementation efforts have concentrated on ARM platforms, research on PQC implementations utilizing various RISC-V instruction set architectures (ISAs) remains limited.
In light of this gap, this paper proposes comprehensive and efficient optimizations of Keccak, Kyber, and Dilithium on...
Interval Key-Encapsulation Mechanism
Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, Daniel Wichs
Public-key cryptography
Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key $k$ to Bob for some time $t$ such that Bob can decapsulate it at any time $t'\leq t$. Crucially, a corruption of Bob's secret key after time $t$ does not reveal $k$.
In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality...
Scabbard: An Exploratory Study on Hardware Aware Design Choices of Learning with Rounding-based Key Encapsulation Mechanisms
Suparna Kundu, Quinten Norga, Angshuman Karmakar, Shreya Gangopadhyay, Jose Maria Bermudo Mera, Ingrid Verbauwhede
Implementation
Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency, power requirement, etc., such variations in the underlying hard problem are very useful for designers...
Anamorphic Authenticated Key Exchange: Double Key Distribution under Surveillance
Weihao Wang, Shuai Han, Shengli Liu
Public-key cryptography
Anamorphic encryptions and anamorphic signatures assume a double key pre-shared between two parties so as to enable the transmission of covert messages. How to securely and efficiently distribute a double key under the dictator's surveillance is a central problem for anamorphic cryptography, especially when the users are forced to surrender their long-term secret keys or even the randomness used in the algorithms to the dictator.
In this paper, we propose Anamorphic Authentication Key...
Efficient Asymmetric PAKE Compiler from KEM and AE
You Lyu, Shengli Liu, Shuai Han
Cryptographic protocols
Password Authenticated Key Exchange (PAKE) allows two parties to establish a secure session key with a shared low-entropy password pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-server setting, and the server only stores a password file instead of the plain password so as to provide additional security guarantee when the server is compromised.
In this paper, we propose a novel generic compiler from PAKE to aPAKE in the Universal Composable (UC) framework by making use of Key...
Efficient Batch Algorithms for the Post-Quantum Crystals Dilithium Signature Scheme and Crystals Kyber Encryption Scheme
Nazlı Deniz TÜRE, Murat CENK
Cryptographic protocols
Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...
CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
Biming Zhou, Haodong Jiang, Yunlei Zhao
Cryptographic protocols
In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...
Quantum-safe Signatureless DNSSEC
Aditya Singh Rawat, Mahabir Prasad Jhanwar
Cryptographic protocols
We present $\mathsf{SL\text{-}DNSSEC}$: a backward-compatible protocol that leverages a quantum-safe KEM and a MAC to perform signature-less $\mathsf{(SL)}$ DNSSEC validations in a single UDP query/response style. Our experiments targeting NIST level I security for QTYPE A query resolution show that $\mathsf{SL\text{-}DNSSEC}$ is practically equivalent to the presently deployed RSA-2048 in terms of bandwidth usage and resolution speeds. Compared to post-quantum signatures,...
Scloud+: a Lightweight LWE-based KEM without Ring/Module Structure
Anyu Wang, Zhongxiang Zheng, Chunhuan Zhao, Zhiyuan Qiu, Guang Zeng, Ye Yuan, Changchun Mu, Xiaoyun Wang
Public-key cryptography
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography
This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.
Tailorable codes for lattice-based KEMs with applications to compact ML-KEM instantiations
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti, Henrique S. Ogawa
Public-key cryptography
Compared to elliptic curve cryptography, a primary drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography
With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...
Binding Security of Implicitly-Rejecting KEMs and Application to BIKE and HQC
Juliane Krämer, Patrick Struck, Maximiliane Weishäupl
Public-key cryptography
In this work, we continue the analysis of the binding properties of implicitly-rejecting key-encapsulation mechanisms (KEMs) obtained via the Fujisaki-Okamoto (FO) transform. These binding properties, in earlier literature known under the term robustness, thwart attacks that can arise when using KEMs in complex protocols. Recently, Cremers et al. (CCS'24) introduced a framework for binding notions, encompassing previously existing but also new ones. While implicitly-rejecting FO-KEMs have...
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis
Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice.
In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks.
We define two...
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation
This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography.
We start by carefully optimizing ML-KEM and ML-DSA --- the two algorithms primarily recommended and standardized by NIST --- in software targeting the OTBN accelerator.
Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis
As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. However, due to the impending threat of quantum computers on our existing public-key cryptographic schemes and the limited resources available on IoT devices, it is important to design lightweight post-quantum cryptographic (PQC) schemes suitable for these devices.
In this work, we...
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt, Christian Martin, Nils Maeurer
Cryptographic protocols
Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion.
We initiate the study of the...
Obfuscated Key Exchange
Felix Günther, Douglas Stebila, Shannon Veitch
Cryptographic protocols
Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...
KyberSlash: Exploiting secret-dependent division timings in Kyber implementations
Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales Paiva, Prasanna Ravi, Goutam Tamvada
Implementation
This paper presents KyberSlash1 and KyberSlash2 - two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, recently standardized as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a few hours for...
Ring Signatures for Deniable AKEM: Gandalf's Fellowship
Phillip Gajland, Jonas Janneck, Eike Kiltz
Public-key cryptography
Ring signatures, a cryptographic primitive introduced by Rivest, Shamir and Tauman (ASIACRYPT 2001), offer signer anonymity within dynamically formed user groups. Recent advancements have focused on lattice-based constructions to improve efficiency, particularly for large signing rings. However, current state-of-the-art solutions suffer from significant overhead, especially for smaller rings.
In this work, we present a novel NTRU-based ring signature scheme, Gandalf, tailored towards...
Formally verifying Kyber Episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt
José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub
Public-key cryptography
We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST.
The proof is machine-checked in EasyCrypt and it includes:
1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018;
2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis
In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber.
We further...
Measure-Rewind-Extract: Tighter Proofs of One-Way to Hiding and CCA Security in the Quantum Random Oracle Model
Jiangxia Ge, Heming Liao, Rui Xue
Public-key cryptography
The One-Way to Hiding (O2H) theorem, first given by Unruh (J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a crucial technique for solving the reprogramming problem in the quantum random oracle model (QROM). It provides an upper bound $d\cdot\sqrt{\epsilon}$ for the distinguisher's advantage, where $d$ is the query depth and $\epsilon$ denotes the advantage of a one-wayness attacker. Later, in order to obtain a tighter upper bound, Kuchta et al. (EUROCRYPT 2020) proposed...
A Deniability Analysis of Signal's Initial Handshake PQXDH
Rune Fiedler, Christian Janson
Cryptographic protocols
Many use messaging apps such as Signal to exercise their right to private communication. To cope with the advent of quantum computing, Signal employs a new initial handshake protocol called PQXDH for post-quantum confidentiality, yet keeps guarantees of authenticity and deniability classical. Compared to its predecessor X3DH, PQXDH includes a KEM encapsulation and a signature on the ephemeral key. In this work we show that PQXDH does not meet the same deniability guarantees as X3DH due to...
Let Attackers Program Ideal Models: Modularity and Composability for Adaptive Compromise
Joseph Jaeger
Foundations
We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto '20) cannot be applied in several natural use-cases. These include proving multi-user security from single-user security, the security of the cascade PRF, and the security of schemes sharing the same ideal primitive. We provide new variants of the definitions and show that they resolve these issues with composition. Extending these definitions to the asymmetric settings, we establish the security of the...
Security Analysis of Signal's PQXDH Handshake
Rune Fiedler, Felix Günther
Cryptographic protocols
Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake.
In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila, Spencer Wilson
Cryptographic protocols
WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication.
WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...
Agile, Post-quantum Secure Cryptography in Avionics
Karolin Varner, Wanja Zaeske, Sven Friedrich, Aaron Kaiser, Alice Bowman
Cryptographic protocols
To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security.
Because cryptographic technology can suddenly become...
Jumping for Bernstein-Yang Inversion
Li-Jie Jian, Ting-Yuan Wang, Bo-Yin Yang, Ming-Shing Chen
Implementation
This paper achieves fast polynomial inverse operations specifically tailored for the NTRU Prime KEM on ARMv8 NEON instruction set benchmarking on four processor architectures: Cortex-A53, Cortex-A72, Cortex-A76 and Apple M1. We utilize the jumping divison steps of the constant-time GCD algorithm from Bernstein and Yang (TCHES’19) and optimize underlying polynomial multiplication of various lengths to improve the efficiency for computing polynomial inverse operations in NTRU Prime.
Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor MAL-BIND-K-PK
Sophie Schmieg
Public-key cryptography
In "Keeping up with the KEMs" Cremers et al. introduced various binding models for KEMs. The authors show that ML-KEM is LEAK-BIND-K-CT and LEAK-BIND-K-PK, i.e. binding the ciphertext and the public key in the case of an adversary having access, but not being able to manipulate the key material. They further conjecture that ML-KEM also has MAL-BIND-K-PK, but not MAL-BIND-K-CT, the binding of public key or ciphertext to the shared secret in the case of an attacker with the ability to...
Snake-eye Resistant PKE from LWE for Oblivious Message Retrieval and Robust Encryption
Zeyu Liu, Katerina Sotiraki, Eran Tromer, Yunhao Wang
Cryptographic protocols
Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions?
In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a...
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, Marjan Skrobot
Cryptographic protocols
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a...
Analysis of Layered ROLLO-I: A BII-LRPC code-based KEM
Seongtaek Chee, Kyung Chul Jeong, Tanja Lange, Nari Lee, Alex Pellegrini, Hansol Ryu
Attacks and cryptanalysis
We analyze Layered ROLLO-I, a code-based cryptosystem
published in IEEE Communications Letters and submitted to the Korean
post-quantum cryptography competition. Four versions of Layered
ROLLO-I have been proposed in the competition. We show that the first
two versions do not provide the claimed security against rank decoding
attacks and give reductions to small instances of the original ROLLO-I
scheme, which was a candidate in the NIST competition and eliminated
there due to rank...
2024/208
Last updated: 2024-05-08
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography
In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...
PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs
Décio Luiz Gazzoni Filho, Guilherme Brandão, Gora Adj, Arwa Alblooshi, Isaac A. Canales-Martínez, Jorge Chávez-Saab, Julio López
Implementation
As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...
The impact of data-heavy, post-quantum TLS 1.3 on the Time-To-Last-Byte of real-world connections
Panos Kampanakis, Will Childs-Klein
Cryptographic protocols
It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s postquantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3...
QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography with Galois Permutation Group
Randy Kuang
Cryptographic protocols
In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis
Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...
Practical Post-Quantum Signatures for Privacy
Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois, Olivier Sanders
Public-key cryptography
The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation
While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...
K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures
Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, Serge Vaudenay
Cryptographic protocols
The Signal protocol and its X3DH key exchange core are regularly used by billions of people in applications like WhatsApp but are unfortunately not quantum-secure. Thus, designing an efficient and post-quantum secure X3DH alternative is paramount. Notably, X3DH supports asynchronicity, as parties can immediately derive keys after uploading them to a central server, and deniability, allowing parties to plausibly deny having completed key exchange. To satisfy these constraints, existing...
A provably masked implementation of BIKE Key Encapsulation Mechanism
Loïc Demange, Mélissa Rossi
Public-key cryptography
BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST’s standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and...
2024/062
Last updated: 2024-08-05
Double Difficulties, Defense in Depth A succinct authenticated key agreement protocol
WenBin Hsieh
In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve the...
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Richard Petri, Emanuele Strieder
Attacks and cryptanalysis
NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...
Quantum-Secure Hybrid Communication for Aviation Infrastructure
Benjamin Dowling, Bhagya Wimalasiri
Cryptographic protocols
The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...
X-Wing: The Hybrid KEM You’ve Been Looking For
Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin Varner, Bas Westerbaan
Public-key cryptography
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
Post Quantum Sphinx
David Anthony Stainton
Cryptographic protocols
This paper introduces two designs of Sphinx variants with corresponding im-
plementations for use in post-quantum threat models with a specific focus on
Mix networks. We introduce an obvious variant of Sphinx with CSIDH/CTIDH
and we additionally introduce ’KEM Sphinx’, an enhanced version of the
Sphinx packet format, designed to improve performance through modifications
that increase packet header size. Unlike its predecessor, KEM Sphinx addresses
performance limitations inherent in...
Keeping Up with the KEMs: Stronger Security Notions for KEMs and automated analysis of KEM-based protocols
Cas Cremers, Alexander Dax, Niklas Medinger
Public-key cryptography
Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years, a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g., in the context of the NIST process for post-quantum primitives.
In this work, we (i)...
Analyzing the complexity of reference post-quantum software: the case of lattice-based KEMs
Daniel J. Bernstein
Implementation
Software for various post-quantum KEMs has been submitted by the KEM design teams to the SUPERCOP testing framework. The ref/*.c and ref/*.h files together occupy, e.g., 848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for sntrup1277, and 2633 lines for kyber1024.
It is easy to see that these numbers overestimate the inherent complexity of software for these KEMs. It is more difficult to systematically measure this complexity.
This paper takes these KEMs as case...
Report on evaluation of KpqC candidates
Jolijn Cottaar, Kathrin Hövelmanns, Andreas Hülsing, Tanja Lange, Mohammad Mahzoun, Alex Pellegrini, Alberto Ravagnani, Sven Schäge, Monika Trimoska, Benne de Weger
Public-key cryptography
This report analyzes the 16 submissions to the Korean post-quantum cryptography (KpqC) competition.
Sender-Anamorphic Encryption Reformulated: Achieving Robust and Generic Constructions
Yi Wang, Rongmao Chen, Xinyi Huang, Moti Yung
Public-key cryptography
Motivated by the violation of two fundamental assumptions in secure communication - receiver-privacy and sender-freedom - by a certain entity referred to as ``the dictator'', Persiano et al. introduced the concept of Anamorphic Encryption (AME) for public key cryptosystems (EUROCRYPT 2022). Specifically, they presented receiver/sender-AME, directly tailored to scenarios where receiver privacy and sender freedom assumptions are compromised, respectively. In receiver-AME, entities share a...
A note on Failing gracefully: Completing the picture for explicitly rejecting Fujisaki-Okamoto transforms using worst-case correctness
Kathrin Hövelmanns, Christian Majenz
Public-key cryptography
The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are...
Homomorphic Polynomial Public Key Cryptography for Quantum-secure Digital Signature
Randy Kuang, Maria Perepechaenko, Mahmoud Sayed, Dafu Lou
Cryptographic protocols
In their 2022 study, Kuang et al. introduced the Multivariable Polynomial Public Key (MPPK) cryptography, a quantum-safe public key cryptosystem leveraging the mutual inversion relationship between multiplication and division. MPPK employs multiplication for key pair construction and division for decryption, generating public multivariate polynomials. Kuang and Perepechaenko expanded the cryptosystem into the Homomorphic Polynomial Public Key (HPPK), transforming product polynomials over...
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation
Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase.
In this work, we deliberate on the effect of design choices on integrating masking techniques into...
Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM
Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay, Ingrid Verbauwhede
Attacks and cryptanalysis
Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these...
Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts - A Case Study on HQC KEM
Thales Paiva, Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Sayan Das, Anupam Chattopadhyay
Attacks and cryptanalysis
HQC is a code-based key encapsulation mechanism (KEM)
that was selected to move to the fourth round of the NIST post-quantum
standardization process. While this scheme was previously targeted by
side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...
A Single-Trace Message Recovery Attack on a Masked and Shuffled Implementation of CRYSTALS-Kyber
Sönke Jendral, Kalle Ngo, Ruize Wang, Elena Dubrova
Attacks and cryptanalysis
Last year CRYSTALS-Kyber was chosen by NIST as a new, post-quantum secure key encapsulation mechanism to be standardized. This makes it important to assess the resistance of CRYSTALS-Kyber implementations to physical attacks. Pure side-channel attacks on post-quantum cryptographic algorithms have already been well-explored. In this paper, we present an attack on a masked and shuffled software implementation of CRYSTALS-Kyber that combines fault injection with side-channel analysis. First, a...
IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram
Tomoki Moriya
Public-key cryptography
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. One of the benefits of using isogeny-based cryptography is its compactness. In particular, a key exchange scheme SIDH allowed us to use a $4\lambda$-bit prime for the security parameter $\lambda$.
Unfortunately, SIDH was broken in 2022 by some studies. After that, some isogeny-based key exchange and public key encryption schemes have been proposed; however, most of these schemes use primes whose sizes are...
Tighter Security for Generic Authenticated Key Exchange in the QROM
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography
We give a tighter security proof for authenticated key exchange (AKE) protocols that are generically constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model (QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss in the number of users and total sessions. Our proof is much tighter and does not have square-root loss. Namely, it only...
The Q-problem has been introduced as a new post-quantum hard problem. We present two man-in-the-middle and three key recovery attacks against the key exchange protocol based on the Q-problem. The man-in-the-middle attacks take negligible time and allow the attacker to recover the exchanged key. The most effective key recovery attack has a computational complexity of $2^{40}$. We also propose countermeasures against all attacks.
The key encapsulation mechanism FrodoKEM is a post-quantum algorithm based on plain LWE. While it has not been selected by the NIST for standardization, FrodoKEM shares a lot of similarities with the lattice-based standard ML-KEM and offers strong security assumptions by relying on the unstructured version of the LWE problem. This leads FrodoKEM to be recommended by European agencies ANSSI and BSI as a possible choice to obtain post-quantum security. In this paper, we discuss the practical...
Post-quantum public key encryption (PKE) schemes employing Quasi-cyclic (QC) sparse parity-check matrix codes are enjoying significant success, thanks to their good performance profile and reduction to believed-hard problems from coding theory. However, using QC sparse parity-check matrix codes (i.e., QC-MDPC/LDPC codes) comes with a significant challenge: determining in closed-form their decoding failure rate (DFR), as decoding failures are known to leak information on the private...
As quantum technology advances, developing cryptographic solutions resistant to quantum attacks is crucial. Post-Quantum Cryptography (PQC) provides a practical approach by running on classical computers. They rely on hard mathematical problems, with lattice-based being one of the National Institute of Standards and Technology (NIST)-recognized schemes known for its small key sizes. Hardware implementation of these schemes faces challenges due to the computational intensity of operations...
A multi-message multi-recipient Public Key Encryption (mmPKE) enables batch encryption of multiple messages for multiple independent recipients in one go, significantly reducing costs, particularly bandwidth, compared to the trivial solution of encrypting each message individually. This capability is especially critical in the post-quantum setting, where ciphertext length is typically significantly larger than the corresponding plaintext. In this work, we first observe that the generic...
The emergence of quantum computing and Shor's algorithm necessitates an imminent shift from current public key cryptography techniques to post-quantum robust techniques. NIST has responded by standardising Post-Quantum Cryptography (PQC) algorithms, with ML-KEM (FIPS-203) slated to replace ECDH (Elliptic Curve Diffie-Hellman) for key exchange. A key practical concern for PQC adoption is energy consumption. This paper introduces a new framework for measuring the PQC energy consumption on a...
The Signal Protocol, underpinning secure messaging for billions, faces the challenge of migrating to a post-quantum world while preserving critical properties like asynchrony and deniability. While Signal’s PQXDH key exchange protocol addresses post-quantum confidentiality, full migration of the X3DH protocol remains elusive. Relying on a split KEM (K-Waay, USENIX ’24) offers a promising migration path, but it has so far suffered from size limitations compared to concurrent works...
Passports, identity cards and travel visas are examples of machine readable travel documents (MRTDs) or eMRTDs for their electronic variants. The security of the data exchanged between these documents and a reader is secured with a standardized password authenticated key exchange (PAKE) protocol known as PACE. A new world-wide protocol migration is expected with the arrival of post-quantum cryptography (PQC) standards. In this paper, we focus on the impact of this migration on constrained...
We present a dataset of side-channel power measurements captured during pair-pointwise multiplication in the decapsulation procedure of the Kyber Key Encapsulation Mechanism (KEM). The dataset targets the pair-pointwise multiplication step in the NTT domain, a key computational component of Kyber. The dataset is collected using the reference implementation from the PQClean project. We hope the dataset helps in research in ``classical'' power analysis and deep learning-based side-channel...
NTRU schemes have been extensively studied as post-quantum proposals within the category of lattice-based constructions. Numerous designs have been introduced with security assumptions based on the NTRU hard problem; some focused on security, and others were motivated by faster computations. Recently, some proposals for noncommutative NTRU have appeared in the literature, claiming more resistance to some algebraic attacks. While these proposals provide practical cryptosystems, they fail to...
Lattices are the basis of most NIST-recommended post-quantum cryptography (PQC) schemes, required to thwart the threat posed by the eventual construction of large-scale quantum computers. At the same time, lattices enable more advanced cryptographic constructions, such as fully homomorphic encryption (FHE), which is increasingly used for privacy-preserving applications like machine learning. This work delves into the efficiency and trade-off assessment of polynomial multiplication algorithms...
The Classic McEliece key encapsulation mechanism (KEM), a candidate in the fourth-round post-quantum cryptography (PQC) standardization process by the National Institute of Standards and Technology (NIST), stands out for its conservative design and robust security guarantees. Leveraging the code-based Niederreiter cryptosystem, Classic McEliece delivers high-performance encapsulation and decapsulation, making it well-suited for various applications. However, there has not been a systematic...
This work introduces Zemlyanika, a post-quantum IND-CCA secure key encapsulation mechanism based on the Module-LWE problem. The high-level design of Zemlyanika follows a well-known approach where a passively secure public-key encryption scheme is transformed into an actively secure key encapsulation mechanism using the Fujisaki-Okamoto transform. Our scheme features three main elements: a power-of-two modulus, explicit rejection, and revised requirements for decapsulation error...
As quantum computing matures, its impact on traditional cryptographic protocols becomes increasingly critical, especially for data-at-rest scenarios where large data sets remain encrypted for extended periods of time. This paper addresses the pressing need to transition away from pre-quantum algorithms by presenting an agile cryptosystem that securely and efficiently supports post-quantum Key Encapsulation Mechanisms (KEMs). The proposed solution is based on combining a CCA-secure KEM with...
Constructing and implementing isogeny-based cryptographic primitives is an active research. In particular, performing length-$n$ isogenies walks over quadratic field extensions of $\mathbb{F}_p$ plays an exciting role in some constructions, including Hash functions, Verifiable Delay Functions, Key-Encapsulation Mechanisms, and generic proof systems for isogeny knowledge. Remarkably, many isogeny-based constructions, for efficiency, perform $2$-isogenies through square root...
The Secure Shell (SSH) protocol is one of the first security protocols on the Internet to upgrade itself to resist attacks against future quantum computers, with the default adoption of the "quantum (otherwise, classically)" secure hybrid key exchange in OpenSSH from April 2022. However, there is a lack of a comprehensive security analysis of this quantum-resistant version of SSH in the literature: related works either focus on the hybrid key exchange in isolation and do not consider...
Simple power analysis (SPA) attacks and their extensions, profiled and soft-analytical side-channel attacks (SASCA), represent a significant threat to the security of cryptographic devices and remain among the most powerful classes of passive side-channel attacks. In this work, we analyze how numeric representations of secrets can affect the amount of exploitable information leakage available to the adversary. We present an analysis of how mutual information changes as a result of the...
Key derivation functions (KDFs) are integral to many cryptographic protocols. Their functionality is to turn raw key material, such as a Diffie-Hellman secret, into a strong cryptographic key that is indistinguishable from random. This guarantee was formalized by Krawczyk together with the seminal introduction of HKDF (CRYPTO 2010), in a model where the KDF only takes a single key material input. Modern protocol designs, however, regularly need to combine multiple secrets, possibly even from...
The transition to quantum-safe public-key cryptography has begun: for key agreement, NIST has standardized ML-KEM and selected HQC for future standardization. The relative immaturity of these schemes encourages crypto-agile implementations, to facilitate easy transitions between them. Intelligent crypto-agility requires efficient sharing strategies to compute operations from different cryptosystems using the same resources. This is particularly challenging for cryptosystems with distinct...
Since the selection of the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) standardization algorithms, research on integrating PQC into security protocols such as TLS/SSL, IPSec, and DNSSEC has been actively pursued. However, PQC migration for Internet of Things (IoT) communication protocols remains largely unexplored. Embedded devices in IoT environments have limited computational power and memory, making it crucial to optimize PQC algorithms for...
The ETSI Technical Specification 104 015 proposes a framework to build Key Encapsulation Mechanisms (KEMs) with access policies and attributes, in the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) vein. Several security guarantees and functionalities are claimed, such as pre-quantum and post-quantum hybridization to achieve security against Chosen-Ciphertext Attacks (CCA), anonymity, and traceability. In this paper, we present a formal security analysis of a more generic...
Scloud+ is an unstructured LWE-based key encapsulation mechanism (KEM) with conservative quantum security, in which ternary secrets and lattice coding are incorporated for higher computational and communication efficiency. However, its efficiencies are still much inferior to those of the structured LWE-based KEM, like ML-KEM (standardized by NIST). In this paper, we present a configurable hardware architecture for Scloud+.KEM to improve the computational efficiency. Many algorithmic and...
In this work we revisit the post-quantum security of KEM-based password-authenticated key exchange (PAKE), specifically that of (O)CAKE. So far, these schemes evaded a security proof considering quantum adversaries. We give a detailed analysis of why this is the case, determining the missing proof techniques. To this end, we first provide a proof of security in the post-quantum setting, up to a single gap. This proof already turns out to be technically involved, requiring advanced techniques...
Cryptographic schemes often contain verification steps that are essential for security. Yet, faulty implementations missing these steps can easily go unnoticed, as the schemes might still function correctly. A prominent instance of such a verification step is the re-encryption check in the Fujisaki-Okamoto (FO) transform that plays a prominent role in the post-quantum key encapsulation mechanisms (KEMs) considered in NIST's PQC standardization process. In KEMs built from FO, decapsulation...
Hiding the metadata in Internet protocols serves to protect user privacy, dissuade traffic analysis, and prevent network ossification. Fully encrypted protocols require even the initial key exchange to be obfuscated: a passive observer should be unable to distinguish a protocol execution from an exchange of random bitstrings. Deployed obfuscated key exchanges such as Tor's pluggable transport protocol obfs4 are Diffie–Hellman-based, and rely on the Elligator encoding for obfuscation....
Highly-optimized assembly is commonly used to achieve the best performance for popular cryptographic schemes such as the newly standardized ML-KEM and ML-DSA. The majority of implementations today rely on hand-optimized assembly for the core building blocks to achieve both security and performance. However, recent work by Abdulrahman et al. takes a new approach, writing a readable base assembly implementation first and leaving the bulk of the optimization work to a tool named SLOTHY based...
A key encapsulation mechanism (KEM) allows two parties to establish a shared secret key using only public communication. For post-quantum KEMs, the most widespread approach is to design a passively secure public-key encryption (PKE) scheme and then apply the Fujisaki–Okamoto (FO) transform that turns any such PKE scheme into an IND-CCA secure KEM. While the base security requirement for KEMs is typically IND-CCA security, adversaries in practice can sometimes observe and attack many public...
NIST standardized ML-KEM and ML-DSA as post-quantum key exchanges and digital signatures. Both schemes have already seen analysis with respect to side-channels, and first fully masked implementations of ML-DSA have been published. Previous attacks focused on unprotected implementations or assumed only hiding countermeasures to be in-place. Thus, in contrast to ML-KEM, the threat of side-channel attacks for protected ML-DSA implementations is mostly unclear. In this work, we analyze the...
We show a generic compiler from KEM to (Universally Composable) PAKE in the Random Oracle Model (ROM) and without requiring an Ideal Cipher. The compiler is akin to Encrypted Key Exchange (EKE) by Bellovin-Merritt, but following the work of McQuoid et al. it uses only a 2-round Feistel to password-encrypt a KEM public key. The resulting PAKE incurs only insignificant cost overhead over the underlying KEM, and it is a secure UC PAKE if KEM is secure and key-anonymous under the...
As cryptographic protocols transition to post-quantum security, most adopt hybrid solutions combining pre-quantum and post-quantum assumptions. However, this shift often introduces trade-offs in terms of efficiency, compactness, and in some cases, even security. One such example is deniability, which enables users, such as journalists or activists, to deny authorship of potentially incriminating messages. While deniability was once mainly of theoretical interest, protocols like X3DH, used in...
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
We revisit a basic building block in the endeavor to migrate to post-quantum secure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment of a shared secret key, using only public communication. When targeting chosen-ciphertext security against quantum attackers, the go-to method is to design a Public-Key Encryption (PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-Okamoto (FO) transform, which we revisit in this work....
This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect. Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a...
Recent work proposed by Bernstein et al. (from EPRINT 2024) identified two timing attacks, KyberSlash1 and KyberSlash2, targeting ML-KEM decryption and encryption algorithms, respectively, enabling efficient recovery of secret keys. To mitigate these vulnerabilities, correctives were promptly applied across implementations. In this paper, we demonstrate a very simple side-channel-assisted power analysis attack on the patched implementations of ML-KEM. Our result showed that original timing...
Password Authenticated Key Exchange (PAKE) is a fundamental cryptographic component that allows two parties to establish a shared key using only (potentially low-entropy) passwords. The interest in realizing generic KEM-based PAKEs has increased significantly in the last few years as part of the global migration effort to quantum-resistant cryptography. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the...
In this paper, we introduce OT-PCA, a novel approach for conducting Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we build offline templates that enable efficient extraction of soft information for hundreds of secret positions with just a single PC oracle call. Our method addresses critical challenges in optimizing key-related information extraction, including maximizing...
The Multi-Party Computation in the Head (MPCitH) paradigm has proven to be a versatile tool to design proofs of knowledge (PoK) based on variety of computationally hard problems. For instance, many post-quantum signatures have been designed from MPC based proofs combined with the Fiat-Shamir transformation. Over the years, MPCitH has evolved significantly with developments based on techniques such as threshold computing and other optimizations. Recently, Vector Oblivious Linear Evaluation...
In this work, we provide new, tighter proofs for the $T_{RH}$-transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA security, a variant of typical IND-CCA security where only a single decapsulation query is allowed. Such KEMs are efficient and have been shown sufficient for real-world applications by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.'s $T_{RH}$-transformation in both the random oracle model (ROM) and...
ML-KEM and ML-DSA are NIST-standardized lattice-based post-quantum cryptographic algorithms. In both algorithms, Keccak is the designated hash algorithm extensively used for deriving sensitive information, making it a valuable target for attackers. In the field of fault injection attacks, few works targeted Keccak, and they have not fully explored its impact on the security of ML-KEM and ML-DSA. Consequently, many attacks remain undiscovered. In this article, we first identify various fault...
With the standardization of NIST post-quantum cryptographic (PQC) schemes, optimizing these PQC schemes across various platforms presents significant research value. While most existing software implementation efforts have concentrated on ARM platforms, research on PQC implementations utilizing various RISC-V instruction set architectures (ISAs) remains limited. In light of this gap, this paper proposes comprehensive and efficient optimizations of Keccak, Kyber, and Dilithium on...
Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key $k$ to Bob for some time $t$ such that Bob can decapsulate it at any time $t'\leq t$. Crucially, a corruption of Bob's secret key after time $t$ does not reveal $k$. In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality...
Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency, power requirement, etc., such variations in the underlying hard problem are very useful for designers...
Anamorphic encryptions and anamorphic signatures assume a double key pre-shared between two parties so as to enable the transmission of covert messages. How to securely and efficiently distribute a double key under the dictator's surveillance is a central problem for anamorphic cryptography, especially when the users are forced to surrender their long-term secret keys or even the randomness used in the algorithms to the dictator. In this paper, we propose Anamorphic Authentication Key...
Password Authenticated Key Exchange (PAKE) allows two parties to establish a secure session key with a shared low-entropy password pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-server setting, and the server only stores a password file instead of the plain password so as to provide additional security guarantee when the server is compromised. In this paper, we propose a novel generic compiler from PAKE to aPAKE in the Universal Composable (UC) framework by making use of Key...
Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...
In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...
We present $\mathsf{SL\text{-}DNSSEC}$: a backward-compatible protocol that leverages a quantum-safe KEM and a MAC to perform signature-less $\mathsf{(SL)}$ DNSSEC validations in a single UDP query/response style. Our experiments targeting NIST level I security for QTYPE A query resolution show that $\mathsf{SL\text{-}DNSSEC}$ is practically equivalent to the presently deployed RSA-2048 in terms of bandwidth usage and resolution speeds. Compared to post-quantum signatures,...
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.
Compared to elliptic curve cryptography, a primary drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...
With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...
In this work, we continue the analysis of the binding properties of implicitly-rejecting key-encapsulation mechanisms (KEMs) obtained via the Fujisaki-Okamoto (FO) transform. These binding properties, in earlier literature known under the term robustness, thwart attacks that can arise when using KEMs in complex protocols. Recently, Cremers et al. (CCS'24) introduced a framework for binding notions, encompassing previously existing but also new ones. While implicitly-rejecting FO-KEMs have...
Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...
This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA --- the two algorithms primarily recommended and standardized by NIST --- in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...
As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. However, due to the impending threat of quantum computers on our existing public-key cryptographic schemes and the limited resources available on IoT devices, it is important to design lightweight post-quantum cryptographic (PQC) schemes suitable for these devices. In this work, we...
Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion. We initiate the study of the...
Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...
This paper presents KyberSlash1 and KyberSlash2 - two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, recently standardized as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a few hours for...
Ring signatures, a cryptographic primitive introduced by Rivest, Shamir and Tauman (ASIACRYPT 2001), offer signer anonymity within dynamically formed user groups. Recent advancements have focused on lattice-based constructions to improve efficiency, particularly for large signing rings. However, current state-of-the-art solutions suffer from significant overhead, especially for smaller rings. In this work, we present a novel NTRU-based ring signature scheme, Gandalf, tailored towards...
We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...
In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...
The One-Way to Hiding (O2H) theorem, first given by Unruh (J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a crucial technique for solving the reprogramming problem in the quantum random oracle model (QROM). It provides an upper bound $d\cdot\sqrt{\epsilon}$ for the distinguisher's advantage, where $d$ is the query depth and $\epsilon$ denotes the advantage of a one-wayness attacker. Later, in order to obtain a tighter upper bound, Kuchta et al. (EUROCRYPT 2020) proposed...
Many use messaging apps such as Signal to exercise their right to private communication. To cope with the advent of quantum computing, Signal employs a new initial handshake protocol called PQXDH for post-quantum confidentiality, yet keeps guarantees of authenticity and deniability classical. Compared to its predecessor X3DH, PQXDH includes a KEM encapsulation and a signature on the ephemeral key. In this work we show that PQXDH does not meet the same deniability guarantees as X3DH due to...
We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto '20) cannot be applied in several natural use-cases. These include proving multi-user security from single-user security, the security of the cascade PRF, and the security of schemes sharing the same ideal primitive. We provide new variants of the definitions and show that they resolve these issues with composition. Extending these definitions to the asymmetric settings, we establish the security of the...
Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake. In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...
WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication. WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...
To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security. Because cryptographic technology can suddenly become...
This paper achieves fast polynomial inverse operations specifically tailored for the NTRU Prime KEM on ARMv8 NEON instruction set benchmarking on four processor architectures: Cortex-A53, Cortex-A72, Cortex-A76 and Apple M1. We utilize the jumping divison steps of the constant-time GCD algorithm from Bernstein and Yang (TCHES’19) and optimize underlying polynomial multiplication of various lengths to improve the efficiency for computing polynomial inverse operations in NTRU Prime.
In "Keeping up with the KEMs" Cremers et al. introduced various binding models for KEMs. The authors show that ML-KEM is LEAK-BIND-K-CT and LEAK-BIND-K-PK, i.e. binding the ciphertext and the public key in the case of an adversary having access, but not being able to manipulate the key material. They further conjecture that ML-KEM also has MAL-BIND-K-PK, but not MAL-BIND-K-CT, the binding of public key or ciphertext to the shared secret in the case of an attacker with the ability to...
Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a...
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a...
We analyze Layered ROLLO-I, a code-based cryptosystem published in IEEE Communications Letters and submitted to the Korean post-quantum cryptography competition. Four versions of Layered ROLLO-I have been proposed in the competition. We show that the first two versions do not provide the claimed security against rank decoding attacks and give reductions to small instances of the original ROLLO-I scheme, which was a candidate in the NIST competition and eliminated there due to rank...
In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...
As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...
It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s postquantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3...
In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...
Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...
The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...
While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...
The Signal protocol and its X3DH key exchange core are regularly used by billions of people in applications like WhatsApp but are unfortunately not quantum-secure. Thus, designing an efficient and post-quantum secure X3DH alternative is paramount. Notably, X3DH supports asynchronicity, as parties can immediately derive keys after uploading them to a central server, and deniability, allowing parties to plausibly deny having completed key exchange. To satisfy these constraints, existing...
BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST’s standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and...
In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve the...
NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...
The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...
This paper introduces two designs of Sphinx variants with corresponding im- plementations for use in post-quantum threat models with a specific focus on Mix networks. We introduce an obvious variant of Sphinx with CSIDH/CTIDH and we additionally introduce ’KEM Sphinx’, an enhanced version of the Sphinx packet format, designed to improve performance through modifications that increase packet header size. Unlike its predecessor, KEM Sphinx addresses performance limitations inherent in...
Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years, a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g., in the context of the NIST process for post-quantum primitives. In this work, we (i)...
Software for various post-quantum KEMs has been submitted by the KEM design teams to the SUPERCOP testing framework. The ref/*.c and ref/*.h files together occupy, e.g., 848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for sntrup1277, and 2633 lines for kyber1024. It is easy to see that these numbers overestimate the inherent complexity of software for these KEMs. It is more difficult to systematically measure this complexity. This paper takes these KEMs as case...
This report analyzes the 16 submissions to the Korean post-quantum cryptography (KpqC) competition.
Motivated by the violation of two fundamental assumptions in secure communication - receiver-privacy and sender-freedom - by a certain entity referred to as ``the dictator'', Persiano et al. introduced the concept of Anamorphic Encryption (AME) for public key cryptosystems (EUROCRYPT 2022). Specifically, they presented receiver/sender-AME, directly tailored to scenarios where receiver privacy and sender freedom assumptions are compromised, respectively. In receiver-AME, entities share a...
The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are...
In their 2022 study, Kuang et al. introduced the Multivariable Polynomial Public Key (MPPK) cryptography, a quantum-safe public key cryptosystem leveraging the mutual inversion relationship between multiplication and division. MPPK employs multiplication for key pair construction and division for decryption, generating public multivariate polynomials. Kuang and Perepechaenko expanded the cryptosystem into the Homomorphic Polynomial Public Key (HPPK), transforming product polynomials over...
Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...
Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these...
HQC is a code-based key encapsulation mechanism (KEM) that was selected to move to the fourth round of the NIST post-quantum standardization process. While this scheme was previously targeted by side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...
Last year CRYSTALS-Kyber was chosen by NIST as a new, post-quantum secure key encapsulation mechanism to be standardized. This makes it important to assess the resistance of CRYSTALS-Kyber implementations to physical attacks. Pure side-channel attacks on post-quantum cryptographic algorithms have already been well-explored. In this paper, we present an attack on a masked and shuffled software implementation of CRYSTALS-Kyber that combines fault injection with side-channel analysis. First, a...
Isogeny-based cryptography is one of the candidates for post-quantum cryptography. One of the benefits of using isogeny-based cryptography is its compactness. In particular, a key exchange scheme SIDH allowed us to use a $4\lambda$-bit prime for the security parameter $\lambda$. Unfortunately, SIDH was broken in 2022 by some studies. After that, some isogeny-based key exchange and public key encryption schemes have been proposed; however, most of these schemes use primes whose sizes are...
We give a tighter security proof for authenticated key exchange (AKE) protocols that are generically constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model (QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss in the number of users and total sessions. Our proof is much tighter and does not have square-root loss. Namely, it only...