Dates are inconsistent

Dates are inconsistent

360 results sorted by ID

Possible spell-corrected query: em
2025/601 (PDF) Last updated: 2025-04-02
PHOENIX: Crypto-Agile Hardware Sharing for ML-KEM and HQC
Antonio Ras, Antoine Loiseau, Mikaël Carmona, Simon Pontié, Guénaël Renault, Benjamin Smith, Emanuele Valea
Implementation

The transition to quantum-safe public-key cryptography has begun: for key agreement, NIST has standardized ML-KEM and selected HQC for future standardization. The relative immaturity of these schemes encourages crypto-agile implementations, to facilitate easy transitions between them. Intelligent crypto-agility requires efficient sharing strategies to compute operations from different cryptosystems using the same resources. This is particularly challenging for cryptosystems with distinct...

2025/563 (PDF) Last updated: 2025-04-07
An Optimized Instantiation of Post-Quantum MQTT protocol on 8-bit AVR Sensor Nodes
YoungBeom Kim, Seog Chung Seo
Implementation

Since the selection of the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) standardization algorithms, research on integrating PQC into security protocols such as TLS/SSL, IPSec, and DNSSEC has been actively pursued. However, PQC migration for Internet of Things (IoT) communication protocols remains largely unexplored. Embedded devices in IoT environments have limited computational power and memory, making it crucial to optimize PQC algorithms for...

2025/544 (PDF) Last updated: 2025-03-24
Security Analysis of Covercrypt: A Quantum-Safe Hybrid Key Encapsulation Mechanism for Hidden Access Policies
Théophile Brézot, Chloé Hébant, Paola de Perthuis, David Pointcheval
Cryptographic protocols

The ETSI Technical Specification 104 015 proposes a framework to build Key Encapsulation Mechanisms (KEMs) with access policies and attributes, in the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) vein. Several security guarantees and functionalities are claimed, such as pre-quantum and post-quantum hybridization to achieve security against Chosen-Ciphertext Attacks (CCA), anonymity, and traceability. In this paper, we present a formal security analysis of a more generic...

2025/497 (PDF) Last updated: 2025-03-16
Fast Scloud+: A Fast Hardware Implementation for the Unstructured LWE-based KEM - Scloud+
Jing Tian, Yaodong Wei, Dejun Xu, Kai Wang, Anyu Wang, Zhiyuan Qiu, Fu Yao, Guang Zeng
Implementation

Scloud+ is an unstructured LWE-based key encapsulation mechanism (KEM) with conservative quantum security, in which ternary secrets and lattice coding are incorporated for higher computational and communication efficiency. However, its efficiencies are still much inferior to those of the structured LWE-based KEM, like ML-KEM (standardized by NIST). In this paper, we present a configurable hardware architecture for Scloud+.KEM to improve the computational efficiency. Many algorithmic and...

2025/458 (PDF) Last updated: 2025-03-11
CAKE requires programming - On the provable post-quantum security of (O)CAKE
Kathrin Hövelmanns, Andreas Hülsing, Mikhail Kudinov, Silvia Ritsch

In this work we revisit the post-quantum security of KEM-based password-authenticated key exchange (PAKE), specifically that of (O)CAKE. So far, these schemes evaded a security proof considering quantum adversaries. We give a detailed analysis of why this is the case, determining the missing proof techniques. To this end, we first provide a proof of security in the post-quantum setting, up to a single gap. This proof already turns out to be technically involved, requiring advanced techniques...

2025/450 (PDF) Last updated: 2025-03-10
Verifiable Decapsulation: Recognizing Faulty Implementations of Post-Quantum KEMs
Lewis Glabush, Felix Günther, Kathrin Hövelmanns, Douglas Stebila
Public-key cryptography

Cryptographic schemes often contain verification steps that are essential for security. Yet, faulty implementations missing these steps can easily go unnoticed, as the schemes might still function correctly. A prominent instance of such a verification step is the re-encryption check in the Fujisaki-Okamoto (FO) transform that plays a prominent role in the post-quantum key encapsulation mechanisms (KEMs) considered in NIST's PQC standardization process. In KEMs built from FO, decapsulation...

2025/408 (PDF) Last updated: 2025-03-04
Hybrid Obfuscated Key Exchange and KEMs
Felix Günther, Michael Rosenberg, Douglas Stebila, Shannon Veitch
Cryptographic protocols

Hiding the metadata in Internet protocols serves to protect user privacy, dissuade traffic analysis, and prevent network ossification. Fully encrypted protocols require even the initial key exchange to be obfuscated: a passive observer should be unable to distinguish a protocol execution from an exchange of random bitstrings. Deployed obfuscated key exchanges such as Tor's pluggable transport protocol obfs4 are Diffie–Hellman-based, and rely on the Elligator encoding for obfuscation....

2025/366 (PDF) Last updated: 2025-02-26
Enabling Microarchitectural Agility: Taking ML-KEM & ML-DSA from Cortex-M4 to M7 with SLOTHY
Amin Abdulrahman, Matthias J. Kannwischer, Thing-Han Lim
Implementation

Highly-optimized assembly is commonly used to achieve the best performance for popular cryptographic schemes such as the newly standardized ML-KEM and ML-DSA. The majority of implementations today rely on hand-optimized assembly for the core building blocks to achieve both security and performance. However, recent work by Abdulrahman et al. takes a new approach, writing a readable base assembly implementation first and leaving the bulk of the optimization work to a tool named SLOTHY based...

2025/343 (PDF) Last updated: 2025-02-24
Tight Multi-challenge Security Reductions for Key Encapsulation Mechanisms
Lewis Glabush, Kathrin Hövelmanns, Douglas Stebila
Public-key cryptography

A key encapsulation mechanism (KEM) allows two parties to establish a shared secret key using only public communication. For post-quantum KEMs, the most widespread approach is to design a passively secure public-key encryption (PKE) scheme and then apply the Fujisaki–Okamoto (FO) transform that turns any such PKE scheme into an IND-CCA secure KEM. While the base security requirement for KEMs is typically IND-CCA security, adversaries in practice can sometimes observe and attack many public...

2025/276 (PDF) Last updated: 2025-02-28
Finding and Protecting the Weakest Link: On Side-Channel Attacks on Masked ML-DSA
Julius Hermelink, Kai-Chun Ning, Richard Petri
Attacks and cryptanalysis

NIST has standardized ML-KEM and ML-DSA as replacements for pre-quantum key exchanges and digital signatures. Both schemes have already seen analysis with respect to side-channels, and first fully masked implementations of ML-DSA have been published. Previous attacks have focused on unprotected implementations or assumed only hiding countermeasures to be in-place. Thus, in contrast to ML-KEM, the threat of side-channel attacks for protected implementations of ML-DSA is mostly unclear. In...

2025/231 (PDF) Last updated: 2025-02-14
NoIC: PAKE from KEM without Ideal Ciphers
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki
Cryptographic protocols

We show a generic compiler from KEM to (Universally Composable) PAKE in the Random Oracle Model (ROM) and without requiring an Ideal Cipher. The compiler is akin to Encrypted Key Exchange (EKE) by Bellovin-Merritt, but following the work of McQuoid et al. it uses only a 2-round Feistel to password-encrypt a KEM public key. The resulting PAKE incurs only insignificant cost overhead over the underlying KEM, and it is a secure UC PAKE if KEM is secure and key-anonymous under the...

2025/154 (PDF) Last updated: 2025-02-02
Shadowfax: Combiners for Deniability
Phillip Gajland, Vincent Hwang, Jonas Janneck
Cryptographic protocols

As cryptographic protocols transition to post-quantum security, most adopt hybrid solutions combining pre-quantum and post-quantum assumptions. However, this shift often introduces trade-offs in terms of efficiency, compactness, and in some cases, even security. One such example is deniability, which enables users, such as journalists or activists, to deny authorship of potentially incriminating messages. While deniability was once mainly of theoretical interest, protocols like X3DH, used in...

2025/138 (PDF) Last updated: 2025-01-28
Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM
Jeremiah Blocki, Seunghoon Lee
Public-key cryptography

In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...

2025/062 (PDF) Last updated: 2025-01-15
Treating dishonest ciphertexts in post-quantum KEMs -- explicit vs. implicit rejection in the FO transform
Kathrin Hövelmanns, Mikhail Kudinov
Public-key cryptography

We revisit a basic building block in the endeavor to migrate to post-quantum secure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment of a shared secret key, using only public communication. When targeting chosen-ciphertext security against quantum attackers, the go-to method is to design a Public-Key Encryption (PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-Okamoto (FO) transform, which we revisit in this work....

2024/2092 (PDF) Last updated: 2024-12-30
PQConnect: Automated Post-Quantum End-to-End Tunnels
Daniel J. Bernstein, Tanja Lange, Jonathan Levin, Bo-Yin Yang
Applications

This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect. Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a...

2024/2051 (PDF) Last updated: 2024-12-19
Simple Power Analysis assisted Chosen Cipher-Text Attack on ML-KEM
Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, David Vigilant
Attacks and cryptanalysis

Recent work proposed by Bernstein et al. (from EPRINT 2024) identified two timing attacks, KyberSlash1 and KyberSlash2, targeting ML-KEM decryption and encryption algorithms, respectively, enabling efficient recovery of secret keys. To mitigate these vulnerabilities, correctives were promptly applied across implementations. In this paper, we demonstrate a very simple side-channel-assisted power analysis attack on the patched implementations of ML-KEM. Our result showed that original timing...

2024/1957 (PDF) Last updated: 2025-02-15
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Gareth T. Davies, Alexander Wiesmaier
Cryptographic protocols

Password Authenticated Key Exchange (PAKE) is a fundamental cryptographic component that allows two parties to establish a shared key using only (potentially low-entropy) passwords. The interest in realizing generic KEM-based PAKEs has increased significantly in the last few years as part of the global migration effort to quantum-resistant cryptography. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the...

2024/1715 (PDF) Last updated: 2024-10-20
OT-PCA: New Key-Recovery Plaintext-Checking Oracle Based Side-Channel Attacks on HQC with Offline Templates
Haiyue Dong, Qian Guo
Attacks and cryptanalysis

In this paper, we introduce OT-PCA, a novel approach for conducting Plaintext-Checking (PC) oracle based side-channel attacks, specifically designed for Hamming Quasi-Cyclic (HQC). By calling the publicly accessible HQC decoder, we build offline templates that enable efficient extraction of soft information for hundreds of secret positions with just a single PC oracle call. Our method addresses critical challenges in optimizing key-related information extraction, including maximizing...

2024/1668 (PDF) Last updated: 2024-10-15
Modelings for generic PoK and Applications: Shorter SD and PKP based Signatures
Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni
Public-key cryptography

The Multi-Party Computation in the Head (MPCitH) paradigm has proven to be a versatile tool to design proofs of knowledge (PoK) based on variety of computationally hard problems. For instance, many post-quantum signatures have been designed from MPC based proofs combined with the Fiat-Shamir transformation. Over the years, MPCitH has evolved significantly with developments based on techniques such as threshold computing and other optimizations. Recently, Vector Oblivious Linear Evaluation...

2024/1621 (PDF) Last updated: 2024-10-10
PAKE Combiners and Efficient Post-Quantum Instantiations
Julia Hesse, Michael Rosenberg
Cryptographic protocols

Much work has been done recently on developing password-authenticated key exchange (PAKE) mechanisms with post-quantum security. However, modern guidance recommends the use of hybrid schemes—schemes which rely on the combined hardness of a post-quantum assumption, e.g., learning with Errors (LWE), and a more traditional assumption, e.g., decisional Diffie-Hellman. To date, there is no known hybrid PAKE construction, let alone a general method for achieving such. In this paper, we present...

2024/1607 (PDF) Last updated: 2024-10-09
Tighter Proofs for PKE-to-KEM Transformation in the Quantum Random Oracle Model
Jinrong Chen, Yi Wang, Rongmao Chen, Xinyi Huang, Wei Peng
Public-key cryptography

In this work, we provide new, tighter proofs for the $T_{RH}$-transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA security, a variant of typical IND-CCA security where only a single decapsulation query is allowed. Such KEMs are efficient and have been shown sufficient for real-world applications by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.'s $T_{RH}$-transformation in both the random oracle model (ROM) and...

2024/1522 (PDF) Last updated: 2025-02-13
Mind the Faulty Keccak: A Practical Fault Injection Attack Scheme Apply to All Phases of ML-KEM and ML-DSA
Yuxuan Wang, Jintong Yu, Shipei Qu, Xiaolin Zhang, Xiaowei Li, Chi Zhang, Dawu Gu
Attacks and cryptanalysis

ML-KEM and ML-DSA are NIST-standardized lattice-based post-quantum cryptographic algorithms. In both algorithms, Keccak is the designated hash algorithm extensively used for deriving sensitive information, making it a valuable target for attackers. In the field of fault injection attacks, few works targeted Keccak, and they have not fully explored its impact on the security of ML-KEM and ML-DSA. Consequently, many attacks remain undiscovered. In this article, we first identify various fault...

2024/1515 (PDF) Last updated: 2024-09-26
Optimized Software Implementation of Keccak, Kyber, and Dilithium on RV{32,64}IM{B}{V}
Jipeng Zhang, Yuxing Yan, Junhao Huang, Çetin Kaya Koç
Implementation

With the standardization of NIST post-quantum cryptographic (PQC) schemes, optimizing these PQC schemes across various platforms presents significant research value. While most existing software implementation efforts have concentrated on ARM platforms, research on PQC implementations utilizing various RISC-V instruction set architectures (ISAs) remains limited. In light of this gap, this paper proposes comprehensive and efficient optimizations of Keccak, Kyber, and Dilithium on...

2024/1454 (PDF) Last updated: 2024-09-17
Interval Key-Encapsulation Mechanism
Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, Daniel Wichs
Public-key cryptography

Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key $k$ to Bob for some time $t$ such that Bob can decapsulate it at any time $t'\leq t$. Crucially, a corruption of Bob's secret key after time $t$ does not reveal $k$. In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality...

2024/1439 (PDF) Last updated: 2024-11-27
Scabbard: An Exploratory Study on Hardware Aware Design Choices of Learning with Rounding-based Key Encapsulation Mechanisms
Suparna Kundu, Quinten Norga, Angshuman Karmakar, Shreya Gangopadhyay, Jose Maria Bermudo Mera, Ingrid Verbauwhede
Implementation

Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency, power requirement, etc., such variations in the underlying hard problem are very useful for designers...

2024/1438 (PDF) Last updated: 2024-09-14
Anamorphic Authenticated Key Exchange: Double Key Distribution under Surveillance
Weihao Wang, Shuai Han, Shengli Liu
Public-key cryptography

Anamorphic encryptions and anamorphic signatures assume a double key pre-shared between two parties so as to enable the transmission of covert messages. How to securely and efficiently distribute a double key under the dictator's surveillance is a central problem for anamorphic cryptography, especially when the users are forced to surrender their long-term secret keys or even the randomness used in the algorithms to the dictator. In this paper, we propose Anamorphic Authentication Key...

2024/1400 (PDF) Last updated: 2024-09-07
Efficient Asymmetric PAKE Compiler from KEM and AE
You Lyu, Shengli Liu, Shuai Han
Cryptographic protocols

Password Authenticated Key Exchange (PAKE) allows two parties to establish a secure session key with a shared low-entropy password pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-server setting, and the server only stores a password file instead of the plain password so as to provide additional security guarantee when the server is compromised. In this paper, we propose a novel generic compiler from PAKE to aPAKE in the Universal Composable (UC) framework by making use of Key...

2024/1397 (PDF) Last updated: 2024-09-05
Efficient Batch Algorithms for the Post-Quantum Crystals Dilithium Signature Scheme and Crystals Kyber Encryption Scheme
Nazlı Deniz TÜRE, Murat CENK
Cryptographic protocols

Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...

2024/1360 (PDF) Last updated: 2024-09-25
CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
Biming Zhou, Haodong Jiang, Yunlei Zhao
Cryptographic protocols

In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...

2024/1319 (PDF) Last updated: 2025-01-13
Quantum-safe Signatureless DNSSEC
Aditya Singh Rawat, Mahabir Prasad Jhanwar
Cryptographic protocols

We present $\mathsf{SL\text{-}DNSSEC}$: a backward-compatible protocol that leverages a quantum-safe KEM and a MAC to perform signature-less $\mathsf{(SL)}$ DNSSEC validations in a single UDP query/response style. Our experiments targeting NIST level I security for QTYPE A query resolution show that $\mathsf{SL\text{-}DNSSEC}$ is practically equivalent to the presently deployed RSA-2048 in terms of bandwidth usage and resolution speeds. Compared to post-quantum signatures,...

2024/1306 (PDF) Last updated: 2024-11-30
Scloud+: a Lightweight LWE-based KEM without Ring/Module Structure
Anyu Wang, Zhongxiang Zheng, Chunhuan Zhao, Zhiyuan Qiu, Guang Zeng, Ye Yuan, Changchun Mu, Xiaoyun Wang
Public-key cryptography

We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...

2024/1287 (PDF) Last updated: 2025-02-14
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography

This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.

2024/1243 (PDF) Last updated: 2024-12-27
Tailorable codes for lattice-based KEMs with applications to compact ML-KEM instantiations
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti, Henrique S. Ogawa
Public-key cryptography

Compared to elliptic curve cryptography, a main drawback of lattice-based schemes is the larger size of their public keys and ciphertexts. A common procedure for compressing these objects consists essentially of dropping some of their least significant bits. Albeit effective for compression, there is a limit to the number of bits to be dropped before we get a noticeable decryption failure rate (DFR), which is a security concern. To address this issue, this paper presents a family of...

2024/1234 (PDF) Last updated: 2024-08-06
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography

With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...

2024/1233 (PDF) Last updated: 2025-04-08
Binding Security of Implicitly-Rejecting KEMs and Application to BIKE and HQC
Juliane Krämer, Patrick Struck, Maximiliane Weishäupl
Public-key cryptography

In this work, we continue the analysis of the binding properties of implicitly-rejecting key-encapsulation mechanisms (KEMs) obtained via the Fujisaki-Okamoto (FO) transform. These binding properties, in earlier literature known under the term robustness, thwart attacks that can arise when using KEMs in complex protocols. Recently, Cremers et al. (CCS'24) introduced a framework for binding notions, encompassing previously existing but also new ones. While implicitly-rejecting FO-KEMs have...

2024/1211 (PDF) Last updated: 2025-02-17
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis

Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1170 (PDF) Last updated: 2025-01-23
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. However, due to the impending threat of quantum computers on our existing public-key cryptographic schemes and the limited resources available on IoT devices, it is important to design lightweight post-quantum cryptographic (PQC) schemes suitable for these devices. In this work, we...

2024/1096 (PDF) Last updated: 2024-07-05
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt, Christian Martin, Nils Maeurer
Cryptographic protocols

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion. We initiate the study of the...

2024/1086 (PDF) Last updated: 2024-10-31
Obfuscated Key Exchange
Felix Günther, Douglas Stebila, Shannon Veitch
Cryptographic protocols

Censorship circumvention tools enable clients to access endpoints in a network despite the presence of a censor. Censors use a variety of techniques to identify content they wish to block, including filtering traffic patterns that are characteristic of proxy or circumvention protocols and actively probing potential proxy servers. Circumvention practitioners have developed fully encrypted protocols (FEPs), intended to have traffic that appears indistinguishable from random. A FEP is typically...

2024/1049 (PDF) Last updated: 2025-01-15
KyberSlash: Exploiting secret-dependent division timings in Kyber implementations
Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales Paiva, Prasanna Ravi, Goutam Tamvada
Implementation

This paper presents KyberSlash1 and KyberSlash2 - two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, recently standardized as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a few hours for...

2024/890 (PDF) Last updated: 2024-12-20
Ring Signatures for Deniable AKEM: Gandalf's Fellowship
Phillip Gajland, Jonas Janneck, Eike Kiltz
Public-key cryptography

Ring signatures, a cryptographic primitive introduced by Rivest, Shamir and Tauman (ASIACRYPT 2001), offer signer anonymity within dynamically formed user groups. Recent advancements have focused on lattice-based constructions to improve efficiency, particularly for large signing rings. However, current state-of-the-art solutions suffer from significant overhead, especially for smaller rings. In this work, we present a novel NTRU-based ring signature scheme, Gandalf, tailored towards...

2024/843 (PDF) Last updated: 2024-05-29
Formally verifying Kyber Episode V: Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt
José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Pierre-Yves Strub
Public-key cryptography

We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in...

2024/810 (PDF) Last updated: 2024-05-24
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis

In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...

2024/777 (PDF) Last updated: 2024-05-25
Measure-Rewind-Extract: Tighter Proofs of One-Way to Hiding and CCA Security in the Quantum Random Oracle Model
Jiangxia Ge, Heming Liao, Rui Xue
Public-key cryptography

The One-Way to Hiding (O2H) theorem, first given by Unruh (J ACM 2015) and then restated by Ambainis et al. (CRYPTO 2019), is a crucial technique for solving the reprogramming problem in the quantum random oracle model (QROM). It provides an upper bound $d\cdot\sqrt{\epsilon}$ for the distinguisher's advantage, where $d$ is the query depth and $\epsilon$ denotes the advantage of a one-wayness attacker. Later, in order to obtain a tighter upper bound, Kuchta et al. (EUROCRYPT 2020) proposed...

2024/741 (PDF) Last updated: 2024-05-15
A Deniability Analysis of Signal's Initial Handshake PQXDH
Rune Fiedler, Christian Janson
Cryptographic protocols

Many use messaging apps such as Signal to exercise their right to private communication. To cope with the advent of quantum computing, Signal employs a new initial handshake protocol called PQXDH for post-quantum confidentiality, yet keeps guarantees of authenticity and deniability classical. Compared to its predecessor X3DH, PQXDH includes a KEM encapsulation and a signature on the ephemeral key. In this work we show that PQXDH does not meet the same deniability guarantees as X3DH due to...

2024/727 (PDF) Last updated: 2024-05-12
Let Attackers Program Ideal Models: Modularity and Composability for Adaptive Compromise
Joseph Jaeger
Foundations

We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto '20) cannot be applied in several natural use-cases. These include proving multi-user security from single-user security, the security of the cascade PRF, and the security of schemes sharing the same ideal primitive. We provide new variants of the definitions and show that they resolve these issues with composition. Extending these definitions to the asymmetric settings, we establish the security of the...

2024/702 (PDF) Last updated: 2024-08-28
Security Analysis of Signal's PQXDH Handshake
Rune Fiedler, Felix Günther
Cryptographic protocols

Signal recently deployed a new handshake protocol named PQXDH to protect against "harvest-now-decrypt-later" attacks of a future quantum computer. To this end, PQXDH adds a post-quantum KEM to the Diffie-Hellman combinations of the prior X3DH handshake. In this work, we give a reductionist security analysis of Signal's PQXDH handshake in a game-based security model that captures the targeted "maximum-exposure" security against both classical and quantum adversaries, allowing fine-grained...

2024/678 (PDF) Last updated: 2024-05-09
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila, Spencer Wilson
Cryptographic protocols

WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication. WebAuthn's reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their...

2024/667 (PDF) Last updated: 2024-05-01
Agile, Post-quantum Secure Cryptography in Avionics
Karolin Varner, Wanja Zaeske, Sven Friedrich, Aaron Kaiser, Alice Bowman
Cryptographic protocols

To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security. Because cryptographic technology can suddenly become...

2024/644 (PDF) Last updated: 2024-04-27
Jumping for Bernstein-Yang Inversion
Li-Jie Jian, Ting-Yuan Wang, Bo-Yin Yang, Ming-Shing Chen
Implementation

This paper achieves fast polynomial inverse operations specifically tailored for the NTRU Prime KEM on ARMv8 NEON instruction set benchmarking on four processor architectures: Cortex-A53, Cortex-A72, Cortex-A76 and Apple M1. We utilize the jumping divison steps of the constant-time GCD algorithm from Bernstein and Yang (TCHES’19) and optimize underlying polynomial multiplication of various lengths to improve the efficiency for computing polynomial inverse operations in NTRU Prime.

2024/523 (PDF) Last updated: 2024-04-03
Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor MAL-BIND-K-PK
Sophie Schmieg
Public-key cryptography

In "Keeping up with the KEMs" Cremers et al. introduced various binding models for KEMs. The authors show that ML-KEM is LEAK-BIND-K-CT and LEAK-BIND-K-PK, i.e. binding the ciphertext and the public key in the case of an adversary having access, but not being able to manipulate the key material. They further conjecture that ML-KEM also has MAL-BIND-K-PK, but not MAL-BIND-K-CT, the binding of public key or ciphertext to the shared secret in the case of an attacker with the ability to...

2024/510 (PDF) Last updated: 2025-02-07
Snake-eye Resistant PKE from LWE for Oblivious Message Retrieval and Robust Encryption
Zeyu Liu, Katerina Sotiraki, Eran Tromer, Yunhao Wang
Cryptographic protocols

Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a...

2024/308 (PDF) Last updated: 2024-09-20
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, Marjan Skrobot
Cryptographic protocols

Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a...

2024/230 (PDF) Last updated: 2024-05-10
Analysis of Layered ROLLO-I: A BII-LRPC code-based KEM
Seongtaek Chee, Kyung Chul Jeong, Tanja Lange, Nari Lee, Alex Pellegrini, Hansol Ryu
Attacks and cryptanalysis

We analyze Layered ROLLO-I, a code-based cryptosystem published in IEEE Communications Letters and submitted to the Korean post-quantum cryptography competition. Four versions of Layered ROLLO-I have been proposed in the competition. We show that the first two versions do not provide the claimed security against rank decoding attacks and give reductions to small instances of the original ROLLO-I scheme, which was a candidate in the NIST competition and eliminated there due to rank...

2024/208 Last updated: 2024-05-08
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography

In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...

2024/195 (PDF) Last updated: 2024-02-09
PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs
Décio Luiz Gazzoni Filho, Guilherme Brandão, Gora Adj, Arwa Alblooshi, Isaac A. Canales-Martínez, Jorge Chávez-Saab, Julio López
Implementation

As CPU performance is unable to keep up with the dramatic growth of the past few decades, CPU architects are looking into domain-specific architectures to accelerate certain tasks. A recent trend is the introduction of matrix-multiplication accelerators to CPUs by manufacturers such as IBM, Intel and ARM, some of which have not launched commercially yet. Apple's systems-on-chip (SoCs) for its mobile phones, tablets and personal computers include a proprietary, undocumented CPU-coupled matrix...

2024/176 (PDF) Last updated: 2024-03-13
The impact of data-heavy, post-quantum TLS 1.3 on the Time-To-Last-Byte of real-world connections
Panos Kampanakis, Will Childs-Klein
Cryptographic protocols

It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s postquantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3...

2024/174 (PDF) Last updated: 2024-02-07
QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography with Galois Permutation Group
Randy Kuang
Cryptographic protocols

In response to the evolving landscape of quantum computing and the heightened vulnerabilities in classical cryptographic systems, our paper introduces a comprehensive cryptographic framework. Building upon the pioneering work of Kuang et al., we present a unification of two innovative primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). By harnessing...

2024/169 (PDF) Last updated: 2024-02-05
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis

Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...

2024/131 (PDF) Last updated: 2024-09-06
Practical Post-Quantum Signatures for Privacy
Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois, Olivier Sanders
Public-key cryptography

The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...

2024/130 (PDF) Last updated: 2024-01-30
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation

While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...

2024/120 (PDF) Last updated: 2024-01-29
K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures
Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, Serge Vaudenay
Cryptographic protocols

The Signal protocol and its X3DH key exchange core are regularly used by billions of people in applications like WhatsApp but are unfortunately not quantum-secure. Thus, designing an efficient and post-quantum secure X3DH alternative is paramount. Notably, X3DH supports asynchronicity, as parties can immediately derive keys after uploading them to a central server, and deniability, allowing parties to plausibly deny having completed key exchange. To satisfy these constraints, existing...

2024/076 (PDF) Last updated: 2024-05-07
A provably masked implementation of BIKE Key Encapsulation Mechanism
Loïc Demange, Mélissa Rossi
Public-key cryptography

BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST’s standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and...

2024/062 Last updated: 2024-08-05
Double Difficulties, Defense in Depth A succinct authenticated key agreement protocol
WenBin Hsieh

In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve the...

2024/060 (PDF) Last updated: 2024-10-01
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Richard Petri, Emanuele Strieder
Attacks and cryptanalysis

NIST released the draft standard for ML-KEM, and we can expect its widespread use in the embedded world in the near future. Several side-channel attacks have been proposed, and one line of research has focused on attacks against the comparison step of the FO-transform. A work published at TCHES 2022 stressed the need for secure higher-order masked comparisons beyond the $t$-probing model and proposed a higher-order masked comparison method. Subsequently, D'Anvers, Van Beirendonck, and...

2024/046 (PDF) Last updated: 2024-01-11
Quantum-Secure Hybrid Communication for Aviation Infrastructure
Benjamin Dowling, Bhagya Wimalasiri
Cryptographic protocols

The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...

2024/039 (PDF) Last updated: 2025-03-19
X-Wing: The Hybrid KEM You’ve Been Looking For
Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin Varner, Bas Westerbaan
Public-key cryptography

X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...

2024/019 (PDF) Last updated: 2024-01-10
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography

This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...

2023/1960 (PDF) Last updated: 2023-12-31
Post Quantum Sphinx
David Anthony Stainton
Cryptographic protocols

This paper introduces two designs of Sphinx variants with corresponding im- plementations for use in post-quantum threat models with a specific focus on Mix networks. We introduce an obvious variant of Sphinx with CSIDH/CTIDH and we additionally introduce ’KEM Sphinx’, an enhanced version of the Sphinx packet format, designed to improve performance through modifications that increase packet header size. Unlike its predecessor, KEM Sphinx addresses performance limitations inherent in...

2023/1933 (PDF) Last updated: 2024-11-25
Keeping Up with the KEMs: Stronger Security Notions for KEMs and automated analysis of KEM-based protocols
Cas Cremers, Alexander Dax, Niklas Medinger
Public-key cryptography

Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years, a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g., in the context of the NIST process for post-quantum primitives. In this work, we (i)...

2023/1924 (PDF) Last updated: 2024-04-19
Analyzing the complexity of reference post-quantum software: the case of lattice-based KEMs
Daniel J. Bernstein
Implementation

Software for various post-quantum KEMs has been submitted by the KEM design teams to the SUPERCOP testing framework. The ref/*.c and ref/*.h files together occupy, e.g., 848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for sntrup1277, and 2633 lines for kyber1024. It is easy to see that these numbers overestimate the inherent complexity of software for these KEMs. It is more difficult to systematically measure this complexity. This paper takes these KEMs as case...

2023/1853 (PDF) Last updated: 2023-12-02
Report on evaluation of KpqC candidates
Jolijn Cottaar, Kathrin Hövelmanns, Andreas Hülsing, Tanja Lange, Mohammad Mahzoun, Alex Pellegrini, Alberto Ravagnani, Sven Schäge, Monika Trimoska, Benne de Weger
Public-key cryptography

This report analyzes the 16 submissions to the Korean post-quantum cryptography (KpqC) competition.

2023/1828 (PDF) Last updated: 2023-11-28
Sender-Anamorphic Encryption Reformulated: Achieving Robust and Generic Constructions
Yi Wang, Rongmao Chen, Xinyi Huang, Moti Yung
Public-key cryptography

Motivated by the violation of two fundamental assumptions in secure communication - receiver-privacy and sender-freedom - by a certain entity referred to as ``the dictator'', Persiano et al. introduced the concept of Anamorphic Encryption (AME) for public key cryptosystems (EUROCRYPT 2022). Specifically, they presented receiver/sender-AME, directly tailored to scenarios where receiver privacy and sender freedom assumptions are compromised, respectively. In receiver-AME, entities share a...

2023/1811 (PDF) Last updated: 2024-06-10
A note on Failing gracefully: Completing the picture for explicitly rejecting Fujisaki-Okamoto transforms using worst-case correctness
Kathrin Hövelmanns, Christian Majenz
Public-key cryptography

The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The security analysis of FO in the presence of quantum attackers has made huge progress over the last years. Recently, [HHM22] made a particular improvement by giving a security proof that is agnostic towards how invalid ciphertexts are being treated: in contrast to previous proofs, it works regardless whether invalid ciphertexts are...

2023/1768 (PDF) Last updated: 2023-11-17
Homomorphic Polynomial Public Key Cryptography for Quantum-secure Digital Signature
Randy Kuang, Maria Perepechaenko, Mahmoud Sayed, Dafu Lou
Cryptographic protocols

In their 2022 study, Kuang et al. introduced the Multivariable Polynomial Public Key (MPPK) cryptography, a quantum-safe public key cryptosystem leveraging the mutual inversion relationship between multiplication and division. MPPK employs multiplication for key pair construction and division for decryption, generating public multivariate polynomials. Kuang and Perepechaenko expanded the cryptosystem into the Homomorphic Polynomial Public Key (HPPK), transforming product polynomials over...

2023/1732 (PDF) Last updated: 2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...

2023/1674 (PDF) Last updated: 2024-09-12
Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM
Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay, Ingrid Verbauwhede
Attacks and cryptanalysis

Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these...

2023/1626 (PDF) Last updated: 2024-11-06
Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts - A Case Study on HQC KEM
Thales Paiva, Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Sayan Das, Anupam Chattopadhyay
Attacks and cryptanalysis

HQC is a code-based key encapsulation mechanism (KEM) that was selected to move to the fourth round of the NIST post-quantum standardization process. While this scheme was previously targeted by side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...

2023/1587 (PDF) Last updated: 2024-11-12
A Single-Trace Message Recovery Attack on a Masked and Shuffled Implementation of CRYSTALS-Kyber
Sönke Jendral, Kalle Ngo, Ruize Wang, Elena Dubrova
Attacks and cryptanalysis

Last year CRYSTALS-Kyber was chosen by NIST as a new, post-quantum secure key encapsulation mechanism to be standardized. This makes it important to assess the resistance of CRYSTALS-Kyber implementations to physical attacks. Pure side-channel attacks on post-quantum cryptographic algorithms have already been well-explored. In this paper, we present an attack on a masked and shuffled software implementation of CRYSTALS-Kyber that combines fault injection with side-channel analysis. First, a...

2023/1506 (PDF) Last updated: 2024-02-26
IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram
Tomoki Moriya
Public-key cryptography

Isogeny-based cryptography is one of the candidates for post-quantum cryptography. One of the benefits of using isogeny-based cryptography is its compactness. In particular, a key exchange scheme SIDH allowed us to use a $4\lambda$-bit prime for the security parameter $\lambda$. Unfortunately, SIDH was broken in 2022 by some studies. After that, some isogeny-based key exchange and public key encryption schemes have been proposed; however, most of these schemes use primes whose sizes are...

2023/1380 (PDF) Last updated: 2023-09-14
Tighter Security for Generic Authenticated Key Exchange in the QROM
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We give a tighter security proof for authenticated key exchange (AKE) protocols that are generically constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model (QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss in the number of users and total sessions. Our proof is much tighter and does not have square-root loss. Namely, it only...

2023/1368 (PDF) Last updated: 2024-07-24
Towards post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model
Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, Alexander Wiesmaier
Cryptographic protocols

We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs), to allow instantiations with post-quantums KEM like KYBER. The ACNS23 paper left as an open problem to argue security against quantum attackers, with its security proof being in the universal composability (UC) framework. This is common for PAKE, however, at the time of this submission’s writing, it was not known how to prove (computational)...

2023/1334 (PDF) Last updated: 2023-09-07
A Generic Construction of Tightly Secure Password-based Authenticated Key Exchange
Jiaxin Pan, Runzhi Zeng
Public-key cryptography

We propose a generic construction of password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-checkable attacks (OW-PCA), we prove that our PAKE protocol is \textit{tightly secure} in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with the Diffie-Hellman...

2023/1321 (PDF) Last updated: 2023-09-05
Generic Constructions of Compact and Tightly Selective-Opening Secure Public-key Encryption Schemes
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We propose two generic constructions of public-key encryption (PKE) with tight simulation-based selective-opening security against chosen-ciphertext attacks (SIM-SO-CCA) in the random oracle model. Our constructions can be instantiated with a small constant number of elements in the ciphertext, ignoring smaller contributions from symmetric-key encryption. That is, they have compact ciphertexts. Furthermore, three of our instantiations have compact public keys as well. Known (almost)...

2023/1298 (PDF) Last updated: 2023-08-31
NEV: Faster and Smaller NTRU Encryption using Vector Decoding
Jiang Zhang, Dengguo Feng, Di Yan
Public-key cryptography

In this paper, we present NEV -- a faster and smaller NTRU Encryption using Vector decoding, which is provably IND-CPA secure in the standard model under the decisional NTRU and RLWE assumptions over the cyclotomic ring $R_q = \mathbb{Z}_q[X]/(X^n+1)$. Our main technique is a novel and non-trivial way to integrate a previously known plaintext encoding and decoding mechanism into the provably IND-CPA secure NTRU variant by Stehl\'e and Steinfeld (Eurocrypt 2011). Unlike the original NTRU...

2023/1293 (PDF) Last updated: 2023-08-29
Applications of Finite non-Abelian Simple Groups to Cryptography in the Quantum Era
María Isabel González Vasco, Delaram Kahrobaei, Eilidh McKemmie
Cryptographic protocols

The theory of finite simple groups is a (rather unexplored) area likely to provide interesting computational problems and modelling tools useful in a cryptographic context. In this note, we review some applications of finite non-abelian simple groups to cryptography and discuss different scenarios in which this theory is clearly central, providing the relevant definitions to make the material accessible to both cryptographers and group theorists, in the hope of stimulating further...

2023/1220 (PDF) Last updated: 2024-10-15
Quasilinear Masking to Protect ML-KEM Against Both SCA and FIA
Pierre-Augustin Berthet, Yoan Rougeolle, Cédric Tavernier, Jean-Luc Danger, Laurent Sauvage

The recent technological advances in Post-Quantum Cryptography (PQC) raise the questions of robust implementations of new asymmetric cryptography primitives in today's technology. This is the case for the lattice-based Module Lattice-Key Encapsulation Mechanism (ML-KEM) algorithm which is proposed by the National Institute of Standards and Technology (NIST) as the first standard for Key Encapsulation Mechanism (KEM), taking inspiration from CRYSTALS-Kyber. We must ensure that the ML-KEM...

2023/1188 (PDF) Last updated: 2023-12-03
A Novel CCA Attack for NTRU+ KEM
Joohee Lee, Minju Lee, Hansol Ryu, Jaehui Park
Public-key cryptography

The KpqC competition has begun in 2022, that aims to standardize Post-Quantum Cryptography (PQC) in the Republic of Korea. Among the 16 submissions of the KpqC competition, the lattice-based schemes exhibit the most promising and balanced features in performance. In this paper, we propose an effective classical CCA attack to recover the transmitted session key for NTRU+, one of the lattice-based Key Encapsulation Mechanisms (KEM) proposed in the KpqC competition, for the first time. With the...

2023/1184 (PDF) Last updated: 2023-10-19
STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber
Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, Shivam Bhasin
Attacks and cryptanalysis

In this work, we propose a novel single-trace key recovery attack targeting side-channel leakage from the key-generation and encryption procedure of Kyber KEM. Our attack exploits the inherent nature of the Module-Learning With Errors (Module-LWE) problem used in Kyber KEM. We demonstrate that the inherent reliance of Kyber KEM on the Module-LWE problem results in higher number of repeated and secret key-related computations, referred to as STAMPs appearing on a single side channel trace,...

2023/1084 (PDF) Last updated: 2023-07-12
A Side-Channel Attack on a Masked Hardware Implementation of CRYSTALS-Kyber
Yanning Ji, Elena Dubrova
Attacks and cryptanalysis

NIST has recently selected CRYSTALS-Kyber as a new public key encryption and key establishment algorithm to be standardized. This makes it important to evaluate the resistance of CRYSTALS-Kyber implementations to side-channel attacks. Software implementations of CRYSTALS-Kyber have already been thoroughly analysed. The discovered vulnerabilities helped improve the subsequently released versions and promoted stronger countermeasures against side-channel attacks. In this paper, we present the...

2023/1046 (PDF) Last updated: 2024-02-06
Zero-Value Filtering for Accelerating Non-Profiled Side-Channel Attack on Incomplete NTT based Implementations of Lattice-based Cryptography
Tolun Tosun, Erkay Savas
Attacks and cryptanalysis

Lattice-based cryptographic schemes such as Crystals-Kyber and Dilithium are post-quantum algorithms selected to be standardized by NIST as they are considered to be secure against quantum computing attacks. The multiplication in polynomial rings is the most time-consuming operation in many lattice-based cryptographic schemes, which is also subject to side-channel attacks. While NTT-based polynomial multiplication is almost a norm in a wide range of implementations, a relatively new method,...

2023/1042 (PDF) Last updated: 2023-07-04
A Side-Channel Attack on a Bitsliced Higher-Order Masked CRYSTALS-Kyber Implementation
Ruize Wang, Martin Brisfors, Elena Dubrova
Attacks and cryptanalysis

In response to side-channel attacks on masked implementations of post-quantum cryptographic algorithms, a new bitsliced higher-order masked implementation of CRYSTALS-Kyber has been presented at CHES'2022. The bitsliced implementations are typically more difficult to break by side-channel analysis because they execute a single instruction across multiple bits in parallel. However, in this paper, we reveal new vulnerabilities in the masked Boolean to arithmetic conversion procedure of this...

2023/1038 (PDF) Last updated: 2023-07-05
PQC Cloudization: Rapid Prototyping of Scalable NTT/INTT Architecture to Accelerate Kyber
Mojtaba Bisheh-Niasar, Daniel Lo, Anjana Parthasarathy, Blake Pelton, Bharat Pillilli, Bryan Kelly
Public-key cryptography

The advent of quantum computers poses a serious challenge to the security of cloud infrastructures and services, as they can potentially break the existing public-key cryptosystems, such as Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC). Even though the gap between today’s quantum computers and the threats they pose to current public-key cryptography is large, the cloud landscape should act proactively and initiate the transition to the post-quantum era as early as...

2023/968 (PDF) Last updated: 2023-10-27
SALSA VERDE: a machine learning attack on Learning with Errors with sparse small secrets
Cathy Yuanchen Li, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, Kristin Lauter
Attacks and cryptanalysis

Learning with Errors (LWE) is a hard math problem used in post-quantum cryptography. Homomorphic Encryption (HE) schemes rely on the hardness of the LWE problem for their security, and two LWE-based cryptosystems were recently standardized by NIST for digital signatures and key exchange (KEM). Thus, it is critical to continue assessing the security of LWE and specific parameter choices. For example, HE uses secrets with small entries, and the HE community has considered standardizing small...

2023/898 (PDF) Last updated: 2025-04-12
Spilling-Cascade: an Optimal PKE Combiner for KEM Hybridization
Céline Chevalier, Guirec Lebrun, Ange Martinelli
Public-key cryptography

Hybrid Post-Quantum cryptography is a cautious approach that aims to guard against the threat posed by the quantum computer, through the simultaneous use of Post-Quantum (PQ) and classical (i.e. pre-quantum) cryptosystems, should the post-quantum schemes used prove insecure. Regarding the hybridization of Key Encapsulation Mechanisms (KEMs), most recent studies focus on safely combining the symmetric keys output by a parallel execution of classical and Post-Quantum KEMs. While this...

2023/862 (PDF) Last updated: 2023-06-07
Tighter QCCA-Secure Key Encapsulation Mechanism with Explicit Rejection in the Quantum Random Oracle Model
Jiangxia Ge, Tianshu Shan, Rui Xue
Public-key cryptography

Hofheinz et al. (TCC 2017) proposed several key encapsulation mechanism (KEM) variants of Fujisaki-Okamoto (\textsf{FO}) transformation, including $\textsf{FO}^{\slashed{\bot}}$, $\textsf{FO}_m^{\slashed{\bot}}$, $\textsf{QFO}_m^{\slashed{\bot}}$, $\textsf{FO}^{\bot}$, $\textsf{FO}_m^\bot$ and $\textsf{QFO}_m^\bot$, and they are widely used in the post-quantum cryptography standardization launched by NIST. These transformations are divided into two types, the implicit and explicit rejection...

2023/836 (PDF) Last updated: 2023-09-19
Covercrypt: an Efficient Early-Abort KEM for Hidden Access Policies with Traceability from the DDH and LWE
Théophile Brézot, Paola de Perthuis, David Pointcheval
Cryptographic protocols

Attribute-Based Encryption (ABE) is a very attractive primitive to limit access according to specific rights. While very powerful instantiations have been offered, under various computational assumptions, they rely on either classical or post-quantum problems, and are quite intricate to implement, generally resulting in poor efficiency; the construction we offer results in a powerful efficiency gap with respect to existing solutions. With the threat of quantum computers, post-quantum...

2023/823 (PDF) Last updated: 2023-06-07
Lattice-based Authenticated Key Exchange with Tight Security
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices. Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is the first construction with tight security from a post-quantum assumption. Our AKE protocol is constructed tightly from a new security notion for key encapsulation mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW- ChCCA). We show how an OW-ChCCA secure KEM...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.