8-Ch/Dual 4-Ch CMOS Analog Multiplexers
8-Ch/Dual 4-Ch CMOS Analog Multiplexers
Vishay Siliconix
DESCRIPTION
The DG408 is an 8-channel single-ended analog multiplexer Applications for the DG408/409 include high speed data
designed to connect one of eight inputs to a common output acquisition, audio signal switching and routing, ATE systems,
as determined by a 3-bit binary address (A0, A1, A2). The and avionics. High performance and low power dissipation
DG409 is a dual 4-channel differential analog multiplexer make them ideal for battery operated and remote
designed to connect one of four differential inputs to a common instrumentation applications.
dual output as determined by its 2-bit binary address (A0, A1).
Break-before-make switching action protects against
momentary crosstalk between adjacent channels.
Designed in the 44-V silicon-gate CMOS process, the
absolute maximum voltage rating is extended to 44 V.
An on channel conducts current equally well in both directions. Additionally, single supply operation is also allowed. An
In the off state each channel blocks voltages up to the power epitaxial layer prevents latchup.
supply rails. An enable (EN) function allows the user to reset
the multiplexer/demultiplexer to all switches off for stacking
several devices. All control inputs, address (Ax) and enable
(EN) are TTL compatible over the full specified operating For additional information please see Technical Article TA201
temperature range. (FaxBack Number 70600).
A0 A1 A0 A1
1 16 1 16
EN Decoders/Drivers A2 EN GND
2 15 2 Decoders/Drivers 15
V- GND V- V+
3 14 3 14
S1 V+ S1a S1b
4 13 4 13
S2 S5 S2a S2b
5 12 5 12
S3 S6 S3a S3b
6 11 6 11
S4 S7 S4a S4b
7 10 7 10
D S8 Da Db
8 9 8 9
-40 to 85_C 16-Pin SOIC DG408DY -40 to 85_C 16-Pin SOIC DG409DY
DG408AK DG409AK
SPECIFICATIONSa
Test Conditions A Suffix D Suffix
Unless Otherwise Specified -55 to 125_C -40 to 85_C
V+ = 15 V, V- = -15 V
Parameter Symbol VAL = 0.8 V, VAH = 2.4 Vf Tempb Typc Mind Maxd Mind Maxd Unit
Analog Switch
Analog Signal Rangee VANALOG Full -15 15 -15 15 V
Room 40 100 100
Drain-Source On-Resistance rDS(on) VD = "10 V, IS = -10 mA
Full 125 125
rDS(on) Matching Between
rDS(on) VD = "10 V Room 15 15 %
Channelsg
Source Off VS = "10 V, VD = #10 V Room -0.5 0.5 -0.5 0.5
IS(off)
Leakage Current VEN = 0 V Full -50 50 -5 5
Room -1 1 -1 1
VD = "10 V DG408
Full -100 100 -20 20
Drain Off Leakage Current ID(off) VS = #10
# V
VEN = 0 V Room -1 1 -1 1
DG409 nA
Full -50 50 -10 10
Room -1 1 -1 1
VS = VD = "10 V DG408
Full -100 100 -20 20
Drain On Leakage Current ID(on) Sequence Each
Switch On Room -1 1 -1 1
DG409
Full -50 50 -10 10
Digital Control
Logic High Input Voltage VINH Full 2.4 2.4
V
Logic Low Input Voltage VINL Full 0.8 0.8
Logic High Input Current IAH VA = 2.4 V, 15 V Full -10 10 -10 10
A
Logic Low Input Current IAL VEN = 0 V, 2.4 V, VA = 0 V Full -10 10 -10 10
Logic Input Capacitance Cin f = 1 MHz Room 8 pF
Dynamic Characteristics
Transition Time tTRANS See Figure 2 Full 160 250 250
Break-Before-Make Interval tOPEN See Figure 4 Room 10 10
Room 115 150 150 ns
Enable Turn-On Time tON(EN)
See Figure 3 Full 225
Enable Turn-Off Time tOFF(EN) Room 105 150 150
Charge Injection Q CL = 10 nF, VS = 0 V Room 20 pC
VEN = 0 V, RL = 1 k
Off Isolationh OIRR Room -75 dB
f = 100 kHz
Source Off Capacitance CS(off) VEN = 0 V, VS = 0 V, f = 1 MHz Room 3
DG408 Room 26
Drain Off Capacitance CD(off)
VEN = 0 V, VD = 0 V DG409 Room 14 pF
f = 1 MHz DG408 Room 37
Drain On Capacitance CD(on)
DG409 Room 25
Power Supplies
Positive Supply Current I+ Full 10 75 75
VEN = VA = 0 V or 5 V
A
Negative Supply Current I- Full 1 -75 -75
Room 0.2 0.5 0.5
Positive Supply Current I+ mA
VEN = 2.4 V, VA = 0 V Full 2 2
Negative Supply Current I- Full -500 -500 A
V+ = 12 V, V- = 0 V
Parameter Symbol VAL = 0.8 V, VAH = 2.4 Vf Tempb Typc Mind Maxd Mind Maxd Unit
Analog Switch
Drain-Source
rDS(on) VD = 3 V, 10 V, IS = - 1 mA Room 90
On-Resistancee, f
Dynamic Characteristics
Switching Time of Multiplexere tTRANS VS1 = 8 V, VS8 = 0 V, VIN = 2.4 V Room 180
Notes
a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25_C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
g. rDS(on) = rDS(on) Max - rDS(on) Min.
h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.
I D (pA)
40 0
-20
20 DG408 ID(on)
CS(off)
-40
0 -60
-15 -10 -5 0 5 10 15 0 2 4 6 8 10 12
VANALOG - Analog Voltage (V) VD - Drain Voltage (V)
Drain Leakage Current vs. Source/DrainVoltage Source Leakage Current vs. Source Voltage
100 20
V+ = 15 V
V- = -15 V
60 VS = -VD for ID(off) 15
VD = VS(open) for ID(on)
V+ = 15 V
20 10 V- = -15 V
DG409 ID(off)
I D (pA)
IS(off) (pA)
-20 5
V+ = 12 V
-100 DG408 ID(on), ID(off) -5 V- = 0 V
-140 -10
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
VD or VS — Drain or Source Voltage (V) VS - Source Voltage (V)
Input Switching Threshold vs. Supply Voltage Negative Supply Current vs. Switching Frequency
ÉÉÉÉÉÉÉÉÉÉÉÉ
2.0 -100 mA
VSUPPLY = "15 V
1.5 ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
-10 mA
ÉÉÉÉÉÉÉÉÉÉÉÉ
-1 mA
ÉÉÉÉÉÉÉÉÉÉÉÉ
VEN = 2.4 V
V TH (V)
1.0 -100 A
ÉÉÉÉÉÉÉÉÉÉÉÉ
I-
-10 A
0.5 VEN = 0 V or 5 V
-1 A
0.0 -0.1 A
4 8 12 16 20 100 1k 10 k 100 k 1M 10 M
+VSUPPLY (V) Switching Frequency (Hz)
10 mA
1 mA
I+, I-
VEN = 2.4 V 100 nA
I+
1 mA
10 nA
100 A 1 nA
-(I-) VSUPPLY = "15 V
VEN = 0 V or 5 V VA = 0 V
100 pA VEN = 0 V
10 A 10 pA
100 1k 10 k 100 k 1M 10 M -55 -35 -15 5 25 45 65 85 105 125
Switching Frequency (Hz) Temperature (_C)
Positive Supply Current vs. Temperature (DG408) Charge Injection vs. Analog Voltage
90
CL = 10,000 pF
20 80 VIN = 5 Vp-p
70
60
15
50 V+ = 15 V
I+ ( A)
Q (pC)
V- = -15 V
V+ = 15 V 40
10 V- = -15 V
VIN = 0 V 30
VEN = 0 V
20
5 10
V+ = 12 V
0
V- = 0 V
0 -10
-55 -35 -15 5 25 45 65 85 105 125 -15 -10 -5 0 5 10 15
Temperature (_C) VS - Source Voltage (V)
rDS(on) vs. VD and Supply rDS(on) vs. VD and Supply (Single Supply)
120 160
140
100 V+ = 7.5 V
"5 V
120
80
100 10 V
r DS(on) ( )
r DS(on) ( )
"8 V
80 12 V
60 "10 V
"12 V 15 V 20 V
60
40
40 22 V
"20 V V- = 0 V
20 "15 V
20
0 0
-20 -16 -12 -8 -4 0 4 8 12 16 20 0 4 8 12 16 20 22
rDS(on) vs. VS and Temperature rDS(on) vs. VS and Temperature (Single Supply)
80 130
V+ = 15 V 125_C
70 V- = -15 V
110
85_C
60
125_C
90
r DS(on) ( )
r DS(on) ( )
50 85_C
25_C
40 25_C 70
0_C
30 -40 _C
50
20 0_C -55 _C
-55 _C
-40 _C 30 V+ = 12 V
10
V- = 0 V
0 10
-15 -10 -5 0 5 10 15 0 2 4 6 8 10 12
VS - Source Voltage (V) VS - Source Voltage (V)
Off Isolation and Crosstalk vs. Frequency Insertion Loss vs. Frequency
-150 1
V+ = 15 V RL = 1 k
V- = -15 V 0
-130 RL = 1 k
-1 V+ = 15 V
V- = -15 V
-1 10 Ref. 1 Vrms
LOSS (dB)
-2
(dB)
-90
Off-Isolation -3
-70
-4
Crosstalk
-50 RL = 50
-5
-30 -6
100 1k 10 k 100 k 1M 10 M 100 M 10 100 1k 10 k 100 k 1M 10 M 100 M
Switching Time vs. Bipolar Supply Switching Time vs. Single Supply
200 275
tTRANS
250
175
225
150
200
t (ns)
t (ns)
tTRANS
125 175
tOFF(EN)
tOFF(EN) 150
100 tON(EN)
tON(EN) 125
75 100
"10 "12 "14 "16 "18 "20 "22 8 9 10 11 12 13 14 15
VSUPPLY (V) VSUPPLY (V)
V+
GND VREF
A0
V+
Level Decode/ V-
AX Shift Drive
S1
V+
EN
Sn
V-
FIGURE 1.
TEST CIRCUITS
+15 V
V+
A2 S1 "10 V
A1
S2 - S7
A0
DG408 S8 #10 V tr <20 ns
3V tf <20 ns
EN D VO Logic
GND V- Input 50%
35 pF 0V
50 300
-15 V
VS1
Switch 90%
Output
VO 0V
+15 V 90%
VS8
V+
A1 S1 "10 V tTRANS tTRANS
A0 S1 ON S8 ON
S1a - S4a, Da
EN Db VO
GND V-
35 pF
50 300
-15 V
TEST CIRCUITS
+15 V
V+
S1 -5V
EN
S2 - S8
A0
DG408
A1 tr <20 ns
A2 Logic 3V tf <20 ns
D VO Input 50%
GND V-
50 0V
1 k 35 pF
tON(EN) tOFF(EN)
-15 V
0V
10%
Switch
Output
+15 V
VO
90%
VO
V+
S1b -5V
EN
S1a - S4a, Da
A0 S2b - S4b
DG409
A1
Db VO
GND V-
50 35 pF
1 k
-15 V
+15 V
tr <20 ns
V+
+2.4 V EN Logic 3V tf <20 ns
Input 50%
All S and Da +5 V
0V
A0
A1 DG408
DG409
A2 Db, D VO VS
GND V- 80%
Switch
Output
50 -15 V 300 35 pF
VO tOPEN
0V
TEST CIRCUITS
+15 V
Rg V+
3V
SX Logic
OFF ON OFF
EN Input
0V
A0 D VO
Channel A1
Select CL VO
A2 Switch
10 nF Output
GND V-
VO is the measured voltage due to charge transfer
error Q, when the channel turns off.
-15 V Q = CL x VO
+15 V
+15 V
VIN V+
VIN S1
V+
SX SX
VS VS
Rg = 50 S8 S8
A0 D VO A0 D VO
A1 Rg = 50 A1
A2 RL A2 RL
GND EN V- 1 k 1 k
GND EN V-
-15 V -15 V
VOUT VOUT
Off Isolation = 20 log Crosstalk = 20 log
VIN VIN
+15 V +15 V
VS V+ V+
S1 S1
Rg = 50 Meter
A2
HP4192A
A0 D Channel A1 S8
VO Impedance
Select
A1 Analyzer
A0 or Equivalent
A2 RL
1 k D
GND EN V- GND EN V- f = 1 MHz
-15 V -15 V
VOUT
Insertion Loss = 20 log
VIN
APPLICATION HINTS
Overvoltage Protection
A very convenient form of overvoltage protection consists of supply of the IC. From the point of view of the chip, nothing has
adding two small signal diodes (1N4148, 1N914 type) in series changed, as long as the difference VS - (V-) doesn’t exceed
with the supply pins (see Figure 10). This arrangement +44 V. The addition of these diodes will reduce the analog
effectively blocks the flow of reverse currents. It also floats the signal range to 1 V below V+ and 1 V above V-, but it
supply pin above or below the normal V+ or V- value. In this preserves the low channel resistance and low leakage
case the overvoltage signal actually becomes the power characteristics.
V+
1N4148
SX
D
Vg
DG408
1N4148
V-
V+ GND V- V+ GND V-
S1a
S1
S2a
S2 Analog
Output S3a Da
S3 Differential
(Input) S4a
Analog S4 Analog Differential
DG408 D Analog
Inputs Inputs DG409
S5 Outputs
(Outputs) (Outputs) S1b
S6 (Inputs)
S2b Db
S7
S3b
S8
S4b
A0 A1 A2 EN
+15 V A0 A1 EN
+15 V
DM7493 QB
Clock
In BIN QC
QD J Q J Q
AIN 1/2 MM74C73 1/2 MM74C73
NC QA NC Clock
r01 r02 GND In CLK CLK
K Q NC K Q NC
FIGURE 11.