377 results sorted by ID
Addendum to How Small Can S-boxes Be?
Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu, Meiqin Wang
Implementation
In ToSC 2025(1), Jia et al. proposed an SAT-aided automatic search tool for the S-box design. A part of the functionality of this tool is to search for implementations of an S-box with good area and gate-depth complexity. However, it is well-known that the gate depth complexity cannot precisely reflect the latency of an implementation. To overcome this problem, Rasoolzadeh introduced the concept of latency complexity, a more precise metric for the latency cost of implementing an S-box than...
Polocolo: A ZK-Friendly Hash Function Based on S-boxes Using Power Residues (Full Version)
Jincheol Ha, Seongha Hwang, Jooyoung Lee, Seungmin Park, Mincheol Son
Secret-key cryptography
Conventional hash functions are often inefficient in zero-knowledge proof settings, leading to design of several ZK-friendly hash functions. On the other hand, lookup arguments have recently been incorporated into zero-knowledge protocols, allowing for more efficient handling of ``ZK-unfriendly'' operations, and hence ZK-friendly hash functions based on lookup tables.
In this paper, we propose a new ZK-friendly hash function, dubbed $\mathsf{Polocolo}$, that employs an S-box constructed...
Code-based Masking: From Fields to Bits Bitsliced Higher-Order Masked SKINNY
John Gaspoz, Siemen Dhooghe
Implementation
Masking is one of the most prevalent and investigated countermeasures against side-channel analysis. As an alternative to the simple (e.g., additive) encoding function of Boolean masking, a collection of more algebraically complex masking types has emerged. Recently, inner product masking and the more generic code-based masking have proven to enable higher theoretical security properties than Boolean masking. In CARDIS 2017, Poussier et al. connected this ``security order amplification''...
Recovering S-Box Design Structures and Quantifying Distances between S-Boxes using Deep Learning
Donggeun Kwon, Deukjo Hong, Jaechul Sung, Seokhie Hong
Attacks and cryptanalysis
At ASIACRYPT’19, Bonnetain et al. demonstrated that an S-box can be distinguished from a permutation chosen uniformly at random by quantifying the distances between their behaviors. In this study, we extend this approach by proposing a deep learning-based method to quantify distances between two different S-boxes and evaluate similarities in their design structures. First, we introduce a deep learning-based framework that trains a neural network model to recover the design structure of a...
2025/494
Last updated: 2025-05-26
Electromagnetic Side-Channel Analysis of PRESENT Lightweight Cipher
Nilupulee A Gunathilake, Owen Lo, William J Buchanan, Ahmed Al-Dubai
Attacks and cryptanalysis
Side-channel vulnerabilities pose an increasing threat to cryptographically protected devices. Consequently, it is crucial to observe information leakages through physical parameters such as power consumption and electromagnetic (EM) radiation to reduce susceptibility during interactions with cryptographic functions. EM side-channel attacks are becoming more prevalent. PRESENT is a promising lightweight cryptographic algorithm expected to be incorporated into Internet-of-Things (IoT) devices...
A 10-bit S-box generated by Feistel construction from cellular automata
Thomas Prévost, Bruno Martin
Foundations
In this paper, we propose a new 10-bit S-box generated from a Feistel construction. The subpermutations are generated by a 5-cell cellular automaton based on a unique well-chosen rule and bijective affine transformations. In particular, the cellular automaton rule is chosen based on empirical tests of its ability to generate good pseudorandom output on a ring cellular automaton. Similarly, Feistel's network layout is based on empirical data regarding the quality of the output S-box.
We...
Quantum circuit for implementing AES S-box with low costs
Huinan Chen, Binbin Cai, Fei Gao, Song Lin
Attacks and cryptanalysis
Advanced Encryption Standard (AES) is one of the most widely used and extensively studied encryption algorithms globally, which is renowned for its efficiency and robust resistance to attacks. In this paper, three quantum circuits are designed to implement the S-box, which is the sole nonlinear component in AES. By incorporating a linear key schedule, we achieve a quantum circuit for implementing AES with the minimum number of qubits used. As a consequence, only 264/328/398 qubits are needed...
How Small Can S-boxes Be
Chenhao Jia, Tingting Cui, Qing Ling, Yan He, Kai Hu, Yu Sun, Meiqin Wang
Secret-key cryptography
S-boxes are the most popular nonlinear building blocks used in symmetric-key primitives.
Both cryptographic properties and implementation cost of an S-box are crucial for a good cipher design, especially for lightweight ones.
This paper aims to determine the exact minimum area of optimal 4-bit S-boxes (whose differential uniform and linearity are both 4) under certain standard cell library.
Firstly, we evaluate the upper and lower bounds upon the minimum area of S-boxes, by...
An Innovative Lightweight Symmetric Encryption Algorithm Integrating NeoAlzette ARX S-box and XCR CSPRNG
Jiang Yu
Secret-key cryptography
This paper introduces "Little OaldresPuzzle_Cryptic," a novel lightweight symmetric encryption algorithm.
At the core of this algorithm are two main cryptographic components: the NeoAlzette permutation S-box based on ARX (Addition-Rotation-XOR) primitives and the innovative pseudo-random number generator XorConstantRotation (XCR), used exclusively in the key expansion process. The NeoAlzette S-box, a non-linear function for 32-bit pairs, is meticulously designed for both encryption...
Constructing Quantum Implementations with the Minimal T-depth or Minimal Width and Their Applications
Zhenyu Huang, Fuxin Zhang, Dongdai Lin
Implementation
With the rapid development of quantum computers, optimizing the quantum implementations of symmetric-key ciphers, which constitute the primary components of the quantum oracles used in quantum attacks based on Grover and Simon's algorithms, has become an active topic in the cryptography community. In this field, a challenge is to construct quantum circuits that require the least amount of quantum resources. In this work, we aim to address the problem of constructing quantum circuits with the...
Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes
Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu, Zhiyu Zhang
Implementation
Boolean formula minimization is a notoriously hard problem that is known to be $\varSigma_2^P$-complete. Circuit minimization, typically studied in the context of a much broader subject known as synthesis and optimization of circuits, introduces another layer of complexity since ultimately those technology-independent epresentations (e.g., Boolean formulas and truth tables) has to be transformed into a netlist of cells of the target technology library. To manage those complexities, the...
Observations on TETRA Encryption Algorithm TEA-3
Jens Alich, Amund Askeland, Subhadeep Banik, Tim Beyne, Anne Canteaut, Patrick Felke, Gregor Leander, Willi Meier, Lukas Stennes
Secret-key cryptography
We present a number of observations on TEA-3, a stream cipher used in TETRA radio networks that was kept secret until recently.
While the same also holds for the six other TETRA encryption algorithms, we pick TEA-3 to start with, as (i) it is not obviously weakened as TEA-{1,4,7} but (ii) in contrast to TEA-2 it is approved for extra-European emergency service, and (iii) as already noted by [MBW23] the TEA-3 design surprisingly contains a non-bijective S-box.
Most importantly, we show that...
Security Analysis of ASCON Cipher under Persistent Faults
Madhurima Das, Bodhisatwa Mazumdar
Attacks and cryptanalysis
This work investigates persistent fault analysis on ASCON
cipher that has been recently standardized by NIST USA for lightweight
cryptography applications. In persistent fault, the fault once injected
through RowHammer injection techniques, exists in the system during
the entire encryption phase. In this work, we propose a model to mount
persistent fault analysis (PFA) on ASCON cipher. In the finalization
round of the ASCON cipher, we identify that the fault-injected S-Box
operation...
A Framework for Generating S-Box Circuits with Boyar-Peralta Algorithm-Based Heuristics, and Its Applications to AES, SNOW3G, and Saturnin
Yongjin Jeon, Seungjun Baek, Giyoon Kim, Jongsung Kim
Secret-key cryptography
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
Opening the Blackbox: Collision Attacks on Round-Reduced Tip5, Tip4, Tip4' and Monolith
Fukang Liu, Katharina Koschatko, Lorenzo Grassi, Hailun Yan, Shiyao Chen, Subhadeep Banik, Willi Meier
Attacks and cryptanalysis
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...
Symmetric Twin Column Parity Mixers and their Applications
Hao Lei, Raghvendra Rohit, Guoxiao Liu, Jiahui He, Mohamed Rachidi, Keting Jia, Kai Hu, Meiqin Wang
Secret-key cryptography
The circulant twin column parity mixer (TCPM) is a type of mixing layer for the round function of cryptographic permutations designed by Hirch et al. at CRYPTO 2023. It has a bitwise differential branch number of 12 and a bitwise linear branch number of 4, which makes it competitive in applications where differential security is required. Hirch et al. gave a concrete instantiation of a permutation using such a mixing layer, named Gaston, and showed the best 3-round differential and linear...
A notion on S-boxes for a partial resistance to some integral attacks
Claude Carlet
Secret-key cryptography
In two recent papers, we introduced and studied the notion of $k$th-order sum-freedom of a vectorial function $F:\mathbb F_2^n\to \mathbb F_2^m$. This notion generalizes that of almost perfect nonlinearity (which corresponds to $k=2$) and has some relation with the resistance to integral attacks of those block ciphers using $F$ as a substitution box (S-box), by preventing the propagation of the division property of $k$-dimensional affine spaces. In the present paper, we show that this...
TentLogiX: 5-bit Chaos-Driven S-Boxes for Lightweight Cryptographic Systems
Maha Allouzi, Arefeh Rahaei
Cryptographic protocols
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC).
In...
Multiple-Tweak Differential Attack Against SCARF
Christina Boura, Shahram Rasoolzadeh, Dhiman Saha, Yosuke Todo
Secret-key cryptography
In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...
MAESTRO: Multi-party AES using Lookup Tables
Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, Daniel Tschudi
Cryptographic protocols
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography.
In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our...
On the Effects of Neural Network-based Output Prediction Attacks on the Design of Symmetric-key Ciphers
Hayato Watanabe, Ryoma Ito, Toshihiro Ohigashi
Attacks and cryptanalysis
Proving resistance to conventional attacks, e.g., differential, linear, and integral attacks, is essential for designing a secure symmetric-key cipher. Recent advances in automatic search and deep learning-based methods have made this time-consuming task relatively easy, yet concerns persist over expertise requirements and potential oversights. To overcome these concerns, Kimura et al. proposed neural network-based output prediction (NN) attacks, offering simplicity, generality, and reduced...
Improved Algebraic Attacks on Round-Reduced LowMC with Single-Data Complexity
Xingwei Ren, Yongqiang Li, Mingsheng Wang
Attacks and cryptanalysis
Recently, Picnic3 has introduced several alternative LowMC instances, which prompts the cryptanalysis competition for LowMC. In this paper, we provide new solutions to the competition with full S-box layers under single-data complexity. First, we present a new guess-and-determine attack framework that achieves the best trade-off in complexity, while effectively enhancing two algorithms applicable to 2-round LowMC cryptanalysis. Next, we present a new meet-in-the-middle attack framework for...
Prover - Toward More Efficient Formal Verification of Masking in Probing Model
Feng Zhou, Hua Chen, Limin Fan
Implementation
In recent years, formal verification has emerged as a crucial method for assessing security against Side-Channel attacks of masked implementations, owing to its remarkable versatility and high degree of automation. However, formal verification still faces technical bottlenecks in balancing accuracy and efficiency, thereby limiting its scalability. Former tools like maskVerif and CocoAlma are very efficient but they face accuracy issues when verifying schemes that utilize properties of...
Parameters of Algebraic Representation vs. Efficiency of Algebraic Cryptanalysis
Hossein Arabnezhad, Babak Sadeghiyan
Foundations
The aim of an algebraic attack is to find the secret key by solving
a collection of relations that describe the internal structure of a cipher
for observations of plaintext/cipher-text pairs.
Although algebraic attacks are addressed for cryptanalysis of block and
stream ciphers, there is a limited understanding of the impact of algebraic
representation of the cipher on the efficiency of solving the resulting collection of equations.
In this paper, we investigate on how different S-box...
Time Sharing - A Novel Approach to Low-Latency Masking
Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede
Implementation
We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools...
On Maximum Size Simultaneous Linear Approximations in Ascon and Keccak and Related Translation and Differential Properties
Nicolas T. Courtois, Frédéric Amiel, Alexandre Bonnard de Fonvillars
Secret-key cryptography
In this paper we study the S-box known as Chi or \chi initially proposed by Daemen in 1995 and very widely used ever since in Keccak, Ascon, and many other. This type of ciphers is typically analyzed [in recent research] in terms of subspace trail attacks [TeDi19] and vector space invariants. An interesting question is then, when different spaces are mapped to each other by translations with a constant.
In this paper we relax this fundamental question and we consider arbitrary sets of...
Spec-o-Scope: Cache Probing at Cache Speed
Gal Horowitz, Eyal Ronen, Yuval Yarom
Over the last two decades, microarchitectural side channels have been the focus of a large body of research on the development of new attack techniques, exploiting them to attack various classes of targets and designing mitigations. One line of work focuses on increasing the speed of the attacks, achieving higher levels of temporal resolution that can allow attackers to learn finer-grained information. The most recent addition to this line of work is Prime+Scope [CCS '21], which only...
Differential Analysis of Feistel Ciphers Incorporating Ajtai SIS Hash Function
Yu Morishima, Masahiro Kaminaga
Secret-key cryptography
This paper presents a framework for evaluating the differential cryptanalysis resistance of a Feistel cipher that uses Ajtai SIS hash function as its S-box. We derive an upper bound on the maximum differential probability and analyze the S-box output bias using a generalized extreme value (GEV) model. Simulation results indicate that practical security is achieved with 16 rounds for a 32-bit block and six for a 128-bit block.
Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice
Barbara Gigerl, Florian Mendel, Martin Schläffer, Robert Primas
Implementation
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography.
Our implementations target theoretical and practical security against second-order power analysis attacks.
First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness.
The extension...
FRAST: TFHE-friendly Cipher Based on Random S-boxes
Mingyu Cho, Woohyuk Chung, Jincheol Ha, Jooyoung Lee, Eun-Gyeol Oh, Mincheol Son
Secret-key cryptography
A transciphering framework, also known as hybrid homomorphic encryption, is a practical method of combining a homomorphic encryption~(HE) scheme with a symmetric cipher in the client-server model to reduce computational and communication overload on the client side. As a server homomorphically evaluates a symmetric cipher in this framework, new design rationales are required for ``HE-friendly'' ciphers that take into account the specific properties of the HE schemes.
In this paper, we...
New SAT-based Model for Quantum Circuit Decision Problem: Searching for Low-Cost Quantum Implementation
Jingwen Chen, Qun Liu, Yanhong Fan, Lixuan Wu, Boyun Li, Meiqin Wang
Implementation
In recent years, quantum technology has been rapidly developed. As security analyses for symmetric ciphers continue to emerge, many require an evaluation of the resources needed for the quantum circuit implementation of the encryption algorithm. In this regard, we propose the quantum circuit decision problem, which requires us to determine whether there exists a quantum circuit for a given permutation f using M ancilla qubits and no more than K quantum gates within the circuit depth D....
Determination of cryptographic tables and properties related to the revised boomerang and its application to a fundamental S-box
Said Eddahmani, Sihem Mesnager
Attacks and cryptanalysis
In symmetric cryptography, vectorial Boolean functions over finite fields F2n derive strong S-boxes. To this end, the S-box should satisfy a list of tests to resist existing attacks, such as the differential, linear, boomerang, and variants. Several tables are employed to measure an S- box’s resistance, such as the difference distribution table (DDT) and the boomerang connectivity table (BCT). Following the boomerang attacks recently revisited in terms of the boomerang switch effect, with a...
On the construction of quantum circuits for S-boxes with different criteria based on the SAT solver
Da Lin, Chunli Yang, Shengyuan Xu, Shizhu Tian, Bing Sun
Implementation
The substitution box (S-box) is often used as the only nonlinear component in symmetric-key ciphers, leading to a significant impact on the implementation performance of ciphers in both classical and quantum application scenarios by S-box circuits. Taking the Pauli-X gate, the CNOT gate, and the Toffoli gate (i.e., the NCT gate set) as the underlying logic gates, this work investigates the quantum circuit implementation of S-boxes based on the SAT solver. Firstly, we propose encoding methods...
Integral Attack on the Full FUTURE Block Cipher
Zeyu Xu, Jiamin Cui, Kai Hu, Meiqin Wang
Attacks and cryptanalysis
FUTURE is a recently proposed lightweight block cipher that achieved a remarkable hardware performance due to careful design decisions. FUTURE is an Advanced Encryption Standard (AES)-like Substitution-Permutation Network (SPN) with 10 rounds, whose round function consists of four components, i.e., SubCell, MixColumn, ShiftRow and AddRoundKey. Unlike AES, it is a 64-bit-size block cipher with a 128-bit secret key, and the state can be arranged into 16 cells. Therefore, the operations of...
2024/343
Last updated: 2024-04-08
Partial Differential Fault Analysis on Ascon
Yang Gao
Attacks and cryptanalysis
Authenticated Encryption with Associated Data (AEAD) is a trend in applied cryptography because it combine confidentiality, integrity, and authentication into one algorithm and is more efficient than using block ciphers and hash functions separately. The Ascon algorithm, as the winner in both the CAESAR competition and the NIST LwC competition, will soon become the AEAD standard for protecting the Internet of Things and micro devices with limited computing resources. We propose a partial...
Diving Deep into the Preimage Security of AES-like Hashing
Shiyao Chen, Jian Guo, Eik List, Danping Shi, Tianyu Zhang
Attacks and cryptanalysis
Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic...
Revisiting Differential-Linear Attacks via a Boomerang Perspective With Application to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP, LBlock, Simeck, and SERPENT
Hosein Hadipour, Patrick Derbez, Maria Eichlseder
Attacks and cryptanalysis
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT...
Evict+Spec+Time: Exploiting Out-of-Order Execution to Improve Cache-Timing Attacks
Shing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas McNeil, Toby Murray, Yuval Yarom, Zhiyuan Zhang
Attacks and cryptanalysis
Speculative out-of-order execution is a strategy of masking execution latency by allowing younger instructions to execute before older instructions. While originally considered to be innocuous, speculative out-of-order execution was brought into the spotlight with the 2018 publication of the Spectre and Meltdown attacks. These attacks demonstrated that microarchitectural side channels can leak sensitive data accessed by speculatively executed instructions that are not part of the normal...
Layout Graphs, Random Walks and the t-wise Independence of SPN Block Ciphers
Tianren Liu, Angelos Pelecanos, Stefano Tessaro, Vinod Vaikuntanathan
Secret-key cryptography
We continue the study of $t$-wise independence of substitution-permutation networks (SPNs) initiated by the recent work of Liu, Tessaro, and Vaikuntanathan (CRYPTO 2021).
Our key technical result shows that when the S-boxes are randomly and independently chosen and kept secret, an $r$-round SPN with input length $n = b \cdot k$ is $2^{-\Theta(n)}$-close to $t$-wise independent within $r = O(\min\{k, \log t\})$ rounds for any $t$ almost as large as $2^{b/2}$. Here, $b$ is the input length of...
Differential Fault Attack on Ascon Cipher
Amit Jana
Attacks and cryptanalysis
This work investigates the security of the Ascon authenticated encryption scheme in the context of fault attacks, with a specific focus on Differential Fault Analysis (DFA). Motivated by the growing significance of lightweight cryptographic solutions, particularly Ascon, we explore potential vulnerabilities in its design using DFA. By employing a novel approach that combines faulty forgery in the decryption query under two distinct fault models, leveraging bit-flip faults in the first phase...
Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation
Gaëtan Leurent, Clara Pernot
Secret-key cryptography
The linear layer of block ciphers plays an important role in their security.
In particular, ciphers designed following the wide-trail strategy use the branch number of the linear layer to derive bounds on the probability of linear and differential trails.
At FSE 2014, the LS-design construction was introduced as a simple and regular structure to design bitsliced block ciphers. It considers the internal state as a bit matrix, and applies alternatively an identical S-Box on all the columns,...
Algebraic Attack on FHE-Friendly Cipher HERA Using Multiple Collisions
Fukang Liu, Abul Kalam, Santanu Sarkar, Willi Meier
Attacks and cryptanalysis
Fully homomorphic encryption (FHE) is an advanced cryptography technique to allow computations (i.e., addition and multiplication) over encrypted data. After years of effort, the performance of FHE has been significantly improved and it has moved from theory to practice. The transciphering framework is another important technique in FHE to address the issue of ciphertext expansion and reduce the client-side computational overhead. To apply the transciphering framework to the CKKS FHE scheme,...
Secure Encryption and Key Exchange using Arbiter PUF
Raja Adhithan Radhakrishnan
This paper introduces a novel approach to enhancing cryp-
tographic security. It proposes the use of one-time message sharing com-
bined with Physically Unclonable Functions (PUF) to securely exchange
keys and generate an S-subbyte-box for encryption. This innovative tech-
nique aims to elevate the security standards of cryptographic applica-
tions.
Optimizing S-box Implementations Using SAT Solvers: Revisited
Fuxin Zhang, Zhenyu Huang
Implementation
We propose a new method to encode the problems of optimizing S-box implementations into SAT problems. By considering the inputs and outputs of gates as Boolean functions, the fundamental idea of our method is representing the relationships between these inputs and outputs according to their algebraic normal forms. Based on this method, we present several encoding schemes for
optimizing S-box implementations according to various criteria, such as multiplicative complexity, bitslice gate...
Partial Sums Meet FFT: Improved Attack on 6-Round AES
Orr Dunkelman, Shibam Ghosh, Nathan Keller, Gaetan Leurent, Avichai Marmor, Victor Mollimard
Attacks and cryptanalysis
The partial sums cryptanalytic technique was introduced in 2000 by Ferguson et al., who used it to break 6-round AES with time complexity of $2^{52}$ S-box computations -- a record that has not been beaten ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial sums can be replaced by a technique based on the Fast Fourier Transform (FFT), leading to an attack with a comparable complexity.
In this paper we show that the partial sums technique can be combined with an...
On Decompositions of Permutations in Quadratic Functions
Samuele Andreoli, Enrico Piccione, Lilya Budaghyan, Pantelimon Stănică, Svetla Nikova
Foundations
The algebraic degree of a vectorial Boolean function is one of the main parameters driving the cost of its hardware implementation.
Thus, finding decompositions of functions into sequences of functions of lower algebraic degrees has been explored to reduce the cost of implementations. In this paper, we consider such decompositions of permutations over $\mathbb{F}_{2^n}$.
We prove the existence of decompositions using quadratic and linear power permutations for all permutations when...
Compress: Generate Small and Fast Masked Pipelined Circuits
Gaëtan Cassiers, Barbara Gigerl, Stefan Mangard, Charles Momin, Rishub Nagpal
Implementation
Masking is an effective countermeasure against side-channel attacks. It replaces every logic gate in a computation by a gadget that performs the operation over secret sharings of the circuit's variables. When masking is implemented in hardware, care should be taken to protect against leakage from glitches, which could otherwise undermine the security of masking. This is generally done by adding registers, which stop the propagation of glitches, but introduce additional latency and area cost....
Arithmetic Circuit Implementations of S-boxes for SKINNY and PHOTON in MPC
Aysajan Abidin, Erik Pohle, Bart Preneel
Applications
Secure multi-party computation (MPC) enables multiple distrusting parties to compute a function while keeping their respective inputs private. In a threshold implementation of a symmetric primitive, e.g., of a block cipher, each party holds a share of the secret key or of the input block. The output block is computed without reconstructing the secret key. This enables the construction of distributed TPMs or transciphering for secure data transmission in/out of the MPC context.
This paper...
Improved Quantum Circuits for AES: Reducing the Depth and the Number of Qubits
Qun Liu, Bart Preneel, Zheng Zhao, Meiqin Wang
Implementation
Quantum computers hold the potential to solve problems that are intractable for classical computers, thereby driving increased interest in the development of new cryptanalytic ciphers. In NIST's post-quantum standardization process, the security categories are defined by the costs of quantum key search against AES. However, the cost estimates provided by Grassl et al. for the search are high. NIST has acknowledged that these initial classifications should be approached cautiously, since the...
All You Need Is Fault: Zero-Value Attacks on AES and a New $\lambda$-Detection M&M
Haruka Hirata, Daiki Miyahara, Victor Arribas, Yang Li, Noriyuki Miura, Svetla Nikova, Kazuo Sakiyama
Attacks and cryptanalysis
Deploying cryptography on embedded systems requires security against physical attacks. At CHES 2019, M&M was proposed as a combined countermeasure applying masking against SCAs and information-theoretic MAC tags against FAs.
In this paper, we show that one of the protected AES implementations in the M&M paper is vulnerable to a zero-value SIFA2-like attack. A practical attack is demonstrated on an ASIC board.
We propose two versions of the attack: the first follows the SIFA approach to...
An Efficient Unicode encoded in UTF-16 text cryptography based on the AES algorithm
Sushmit Jahan Rose, Umut Ozkaya, Sabina Yasmin, Suraiya Jabin, Robiul Hasan, Elias Kabir
Cryptographic protocols
Data security and secrecy from unwanted applications are the subjects of the science known as cryptography. The advanced encryption standard algorithm is the most used and secure algorithm to encrypt data. The AES algorithm is based on the symmetric algorithm and uses a single key to encrypt and decrypt data. The AES algorithm uses 128 bits length of plain text with 128 bits, 192 bits, or 256 bits key size to encrypt data. Latin script uses ASCII codes, and a single byte represents each...
The Reality of Backdoored S-Boxes - An Eye Opener
Shah Fahd, Mehreen Afzal, Waseem Iqbal, Dawood Shah, Ijaz Khalid
Foundations
The analysis of real-life incidents has revealed that state-level efforts are made to camouflage the intentional flaws in the mathematical layer of an S-Box to exploit the information-theoretic properties, i.e., Kuznyechik. To extract and investigate the common features in the backdoored S-Box(es), this research thoroughly examines them from the perspective of 24 cryptanalytic attack vectors available in the open literature. We have debunked the earlier claims by the backdoor engineers that...
An STP-based model toward designing S-boxes with good cryptographic properties
Zhenyu Lu, Sihem Mesnager, Tingting Cui, Yanhong Fan, Meiqin Wang
Secret-key cryptography
The substitution box (S-box) is an important nonlinear component in most symmetric cryptosystems and thus should have good properties. Its difference distribution table (DDT) and linear approximation table (LAT) affect the security of the cipher against differential and linear cryptanalysis. In most previous work, differential uniformity and linearity of an S-box are two primary cryptographic properties to impact the resistance against differential and linear attacks. In some cases, the...
BALoo: First and Efficient Countermeasure dedicated to Persistent Fault Attacks
Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso
Implementation
Persistent fault analysis is a novel and efficient cryptanalysis method. The persistent fault attacks take advantage of a persistent fault injected in a non-volatile memory, then present on the device until the reboot of the device. Contrary to classical physical fault injection, where differential analysis can be performed, persistent fault analysis requires new analyses and dedicated countermeasures. Persistent fault analysis requires a persistent fault injected in the S-box such that the...
The QARMAv2 Family of Tweakable Block Ciphers
Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam Ghosh, Marcel Nageler, Francesco Regazzoni
Secret-key cryptography
We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks, while keeping similar latency and area.
The wider tweak input caters to both specific use cases and the design of modes of operation with higher security bounds. This is achieved through new key and tweak schedules, revised S-Box and linear layer choices, and a more comprehensive security analysis. QARMAv2 offers competitive...
A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH
Xiaorui Yu, Fukang Liu, Gaoli Wang, Siwei Sun, Willi Meier
Attacks and cryptanalysis
ASCON, a lightweight permutation-based primitive, has been
selected as NIST’s lightweight cryptography standard. ASCON-HASH is one of the hash functions provided by the cipher suite ASCON. At ToSC 2021, the collision attack on 2-round ASCON-HASH with time complexity 2^{103} was proposed. Due to its small rate, it is always required to utilize at least 2 message blocks to mount a collision attack because each message block is only of size 64 bits. This significantly increases the difficulty...
Automated Generation of Masked Nonlinear Components: From Lookup Tables to Private Circuits
Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang, Meiqin Wang
Implementation
Masking is considered to be an essential defense mechanism against side-channel attacks, but it is challenging to be adopted for hardware cryptographic implementations, especially for high security orders. Recently, Knichel et al. proposed an automated tool called AGEMA that enables the generation of masked implementations in hardware for arbitrary security orders using composable gadgets. This accelerates the construction and practical application of masking schemes. This article proposes a...
Coefficient Grouping for Complex Affine Layers
Fukang Liu, Lorenzo Grassi, Clémence Bouvier, Willi Meier, Takanori Isobe
Secret-key cryptography
Designing symmetric-key primitives for applications in Fully Homomorphic Encryption (FHE) has become important to address the issue of the ciphertext expansion. In such a context, cryptographic primitives with a low-AND-depth decryption circuit are desired. Consequently, quadratic nonlinear functions are commonly used in these primitives, including the well-known $\chi$ function over $\mathbb{F}_2^n$ and the power map over a large finite field $\mathbb{F}_{p^n}$. In this work, we study the...
On Perfect Linear Approximations and Differentials over Two-Round SPNs
Christof Beierle, Patrick Felke, Gregor Leander, Patrick Neumann, Lukas Stennes
Secret-key cryptography
Recent constructions of (tweakable) block ciphers with an embedded cryptographic backdoor relied on the existence of probability-one differentials or perfect (non-)linear approximations over a reduced-round version of the primitive. In this work, we study how the existence of probability-one differentials or perfect linear approximations over two rounds of a substitution-permutation network can be avoided by design. More precisely, we develop criteria on the s-box and the linear layer that...
Improved Differential Cryptanalysis on SPECK Using Plaintext Structures
Zhuohui Feng, Ye Luo, Chao Wang, Qianqian Yang, Zhiquan Liu, Ling Song
Attacks and cryptanalysis
Plaintext structures are a commonly-used technique for improving differential cryptanalysis. Generally, there are two types of plaintext structures: multiple-differential structures and truncated-differential structures. Both types have been widely used in cryptanalysis of S-box-based ciphers while for SPECK, an Addition-Rotation-XOR (ARX) cipher, the truncated-differential structure has not been used so far. In this paper, we investigate the properties of modular addition and propose a...
Algebraic Cryptanalysis of HADES Design Strategy: Application to POSEIDON and Poseidon2
Tomer Ashur, Thomas Buschman, Mohammad Mahzoun
Attacks and cryptanalysis
Arithmetization-Oriented primitives are the building block of advanced cryptographic protocols such as Zero-Knowledge proof systems. One approach to designing such primitives is the HADES design strategy which aims to provide an efficient way to instantiate generalizing substitution-permutation networks to include partial S-box rounds. A notable instance of HADES, introduced by Grassi \emph{et al.} at USENIX Security '21, is Poseidon. Because of its impressive efficiency and low arithmetic...
TIDAL: Practical Collisions on State-Reduced Keccak Variants
Sahiba Suryawanshi, Dhiman Saha, Shashwat jaiswal
Attacks and cryptanalysis
An important tool that has contributed to collision search
on Keccak/SHA3 is the Target Difference Algorithm (TDA) and its inter-
nal differential counterpart Target Internal Difference Algorithm (TIDA),
which were introduced by Dinur et al. in separate works in FSE 2012 and
2013 respectively. These algorithms provide an ingenious way of extend-
ing the differential trails by one round and exploiting the affine subspaces
generated due to the low algebraic degree of the Keccak S-box....
Searching for S-boxes with better Diffusion using Evolutionary Algorithm
Rahul Mishra, Bhupendra Singh, Radhakrishnan Delhibabu
Over the years, a large number of attacks have been proposed against substitution boxes used in symmetric ciphers such as differential attacks, linear attacks, algebraic attacks, etc. In the Advanced Encryption Standard (AES) Block cipher, the substitution box is the only nonlinear component and thus it holds the weight of the cipher. This basically means that if an attacker is able to mount a successful attack on the substitution box of AES, the cipher is compromised. This research work...
An Analysis of the Post Quantum and Classical Security of 4x4 and 16x4 S-Boxes and Their Implementations in Simplified-AES
Christopher Dunne
Secret-key cryptography
Grover’s algorithm is a quantum searching algorithm that poses a threat to symmetric cryptography. Due to their smaller key sizes, lightweight cryptographic algorithms such as Simplified-AES face a much more immediate threat from Grover’s algorithm than traditional cryptographic algorithms. By analyzing different S-boxes, it was discovered that the S-box 946C753AE8FBD012 may be more quantum resistant than the S-box that Simplified-AES uses, 94ABD1856203CEF7. In addition to this, 16x4 S-boxes...
Efficient Detection of High Probability Statistical Properties of Cryptosystems via Surrogate Differentiation
Itai Dinur, Orr Dunkelman, Nathan Keller, Eyal Ronen, Adi Shamir
Secret-key cryptography
A central problem in cryptanalysis is to find all the significant deviations from randomness in a given $n$-bit cryptographic primitive. When $n$ is small (e.g., an $8$-bit S-box), this is easy to do, but for large $n$, the only practical way to find such statistical properties was to exploit the internal structure of the primitive and to speed up the search with a variety of heuristic rules of thumb. However, such bottom-up techniques can miss many properties, especially in cryptosystems...
DORCIS: Depth Optimized Quantum Implementation of Substitution Boxes
Matthew Chun, Anubhab Baksi, Anupam Chattopadhyay
Secret-key cryptography
In this paper, we present the ``DORCIS'' tool, which finds depth-optimized quantum circuit implementations for arbitrary 3- and 4-bit S-boxes. It follows up from the previous LIGHTER-R tool (which only works for 4-bit S-boxes) by extending it in multiple ways. LIGHTER-R only deals at the top level (i.e., Toffoli gates), whereas DORCIS takes quantum decomposition (i.e., Clifford + T gates) into account. Further, DORCIS optimizes for quantum depth and T depth. We match, if not surpass, other...
Optimized Quantum Implementation of AES
Da Lin, Zejun Xiang, Runqing Xu, Shasha Zhang, Xiangyong Zeng
Implementation
This work researches the implementation of the AES family with Pauli-X gates, CNOT gates and Toffoli gates as the underlying quantum logic gate set. First, the properties of quantum circuits are investigated, as well as the influence of Pauli-X gates, CNOT gates and Toffoli gates on the performance of the circuits constructed with those gates. Based on these properties and the observations on the hardware circuits built by Boyar \emph{et al.} and Zou \emph{et al.}, it is possible to...
Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search: Improved Fast Correlation Attacks on SNOW
Xinxin Gong, Yonglin Hao, Qingju Wang
Attacks and cryptanalysis
The Mixed Integer Linear Programming (MILP) technique has been widely applied in the realm of symmetric-key cryptanalysis. In this paper, we propose a new bitwise breakdown MILP modeling strategy for describing the linear propagation rules of modular addition-based operations. We apply such new techniques to cryptanalysis of the SNOW stream cipher family and find new linear masks:
we use the MILP model to find many linear mask candidates among which the best ones are identified with...
Full-Round Differential Attack on ULC and LICID Block Ciphers Designed for IoT
Manjeet Kaur, Tarun Yadav, Manoj Kumar, Dhananjoy Dey
Attacks and cryptanalysis
The lightweight block ciphers ULC and LICID are introduced by Sliman et al. (2021) and Omrani et al. (2019) respectively. These ciphers are based on substitution permutation network structure. ULC is designed using the ULM method to increase efficiency, memory usage, and security. On the other hand, LICID is specifically designed for image data. In the ULC paper, the authors have given a full-round differential characteristic with a probability of $2^{-80}$. In the LICID paper, the authors...
New record in the number of qubits for a quantum implementation of AES
Zhenqiang Li, Fei Gao, Sujuan Qin, Qiaoyan Wen
Attacks and cryptanalysis
Optimizing the quantum circuit for implementing Advanced Encryption Standard (AES) is crucial for estimating the necessary resources in attacking AES by Grover algorithm. Previous studies have reduced the number of qubits required for the quantum circuits of AES-128/-192/-256 from 984/1112/1336 to 270/334/398, which is close to the optimal value of 256/320/384. It becomes a challenging task to further optimize them. Aiming at this task, we find a method about how the quantum circuit of AES...
Robustness of Affine and Extended Affine Equivalent Surjective S-Box(es) against Differential Cryptanalysis
Shah Fahd, Mehreen Afzal, Dawood Shah, Waseem Iqbal, Atiya Hai
Foundations
A Feistel Network (FN) based block cipher relies on a Substitution Box (S-Box) for achieving the non-linearity. S-Box is carefully designed to achieve optimal cryptographic security bounds. The research of the last three decades shows that considerable efforts are being made on the mathematical design of an S-Box. To import the exact cryptographic profile of an S-Box, the designer focuses on the Affine Equivalent (AE) or Extended Affine (EA) equivalent S-Box. In this research, we argue that...
New Properties of Double Boomerang Connectivity Table
Qianqian Yang, Ling Song, Siwei Sun, Danping Shi, Lei Hu
Secret-key cryptography
The double boomerang connectivity table (DBCT) is a new table proposed recently to capture the behavior of two consecutive S-boxes in boomerang attacks. In this paper, we observe an interesting property of DBCT of S-box that the ladder switch and the S-box switch happen in most cases for two continuous S-boxes, and for some S-boxes only S-box switch and ladder switch are possible. This property implies an additional criterion for S-boxes to resist the boomerang attacks and provides as well a...
Modifications of Bijective S-Boxes with Linear Structures
Kaisa Nyberg
Foundations
Various systematic modifications of vectorial Boolean functions have been used for finding new previously unknown classes of S-boxes with good or even optimal differential uniformity and nonlinearity. In this paper, a new general modification method is given that preserves the bijectivity property of the function in case the inverse of the function admits a linear structure. A previously known construction of such a modification based on bijective Gold functions in odd dimension is a...
A Faster Third-Order Masking of Lookup Tables
Anju Alexander, Annapurna Valiveti, Srinivas Vivek
Cryptographic protocols
Masking of S-boxes using lookup tables is an effective countermeasure to thwart side-channel attacks on block ciphers implemented in software. At first and second orders, the Table-based Masking (TBM) schemes can be very efficient and even faster than circuit-based masking schemes. Ever since the customised second-order TBM schemes were proposed, the focus has been on designing and optimising Higher-Order Table-based Masking (HO-TBM) schemes that facilitate masking at arbitrary order. One of...
Fast Evaluation of S-boxes with Garbled Circuits
Erik Pohle, Aysajan Abidin, Bart Preneel
Cryptographic protocols
Garbling schemes are vital primitives for privacy-preserving protocols and secure two-party computation. In projective garbling schemes, $n$ values are assigned to each wire in the circuit. Current state-of-the-art schemes project two values.
This paper presents a projective garbling scheme that assigns $2^n$ values to wires in a circuit comprising XOR and unary projection gates. A generalization of FreeXOR allows the XOR of wires with $2^n$ values to be very efficient. We then analyze the...
Second-Order Low-Randomness $d+1$ Hardware Sharing of the AES
Siemen Dhooghe, Aein Rezaei Shahmirzadi, Amir Moradi
Implementation
In this paper, we introduce a second-order masking of the AES using the minimal number of shares and a total of 1268 bits of randomness including the sharing of the plaintext and key. The masking of the S-box is based on the tower field decomposition of the inversion over bytes where the changing of the guards technique is used in order to re-mask the middle branch of the decomposition. The sharing of the S-box is carefully crafted such that it achieves first-order probing security without...
Efficient Constant-Time Implementation of SM4 with Intel GFNI instruction set extension and Arm NEON coprocessor
Weiji Guo
Implementation
The efficiency of constant-time SM4 implementation has been lagging behind that of AES for most internet traffic and applicable data encryption scenarios. The best performance before our works was 3.77 cpb for x86 platform (AESNI + AVX2), and 8.62 cpb for Arm platform (NEON). Meanwhile the state of art constant-time AES implementation could reach 0.63 cpb. Dedicated SM4 instruction set extensions like those optionally available in Armv8.2, could achieve comparable cpb to AES. But they are...
An Optimal Universal Construction for the Threshold Implementation of Bijective S-boxes
Enrico Piccione, Samuele Andreoli, Lilya Budaghyan, Claude Carlet, Siemen Dhooghe, Svetla Nikova, George Petrides, Vincent Rijmen
Implementation
Threshold implementation is a method based on secret sharing to secure cryptographic ciphers (and in particular S-boxes) against differential power analysis side-channel attacks which was proposed by Nikova, Rechberger, and Rijmen in 2006. Until now, threshold implementations were only constructed for specific types of functions and some small S-boxes, but no generic construction was ever presented. In this paper, we present the first universal threshold implementation with $t+2$ shares that...
New Low-Memory Algebraic Attacks on LowMC in the Picnic Setting
Fukang Liu, Willi Meier, Santanu Sarkar, Takanori Isobe
Attacks and cryptanalysis
The security of the post-quantum signature scheme Picnic is highly related to the difficulty of recovering the secret key of LowMC from a single plaintext-ciphertext pair. Since Picnic is one of the alternate third-round candidates in NIST post-quantum cryptography standardization process, it has become urgent and important to evaluate the security of LowMC in the Picnic setting. The best attacks on LowMC with full S-box layers used in Picnic3 were achieved with Dinur's algorithm. For LowMC...
New Design Techniques for Efficient Arithmetization-Oriented Hash Functions:Anemoi Permutations and Jive Compression Mode
Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov, Danny Willems
Secret-key cryptography
Advanced cryptographic protocols such as Zero-knowledge (ZK) proofs of knowledge, widely used in cryptocurrency applications such as Zcash, Monero, Filecoin, Tezos, Topos, demand new cryptographic hash functions that are efficient not only over the binary field $\mathbb{F}_2$, but also over large fields of prime characteristic $\mathbb{F}_p$. This need has been acknowledged by the wider community and new so-called Arithmetization-Oriented (AO) hash functions have been proposed, e.g....
Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking
Yusuke Naito, Yu Sasaki, Takeshi Sugawara
Secret-key cryptography
We propose a new AEAD mode of operation for an efficient countermeasure against side-channel attacks. Our mode achieves the smallest memory with high-order masking, by minimizing the states that are duplicated in masking. An $s$-bit key-dependent state is necessary for achieving $s$-bit security, and the conventional schemes always protect the entire $s$ bits with masking. We reduce the protected state size by introducing an unprotected state in the key-dependent state: we protect only a...
Block Cipher's Substitution Box Generation Based on Natural Randomness in Underwater Acoustics and Knight's Tour Chain
Muhammad Fahad Khan, Khalid Saleem, Tariq Shah, Mohmmad Mazyad Hazzazi, Ismail Bahkali, Piyush Kumar Shukla
Secret-key cryptography
The protection of confidential information is a global issue and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on "Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a...
Snowball: Another View on Side-Channel Key Recovery Tools
Jiangshan Long, Changhai Ou, Zhu Wang, Shihui Zheng, Fei Yan, Fan Zhang, Siew-Kei Lam
Applications
The performance of Side-Channel Attacks (SCAs) decays rapidly when considering more sub-keys, making the full-key recovery a very challenging problem. Limited to independent collision information utilization, collision attacks establish the relationship among sub-keys but do not significantly slow down this trend. To solve it, we first exploit the samples from the previously attacked S-boxes to assist attacks on the targeted S-box under an assumption that similar leakage occurs in program...
A Model Set Method to Search Integral Distinguishers Based on Division Property for Block Ciphers
Liu Zhang, Huawei Liu, Zilong Wang
Secret-key cryptography
In this paper, we focus on constructing an automatic search model that greatly improves efficiency with little loss of accuracy and obtains some better results in the construction of integral distinguishers for block ciphers. First, we define a new notion named BDPT Trail, which divides BDPT propagation into three parts: the division trail for K, division trail for L, and Key-Xor operation. Secondly, we improve the insufficiency of the previous methods of calculating division trails and...
Memory-Efficient Single Data-Complexity Attacks on LowMC Using Partial Sets
Subhadeep Banik, Khashayar Barooti, Andrea Caforio, Serge Vaudenay
Attacks and cryptanalysis
The LowMC family of block ciphers was first proposed by Albrecht et al. in [ARS+15], specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of...
Quantum Analysis of AES
Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Gyeongju Song, Hwajeong Seo, Anupam Chattopadhyay
Secret-key cryptography
Quantum computing is considered one of the next big leaps in computational science. While a fully functional quantum computer is still in the future, there is an ever-growing need to evaluate the security of the symmetric key ciphers against a potent quantum adversary. Keeping this in mind, our work explores the key recovery attack using the Grover's search on the three variants of AES (-128, -192, -256). We develop a pool of 26 implementations per AES variant (thus totaling 78), by taking...
Synthesizing Quantum Circuits of AES with Lower T-depth and Less Qubits
Zhenyu Huang, Siwei Sun
Secret-key cryptography
The significant progress in the development of quantum computers has made the study of cryptanalysis based on quantum computing an active topic. To accurately estimate the resources required to carry out quantum attacks, the involved quantum algorithms have to be synthesized into quantum circuits with basic quantum gates. In this work, we present several generic synthesis and optimization techniques for circuits implementing the quantum oracles of iterative symmetric-key ciphers that are...
Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation
Alexandre Adomnicai, Kazuhiko Minematsu, Maki Shigeri
Implementation
This paper reports new software implementation results for the Skinny-128 tweakable block ciphers on various SIMD architectures.
More precisely, we introduce a decomposition of the 8-bit S-box into four 4-bit S-boxes in order to take advantage of vector permute instructions, leading to significant performance improvements over previous constant-time implementations.
Since our approach is of particular interest when Skinny-128 is used in sequential modes of operation, we also report how it...
Riding the Waves Towards Generic Single-Cycle Masking in Hardware
Rishub Nagpal, Barbara Gigerl, Robert Primas, Stefan Mangard
Implementation
Research on the design of masked cryptographic hardware circuits in the
past has mostly focused on reducing area and randomness requirements. However,
many embedded devices like smart cards and IoT nodes also need to meet certain
performance criteria, which is why the latency of masked hardware circuits also
represents an important metric for many practical applications.
The root cause of latency in masked hardware circuits is the need for additional register stages that synchronize the...
Breaking Masked Implementations of the Clyde-Cipher by Means of Side-Channel Analysis - A Report on the CHES Challenge Side-Channel Contest 2020
Aron Gohr, Friederike Laus, Werner Schindler
Implementation
In this paper we present our solution to the CHES Challenge 2020, the task of which it was to break masked hardware respective software
implementations of the lightweight cipher Clyde by means of side-channel analysis.
We target the secret cipher state after processing of the first $S$-box layer. Using the provided trace data we obtain a strongly biased posterior distribution for the secret-shared cipher state at the targeted point; this enables us to see exploitable biases even before...
LLTI: Low-Latency Threshold Implementations
Victor Arribas, Zhenda Zhang, Svetla Nikova
Implementation
With the enormous increase in portable cryptographic devices, physical attacks are becoming similarly popular. One of the most common physical attacks is Side-Channel Analysis (SCA), extremely dangerous due to its non-invasive nature. Threshold Implementations (TI) was proposed as the first countermeasure to provide provable security in masked hardware implementations. While most works on hardware masking are focused on optimizing the area requirements, with the newer and smaller...
Enhancing AES Using Chaos and Logistic Map-Based Key Generation Technique for Securing IoT-Based Smart Home
Ziaur Rahman, Xun Yi, Mustain Billah, Mousumi Sumi, Adnan Anwar
Cryptographic protocols
The Internet of Things (IoT) has brought new ways for humans and machines to communicate with each other over the internet. Though sensor-driven devices have largely eased our everyday lives, most IoT infrastructures have been suffering from security challenges. Since the emergence of IoT, lightweight block ciphers have been a better option for intelligent and sensor-based applications. When public-key infrastructure dominates worldwide, the symmetric key encipherment such as Advanced...
A Greater GIFT: Strengthening GIFT against Statistical Cryptanalysis
Ling Sun, Bart Preneel, Wei Wang, Meiqin Wang
Secret-key cryptography
GIFT-64 is a 64-bit block cipher with a 128-bit key that is more lightweight than PRESENT. This paper provides a detailed analysis of GIFT-64 against differential and linear attacks. Our work complements automatic search methods for the best differential and linear characteristics with a careful manual analysis. This hybrid approach leads to new insights. In the differential setting, we theoretically explain the existence of differential characteristics with two active S-boxes per round and...
Small-Box Cryptography
Yevgeniy Dodis, Harish Karthikeyan, Daniel Wichs
Foundations
One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework for building block ciphers from small components, such as cryptographic $S$-boxes, and then argue why iterating such small components for sufficiently many rounds would yield a secure construction. Unfortunately, a fundamental obstacle towards reaching
this goal comes from the fact that traditional security proofs cannot get security beyond $2^{-n}$, where $n$ is the size of the corresponding...
Boomeyong: Embedding Yoyo within Boomerang and its Applications to Key Recovery Attacks on AES and Pholkos
Mostafizar Rahman, Dhiman Saha, Goutam Paul
Secret-key cryptography
This work investigates a generic way of combining two very effective and well-studied cryptanalytic tools, proposed almost 18 years apart, namely the boomerang attack introduced by Wagner in FSE 1999 and the yoyo attack by Ronjom et. al. in Asiacrypt 2017. In doing so, the s-box switch and ladder switch techniques are leveraged to embed a yoyo trail inside a boomerang trail. As an immediate application, a 6-round key recovery attack on AES-128 is mounted with time complexity of $2^{78}$.
A...
Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over $\mathbb F_p^n$
Lorenzo Grassi, Silvia Onofri, Marco Pedicini, Luca Sozzi
Secret-key cryptography
Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the number of multiplications over $\mathbb{F}_p$ for a large prime $p$ have been recently proposed in the literature. This goal is often achieved by instantiating the non-linear layer via power maps $x\mapsto x^d$.
In this paper, we start an analysis of new non-linear...
Pushing the Limits: Searching for Implementations with the Smallest Area for Lightweight S-Boxes
Zhenyu Lu, Weijia Wang, Kai Hu, Yanhong Fan, Lixuan Wu, Meiqin Wang
Implementation
The area is one of the most important criteria for an S-box in hardware implementation when designing lightweight cryptography primitives. The area can be well estimated by the number of gate equivalent (GE). However, to our best knowledge, there is no efficient method to search for an S-box implementation with the least GE. Previous approaches can be classified into two categories, one is a heuristic that aims at finding an implementation with a satisfying but not necessarily the smallest...
Cryptanalysis of a Type of White-Box Implementations of the SM4 Block Cipher
Jiqiang Lu, Jingyu Li, Zexuan Chen, Yanan Li
Secret-key cryptography
The SM4 block cipher is a Chinese national standard and an ISO international standard. Since white-box cryptography has many real-life applications nowadays, a few white-box implementations of SM4 has been proposed, among which a type of constructions is dominated, that uses a linear or affine diagonal block encoding to protect the original three 32-bit branches entering a round function and uses its inverse as the input encoding to the S-box layer. In this paper, we analyse the security of...
Integral Attacks on Pyjamask-96 and Round-Reduced Pyjamask-128 (Full version)
Jiamin Cui, Kai Hu, Qingju Wang, Meiqin Wang
Secret-key cryptography
In order to provide benefits in the areas of fully homomorphic encryption (FHE), multi-party computation (MPC), post-quantum signature schemes, or efficient masked implementations for side-channel resistance, reducing the number of multiplications has become a quite popular trend for the symmetric cryptographic primitive designs. With an aggressive design strategy exploiting the extremely simple and low-degree S-box and low number of rounds, Pyjamask, the fundamental block cipher of the AEAD...
SAND: an AND-RX Feistel lightweight block cipher supporting S-box-based security evaluations
Shiyao Chen, Yanhong Fan, Ling Sun, Yong Fu, Haibo Zhou, Yongqing Li, Meiqin Wang, Weijia Wang, Chun Guo
Secret-key cryptography
We revisit designing AND-RX block ciphers, that is, the designs assembled with the most fundamental binary operations---AND, Rotation and XOR operations and do not rely on existing units. Likely, the most popular representative is the NSA cipher \texttt{SIMON}, which remains one of the most efficient designs, but suffers from difficulty in security evaluation.
As our main contribution, we propose \texttt{SAND}, a new family of lightweight AND-RX block ciphers. To overcome the difficulty...
In ToSC 2025(1), Jia et al. proposed an SAT-aided automatic search tool for the S-box design. A part of the functionality of this tool is to search for implementations of an S-box with good area and gate-depth complexity. However, it is well-known that the gate depth complexity cannot precisely reflect the latency of an implementation. To overcome this problem, Rasoolzadeh introduced the concept of latency complexity, a more precise metric for the latency cost of implementing an S-box than...
Conventional hash functions are often inefficient in zero-knowledge proof settings, leading to design of several ZK-friendly hash functions. On the other hand, lookup arguments have recently been incorporated into zero-knowledge protocols, allowing for more efficient handling of ``ZK-unfriendly'' operations, and hence ZK-friendly hash functions based on lookup tables. In this paper, we propose a new ZK-friendly hash function, dubbed $\mathsf{Polocolo}$, that employs an S-box constructed...
Masking is one of the most prevalent and investigated countermeasures against side-channel analysis. As an alternative to the simple (e.g., additive) encoding function of Boolean masking, a collection of more algebraically complex masking types has emerged. Recently, inner product masking and the more generic code-based masking have proven to enable higher theoretical security properties than Boolean masking. In CARDIS 2017, Poussier et al. connected this ``security order amplification''...
At ASIACRYPT’19, Bonnetain et al. demonstrated that an S-box can be distinguished from a permutation chosen uniformly at random by quantifying the distances between their behaviors. In this study, we extend this approach by proposing a deep learning-based method to quantify distances between two different S-boxes and evaluate similarities in their design structures. First, we introduce a deep learning-based framework that trains a neural network model to recover the design structure of a...
Side-channel vulnerabilities pose an increasing threat to cryptographically protected devices. Consequently, it is crucial to observe information leakages through physical parameters such as power consumption and electromagnetic (EM) radiation to reduce susceptibility during interactions with cryptographic functions. EM side-channel attacks are becoming more prevalent. PRESENT is a promising lightweight cryptographic algorithm expected to be incorporated into Internet-of-Things (IoT) devices...
In this paper, we propose a new 10-bit S-box generated from a Feistel construction. The subpermutations are generated by a 5-cell cellular automaton based on a unique well-chosen rule and bijective affine transformations. In particular, the cellular automaton rule is chosen based on empirical tests of its ability to generate good pseudorandom output on a ring cellular automaton. Similarly, Feistel's network layout is based on empirical data regarding the quality of the output S-box. We...
Advanced Encryption Standard (AES) is one of the most widely used and extensively studied encryption algorithms globally, which is renowned for its efficiency and robust resistance to attacks. In this paper, three quantum circuits are designed to implement the S-box, which is the sole nonlinear component in AES. By incorporating a linear key schedule, we achieve a quantum circuit for implementing AES with the minimum number of qubits used. As a consequence, only 264/328/398 qubits are needed...
S-boxes are the most popular nonlinear building blocks used in symmetric-key primitives. Both cryptographic properties and implementation cost of an S-box are crucial for a good cipher design, especially for lightweight ones. This paper aims to determine the exact minimum area of optimal 4-bit S-boxes (whose differential uniform and linearity are both 4) under certain standard cell library. Firstly, we evaluate the upper and lower bounds upon the minimum area of S-boxes, by...
This paper introduces "Little OaldresPuzzle_Cryptic," a novel lightweight symmetric encryption algorithm. At the core of this algorithm are two main cryptographic components: the NeoAlzette permutation S-box based on ARX (Addition-Rotation-XOR) primitives and the innovative pseudo-random number generator XorConstantRotation (XCR), used exclusively in the key expansion process. The NeoAlzette S-box, a non-linear function for 32-bit pairs, is meticulously designed for both encryption...
With the rapid development of quantum computers, optimizing the quantum implementations of symmetric-key ciphers, which constitute the primary components of the quantum oracles used in quantum attacks based on Grover and Simon's algorithms, has become an active topic in the cryptography community. In this field, a challenge is to construct quantum circuits that require the least amount of quantum resources. In this work, we aim to address the problem of constructing quantum circuits with the...
Boolean formula minimization is a notoriously hard problem that is known to be $\varSigma_2^P$-complete. Circuit minimization, typically studied in the context of a much broader subject known as synthesis and optimization of circuits, introduces another layer of complexity since ultimately those technology-independent epresentations (e.g., Boolean formulas and truth tables) has to be transformed into a netlist of cells of the target technology library. To manage those complexities, the...
We present a number of observations on TEA-3, a stream cipher used in TETRA radio networks that was kept secret until recently. While the same also holds for the six other TETRA encryption algorithms, we pick TEA-3 to start with, as (i) it is not obviously weakened as TEA-{1,4,7} but (ii) in contrast to TEA-2 it is approved for extra-European emergency service, and (iii) as already noted by [MBW23] the TEA-3 design surprisingly contains a non-bijective S-box. Most importantly, we show that...
This work investigates persistent fault analysis on ASCON cipher that has been recently standardized by NIST USA for lightweight cryptography applications. In persistent fault, the fault once injected through RowHammer injection techniques, exists in the system during the entire encryption phase. In this work, we propose a model to mount persistent fault analysis (PFA) on ASCON cipher. In the finalization round of the ASCON cipher, we identify that the fault-injected S-Box operation...
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
A new design strategy for ZK-friendly hash functions has emerged since the proposal of $\mathsf{Reinforced Concrete}$ at CCS 2022, which is based on the hybrid use of two types of nonlinear transforms: the composition of some small-scale lookup tables (e.g., 7-bit or 8-bit permutations) and simple power maps over $\mathbb{F}_p$. Following such a design strategy, some new ZK-friendly hash functions have been recently proposed, e.g., $\mathsf{Tip5}$, $\mathsf{Tip4}$, $\mathsf{Tip4}'$ and the...
The circulant twin column parity mixer (TCPM) is a type of mixing layer for the round function of cryptographic permutations designed by Hirch et al. at CRYPTO 2023. It has a bitwise differential branch number of 12 and a bitwise linear branch number of 4, which makes it competitive in applications where differential security is required. Hirch et al. gave a concrete instantiation of a permutation using such a mixing layer, named Gaston, and showed the best 3-round differential and linear...
In two recent papers, we introduced and studied the notion of $k$th-order sum-freedom of a vectorial function $F:\mathbb F_2^n\to \mathbb F_2^m$. This notion generalizes that of almost perfect nonlinearity (which corresponds to $k=2$) and has some relation with the resistance to integral attacks of those block ciphers using $F$ as a substitution box (S-box), by preventing the propagation of the division property of $k$-dimensional affine spaces. In the present paper, we show that this...
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC). In...
In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography. In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our...
Proving resistance to conventional attacks, e.g., differential, linear, and integral attacks, is essential for designing a secure symmetric-key cipher. Recent advances in automatic search and deep learning-based methods have made this time-consuming task relatively easy, yet concerns persist over expertise requirements and potential oversights. To overcome these concerns, Kimura et al. proposed neural network-based output prediction (NN) attacks, offering simplicity, generality, and reduced...
Recently, Picnic3 has introduced several alternative LowMC instances, which prompts the cryptanalysis competition for LowMC. In this paper, we provide new solutions to the competition with full S-box layers under single-data complexity. First, we present a new guess-and-determine attack framework that achieves the best trade-off in complexity, while effectively enhancing two algorithms applicable to 2-round LowMC cryptanalysis. Next, we present a new meet-in-the-middle attack framework for...
In recent years, formal verification has emerged as a crucial method for assessing security against Side-Channel attacks of masked implementations, owing to its remarkable versatility and high degree of automation. However, formal verification still faces technical bottlenecks in balancing accuracy and efficiency, thereby limiting its scalability. Former tools like maskVerif and CocoAlma are very efficient but they face accuracy issues when verifying schemes that utilize properties of...
The aim of an algebraic attack is to find the secret key by solving a collection of relations that describe the internal structure of a cipher for observations of plaintext/cipher-text pairs. Although algebraic attacks are addressed for cryptanalysis of block and stream ciphers, there is a limited understanding of the impact of algebraic representation of the cipher on the efficiency of solving the resulting collection of equations. In this paper, we investigate on how different S-box...
We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools...
In this paper we study the S-box known as Chi or \chi initially proposed by Daemen in 1995 and very widely used ever since in Keccak, Ascon, and many other. This type of ciphers is typically analyzed [in recent research] in terms of subspace trail attacks [TeDi19] and vector space invariants. An interesting question is then, when different spaces are mapped to each other by translations with a constant. In this paper we relax this fundamental question and we consider arbitrary sets of...
Over the last two decades, microarchitectural side channels have been the focus of a large body of research on the development of new attack techniques, exploiting them to attack various classes of targets and designing mitigations. One line of work focuses on increasing the speed of the attacks, achieving higher levels of temporal resolution that can allow attackers to learn finer-grained information. The most recent addition to this line of work is Prime+Scope [CCS '21], which only...
This paper presents a framework for evaluating the differential cryptanalysis resistance of a Feistel cipher that uses Ajtai SIS hash function as its S-box. We derive an upper bound on the maximum differential probability and analyze the S-box output bias using a generalized extreme value (GEV) model. Simulation results indicate that practical security is achieved with 16 rounds for a 32-bit block and six for a 128-bit block.
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography. Our implementations target theoretical and practical security against second-order power analysis attacks. First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness. The extension...
A transciphering framework, also known as hybrid homomorphic encryption, is a practical method of combining a homomorphic encryption~(HE) scheme with a symmetric cipher in the client-server model to reduce computational and communication overload on the client side. As a server homomorphically evaluates a symmetric cipher in this framework, new design rationales are required for ``HE-friendly'' ciphers that take into account the specific properties of the HE schemes. In this paper, we...
In recent years, quantum technology has been rapidly developed. As security analyses for symmetric ciphers continue to emerge, many require an evaluation of the resources needed for the quantum circuit implementation of the encryption algorithm. In this regard, we propose the quantum circuit decision problem, which requires us to determine whether there exists a quantum circuit for a given permutation f using M ancilla qubits and no more than K quantum gates within the circuit depth D....
In symmetric cryptography, vectorial Boolean functions over finite fields F2n derive strong S-boxes. To this end, the S-box should satisfy a list of tests to resist existing attacks, such as the differential, linear, boomerang, and variants. Several tables are employed to measure an S- box’s resistance, such as the difference distribution table (DDT) and the boomerang connectivity table (BCT). Following the boomerang attacks recently revisited in terms of the boomerang switch effect, with a...
The substitution box (S-box) is often used as the only nonlinear component in symmetric-key ciphers, leading to a significant impact on the implementation performance of ciphers in both classical and quantum application scenarios by S-box circuits. Taking the Pauli-X gate, the CNOT gate, and the Toffoli gate (i.e., the NCT gate set) as the underlying logic gates, this work investigates the quantum circuit implementation of S-boxes based on the SAT solver. Firstly, we propose encoding methods...
FUTURE is a recently proposed lightweight block cipher that achieved a remarkable hardware performance due to careful design decisions. FUTURE is an Advanced Encryption Standard (AES)-like Substitution-Permutation Network (SPN) with 10 rounds, whose round function consists of four components, i.e., SubCell, MixColumn, ShiftRow and AddRoundKey. Unlike AES, it is a 64-bit-size block cipher with a 128-bit secret key, and the state can be arranged into 16 cells. Therefore, the operations of...
Authenticated Encryption with Associated Data (AEAD) is a trend in applied cryptography because it combine confidentiality, integrity, and authentication into one algorithm and is more efficient than using block ciphers and hash functions separately. The Ascon algorithm, as the winner in both the CAESAR competition and the NIST LwC competition, will soon become the AEAD standard for protecting the Internet of Things and micro devices with limited computing resources. We propose a partial...
Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic...
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT...
Speculative out-of-order execution is a strategy of masking execution latency by allowing younger instructions to execute before older instructions. While originally considered to be innocuous, speculative out-of-order execution was brought into the spotlight with the 2018 publication of the Spectre and Meltdown attacks. These attacks demonstrated that microarchitectural side channels can leak sensitive data accessed by speculatively executed instructions that are not part of the normal...
We continue the study of $t$-wise independence of substitution-permutation networks (SPNs) initiated by the recent work of Liu, Tessaro, and Vaikuntanathan (CRYPTO 2021). Our key technical result shows that when the S-boxes are randomly and independently chosen and kept secret, an $r$-round SPN with input length $n = b \cdot k$ is $2^{-\Theta(n)}$-close to $t$-wise independent within $r = O(\min\{k, \log t\})$ rounds for any $t$ almost as large as $2^{b/2}$. Here, $b$ is the input length of...
This work investigates the security of the Ascon authenticated encryption scheme in the context of fault attacks, with a specific focus on Differential Fault Analysis (DFA). Motivated by the growing significance of lightweight cryptographic solutions, particularly Ascon, we explore potential vulnerabilities in its design using DFA. By employing a novel approach that combines faulty forgery in the decryption query under two distinct fault models, leveraging bit-flip faults in the first phase...
The linear layer of block ciphers plays an important role in their security. In particular, ciphers designed following the wide-trail strategy use the branch number of the linear layer to derive bounds on the probability of linear and differential trails. At FSE 2014, the LS-design construction was introduced as a simple and regular structure to design bitsliced block ciphers. It considers the internal state as a bit matrix, and applies alternatively an identical S-Box on all the columns,...
Fully homomorphic encryption (FHE) is an advanced cryptography technique to allow computations (i.e., addition and multiplication) over encrypted data. After years of effort, the performance of FHE has been significantly improved and it has moved from theory to practice. The transciphering framework is another important technique in FHE to address the issue of ciphertext expansion and reduce the client-side computational overhead. To apply the transciphering framework to the CKKS FHE scheme,...
This paper introduces a novel approach to enhancing cryp- tographic security. It proposes the use of one-time message sharing com- bined with Physically Unclonable Functions (PUF) to securely exchange keys and generate an S-subbyte-box for encryption. This innovative tech- nique aims to elevate the security standards of cryptographic applica- tions.
We propose a new method to encode the problems of optimizing S-box implementations into SAT problems. By considering the inputs and outputs of gates as Boolean functions, the fundamental idea of our method is representing the relationships between these inputs and outputs according to their algebraic normal forms. Based on this method, we present several encoding schemes for optimizing S-box implementations according to various criteria, such as multiplicative complexity, bitslice gate...
The partial sums cryptanalytic technique was introduced in 2000 by Ferguson et al., who used it to break 6-round AES with time complexity of $2^{52}$ S-box computations -- a record that has not been beaten ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial sums can be replaced by a technique based on the Fast Fourier Transform (FFT), leading to an attack with a comparable complexity. In this paper we show that the partial sums technique can be combined with an...
The algebraic degree of a vectorial Boolean function is one of the main parameters driving the cost of its hardware implementation. Thus, finding decompositions of functions into sequences of functions of lower algebraic degrees has been explored to reduce the cost of implementations. In this paper, we consider such decompositions of permutations over $\mathbb{F}_{2^n}$. We prove the existence of decompositions using quadratic and linear power permutations for all permutations when...
Masking is an effective countermeasure against side-channel attacks. It replaces every logic gate in a computation by a gadget that performs the operation over secret sharings of the circuit's variables. When masking is implemented in hardware, care should be taken to protect against leakage from glitches, which could otherwise undermine the security of masking. This is generally done by adding registers, which stop the propagation of glitches, but introduce additional latency and area cost....
Secure multi-party computation (MPC) enables multiple distrusting parties to compute a function while keeping their respective inputs private. In a threshold implementation of a symmetric primitive, e.g., of a block cipher, each party holds a share of the secret key or of the input block. The output block is computed without reconstructing the secret key. This enables the construction of distributed TPMs or transciphering for secure data transmission in/out of the MPC context. This paper...
Quantum computers hold the potential to solve problems that are intractable for classical computers, thereby driving increased interest in the development of new cryptanalytic ciphers. In NIST's post-quantum standardization process, the security categories are defined by the costs of quantum key search against AES. However, the cost estimates provided by Grassl et al. for the search are high. NIST has acknowledged that these initial classifications should be approached cautiously, since the...
Deploying cryptography on embedded systems requires security against physical attacks. At CHES 2019, M&M was proposed as a combined countermeasure applying masking against SCAs and information-theoretic MAC tags against FAs. In this paper, we show that one of the protected AES implementations in the M&M paper is vulnerable to a zero-value SIFA2-like attack. A practical attack is demonstrated on an ASIC board. We propose two versions of the attack: the first follows the SIFA approach to...
Data security and secrecy from unwanted applications are the subjects of the science known as cryptography. The advanced encryption standard algorithm is the most used and secure algorithm to encrypt data. The AES algorithm is based on the symmetric algorithm and uses a single key to encrypt and decrypt data. The AES algorithm uses 128 bits length of plain text with 128 bits, 192 bits, or 256 bits key size to encrypt data. Latin script uses ASCII codes, and a single byte represents each...
The analysis of real-life incidents has revealed that state-level efforts are made to camouflage the intentional flaws in the mathematical layer of an S-Box to exploit the information-theoretic properties, i.e., Kuznyechik. To extract and investigate the common features in the backdoored S-Box(es), this research thoroughly examines them from the perspective of 24 cryptanalytic attack vectors available in the open literature. We have debunked the earlier claims by the backdoor engineers that...
The substitution box (S-box) is an important nonlinear component in most symmetric cryptosystems and thus should have good properties. Its difference distribution table (DDT) and linear approximation table (LAT) affect the security of the cipher against differential and linear cryptanalysis. In most previous work, differential uniformity and linearity of an S-box are two primary cryptographic properties to impact the resistance against differential and linear attacks. In some cases, the...
Persistent fault analysis is a novel and efficient cryptanalysis method. The persistent fault attacks take advantage of a persistent fault injected in a non-volatile memory, then present on the device until the reboot of the device. Contrary to classical physical fault injection, where differential analysis can be performed, persistent fault analysis requires new analyses and dedicated countermeasures. Persistent fault analysis requires a persistent fault injected in the S-box such that the...
We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks, while keeping similar latency and area. The wider tweak input caters to both specific use cases and the design of modes of operation with higher security bounds. This is achieved through new key and tweak schedules, revised S-Box and linear layer choices, and a more comprehensive security analysis. QARMAv2 offers competitive...
ASCON, a lightweight permutation-based primitive, has been selected as NIST’s lightweight cryptography standard. ASCON-HASH is one of the hash functions provided by the cipher suite ASCON. At ToSC 2021, the collision attack on 2-round ASCON-HASH with time complexity 2^{103} was proposed. Due to its small rate, it is always required to utilize at least 2 message blocks to mount a collision attack because each message block is only of size 64 bits. This significantly increases the difficulty...
Masking is considered to be an essential defense mechanism against side-channel attacks, but it is challenging to be adopted for hardware cryptographic implementations, especially for high security orders. Recently, Knichel et al. proposed an automated tool called AGEMA that enables the generation of masked implementations in hardware for arbitrary security orders using composable gadgets. This accelerates the construction and practical application of masking schemes. This article proposes a...
Designing symmetric-key primitives for applications in Fully Homomorphic Encryption (FHE) has become important to address the issue of the ciphertext expansion. In such a context, cryptographic primitives with a low-AND-depth decryption circuit are desired. Consequently, quadratic nonlinear functions are commonly used in these primitives, including the well-known $\chi$ function over $\mathbb{F}_2^n$ and the power map over a large finite field $\mathbb{F}_{p^n}$. In this work, we study the...
Recent constructions of (tweakable) block ciphers with an embedded cryptographic backdoor relied on the existence of probability-one differentials or perfect (non-)linear approximations over a reduced-round version of the primitive. In this work, we study how the existence of probability-one differentials or perfect linear approximations over two rounds of a substitution-permutation network can be avoided by design. More precisely, we develop criteria on the s-box and the linear layer that...
Plaintext structures are a commonly-used technique for improving differential cryptanalysis. Generally, there are two types of plaintext structures: multiple-differential structures and truncated-differential structures. Both types have been widely used in cryptanalysis of S-box-based ciphers while for SPECK, an Addition-Rotation-XOR (ARX) cipher, the truncated-differential structure has not been used so far. In this paper, we investigate the properties of modular addition and propose a...
Arithmetization-Oriented primitives are the building block of advanced cryptographic protocols such as Zero-Knowledge proof systems. One approach to designing such primitives is the HADES design strategy which aims to provide an efficient way to instantiate generalizing substitution-permutation networks to include partial S-box rounds. A notable instance of HADES, introduced by Grassi \emph{et al.} at USENIX Security '21, is Poseidon. Because of its impressive efficiency and low arithmetic...
An important tool that has contributed to collision search on Keccak/SHA3 is the Target Difference Algorithm (TDA) and its inter- nal differential counterpart Target Internal Difference Algorithm (TIDA), which were introduced by Dinur et al. in separate works in FSE 2012 and 2013 respectively. These algorithms provide an ingenious way of extend- ing the differential trails by one round and exploiting the affine subspaces generated due to the low algebraic degree of the Keccak S-box....
Over the years, a large number of attacks have been proposed against substitution boxes used in symmetric ciphers such as differential attacks, linear attacks, algebraic attacks, etc. In the Advanced Encryption Standard (AES) Block cipher, the substitution box is the only nonlinear component and thus it holds the weight of the cipher. This basically means that if an attacker is able to mount a successful attack on the substitution box of AES, the cipher is compromised. This research work...
Grover’s algorithm is a quantum searching algorithm that poses a threat to symmetric cryptography. Due to their smaller key sizes, lightweight cryptographic algorithms such as Simplified-AES face a much more immediate threat from Grover’s algorithm than traditional cryptographic algorithms. By analyzing different S-boxes, it was discovered that the S-box 946C753AE8FBD012 may be more quantum resistant than the S-box that Simplified-AES uses, 94ABD1856203CEF7. In addition to this, 16x4 S-boxes...
A central problem in cryptanalysis is to find all the significant deviations from randomness in a given $n$-bit cryptographic primitive. When $n$ is small (e.g., an $8$-bit S-box), this is easy to do, but for large $n$, the only practical way to find such statistical properties was to exploit the internal structure of the primitive and to speed up the search with a variety of heuristic rules of thumb. However, such bottom-up techniques can miss many properties, especially in cryptosystems...
In this paper, we present the ``DORCIS'' tool, which finds depth-optimized quantum circuit implementations for arbitrary 3- and 4-bit S-boxes. It follows up from the previous LIGHTER-R tool (which only works for 4-bit S-boxes) by extending it in multiple ways. LIGHTER-R only deals at the top level (i.e., Toffoli gates), whereas DORCIS takes quantum decomposition (i.e., Clifford + T gates) into account. Further, DORCIS optimizes for quantum depth and T depth. We match, if not surpass, other...
This work researches the implementation of the AES family with Pauli-X gates, CNOT gates and Toffoli gates as the underlying quantum logic gate set. First, the properties of quantum circuits are investigated, as well as the influence of Pauli-X gates, CNOT gates and Toffoli gates on the performance of the circuits constructed with those gates. Based on these properties and the observations on the hardware circuits built by Boyar \emph{et al.} and Zou \emph{et al.}, it is possible to...
The Mixed Integer Linear Programming (MILP) technique has been widely applied in the realm of symmetric-key cryptanalysis. In this paper, we propose a new bitwise breakdown MILP modeling strategy for describing the linear propagation rules of modular addition-based operations. We apply such new techniques to cryptanalysis of the SNOW stream cipher family and find new linear masks: we use the MILP model to find many linear mask candidates among which the best ones are identified with...
The lightweight block ciphers ULC and LICID are introduced by Sliman et al. (2021) and Omrani et al. (2019) respectively. These ciphers are based on substitution permutation network structure. ULC is designed using the ULM method to increase efficiency, memory usage, and security. On the other hand, LICID is specifically designed for image data. In the ULC paper, the authors have given a full-round differential characteristic with a probability of $2^{-80}$. In the LICID paper, the authors...
Optimizing the quantum circuit for implementing Advanced Encryption Standard (AES) is crucial for estimating the necessary resources in attacking AES by Grover algorithm. Previous studies have reduced the number of qubits required for the quantum circuits of AES-128/-192/-256 from 984/1112/1336 to 270/334/398, which is close to the optimal value of 256/320/384. It becomes a challenging task to further optimize them. Aiming at this task, we find a method about how the quantum circuit of AES...
A Feistel Network (FN) based block cipher relies on a Substitution Box (S-Box) for achieving the non-linearity. S-Box is carefully designed to achieve optimal cryptographic security bounds. The research of the last three decades shows that considerable efforts are being made on the mathematical design of an S-Box. To import the exact cryptographic profile of an S-Box, the designer focuses on the Affine Equivalent (AE) or Extended Affine (EA) equivalent S-Box. In this research, we argue that...
The double boomerang connectivity table (DBCT) is a new table proposed recently to capture the behavior of two consecutive S-boxes in boomerang attacks. In this paper, we observe an interesting property of DBCT of S-box that the ladder switch and the S-box switch happen in most cases for two continuous S-boxes, and for some S-boxes only S-box switch and ladder switch are possible. This property implies an additional criterion for S-boxes to resist the boomerang attacks and provides as well a...
Various systematic modifications of vectorial Boolean functions have been used for finding new previously unknown classes of S-boxes with good or even optimal differential uniformity and nonlinearity. In this paper, a new general modification method is given that preserves the bijectivity property of the function in case the inverse of the function admits a linear structure. A previously known construction of such a modification based on bijective Gold functions in odd dimension is a...
Masking of S-boxes using lookup tables is an effective countermeasure to thwart side-channel attacks on block ciphers implemented in software. At first and second orders, the Table-based Masking (TBM) schemes can be very efficient and even faster than circuit-based masking schemes. Ever since the customised second-order TBM schemes were proposed, the focus has been on designing and optimising Higher-Order Table-based Masking (HO-TBM) schemes that facilitate masking at arbitrary order. One of...
Garbling schemes are vital primitives for privacy-preserving protocols and secure two-party computation. In projective garbling schemes, $n$ values are assigned to each wire in the circuit. Current state-of-the-art schemes project two values. This paper presents a projective garbling scheme that assigns $2^n$ values to wires in a circuit comprising XOR and unary projection gates. A generalization of FreeXOR allows the XOR of wires with $2^n$ values to be very efficient. We then analyze the...
In this paper, we introduce a second-order masking of the AES using the minimal number of shares and a total of 1268 bits of randomness including the sharing of the plaintext and key. The masking of the S-box is based on the tower field decomposition of the inversion over bytes where the changing of the guards technique is used in order to re-mask the middle branch of the decomposition. The sharing of the S-box is carefully crafted such that it achieves first-order probing security without...
The efficiency of constant-time SM4 implementation has been lagging behind that of AES for most internet traffic and applicable data encryption scenarios. The best performance before our works was 3.77 cpb for x86 platform (AESNI + AVX2), and 8.62 cpb for Arm platform (NEON). Meanwhile the state of art constant-time AES implementation could reach 0.63 cpb. Dedicated SM4 instruction set extensions like those optionally available in Armv8.2, could achieve comparable cpb to AES. But they are...
Threshold implementation is a method based on secret sharing to secure cryptographic ciphers (and in particular S-boxes) against differential power analysis side-channel attacks which was proposed by Nikova, Rechberger, and Rijmen in 2006. Until now, threshold implementations were only constructed for specific types of functions and some small S-boxes, but no generic construction was ever presented. In this paper, we present the first universal threshold implementation with $t+2$ shares that...
The security of the post-quantum signature scheme Picnic is highly related to the difficulty of recovering the secret key of LowMC from a single plaintext-ciphertext pair. Since Picnic is one of the alternate third-round candidates in NIST post-quantum cryptography standardization process, it has become urgent and important to evaluate the security of LowMC in the Picnic setting. The best attacks on LowMC with full S-box layers used in Picnic3 were achieved with Dinur's algorithm. For LowMC...
Advanced cryptographic protocols such as Zero-knowledge (ZK) proofs of knowledge, widely used in cryptocurrency applications such as Zcash, Monero, Filecoin, Tezos, Topos, demand new cryptographic hash functions that are efficient not only over the binary field $\mathbb{F}_2$, but also over large fields of prime characteristic $\mathbb{F}_p$. This need has been acknowledged by the wider community and new so-called Arithmetization-Oriented (AO) hash functions have been proposed, e.g....
We propose a new AEAD mode of operation for an efficient countermeasure against side-channel attacks. Our mode achieves the smallest memory with high-order masking, by minimizing the states that are duplicated in masking. An $s$-bit key-dependent state is necessary for achieving $s$-bit security, and the conventional schemes always protect the entire $s$ bits with masking. We reduce the protected state size by introducing an unprotected state in the key-dependent state: we protect only a...
The protection of confidential information is a global issue and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on "Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a...
The performance of Side-Channel Attacks (SCAs) decays rapidly when considering more sub-keys, making the full-key recovery a very challenging problem. Limited to independent collision information utilization, collision attacks establish the relationship among sub-keys but do not significantly slow down this trend. To solve it, we first exploit the samples from the previously attacked S-boxes to assist attacks on the targeted S-box under an assumption that similar leakage occurs in program...
In this paper, we focus on constructing an automatic search model that greatly improves efficiency with little loss of accuracy and obtains some better results in the construction of integral distinguishers for block ciphers. First, we define a new notion named BDPT Trail, which divides BDPT propagation into three parts: the division trail for K, division trail for L, and Key-Xor operation. Secondly, we improve the insufficiency of the previous methods of calculating division trails and...
The LowMC family of block ciphers was first proposed by Albrecht et al. in [ARS+15], specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of...
Quantum computing is considered one of the next big leaps in computational science. While a fully functional quantum computer is still in the future, there is an ever-growing need to evaluate the security of the symmetric key ciphers against a potent quantum adversary. Keeping this in mind, our work explores the key recovery attack using the Grover's search on the three variants of AES (-128, -192, -256). We develop a pool of 26 implementations per AES variant (thus totaling 78), by taking...
The significant progress in the development of quantum computers has made the study of cryptanalysis based on quantum computing an active topic. To accurately estimate the resources required to carry out quantum attacks, the involved quantum algorithms have to be synthesized into quantum circuits with basic quantum gates. In this work, we present several generic synthesis and optimization techniques for circuits implementing the quantum oracles of iterative symmetric-key ciphers that are...
This paper reports new software implementation results for the Skinny-128 tweakable block ciphers on various SIMD architectures. More precisely, we introduce a decomposition of the 8-bit S-box into four 4-bit S-boxes in order to take advantage of vector permute instructions, leading to significant performance improvements over previous constant-time implementations. Since our approach is of particular interest when Skinny-128 is used in sequential modes of operation, we also report how it...
Research on the design of masked cryptographic hardware circuits in the past has mostly focused on reducing area and randomness requirements. However, many embedded devices like smart cards and IoT nodes also need to meet certain performance criteria, which is why the latency of masked hardware circuits also represents an important metric for many practical applications. The root cause of latency in masked hardware circuits is the need for additional register stages that synchronize the...
In this paper we present our solution to the CHES Challenge 2020, the task of which it was to break masked hardware respective software implementations of the lightweight cipher Clyde by means of side-channel analysis. We target the secret cipher state after processing of the first $S$-box layer. Using the provided trace data we obtain a strongly biased posterior distribution for the secret-shared cipher state at the targeted point; this enables us to see exploitable biases even before...
With the enormous increase in portable cryptographic devices, physical attacks are becoming similarly popular. One of the most common physical attacks is Side-Channel Analysis (SCA), extremely dangerous due to its non-invasive nature. Threshold Implementations (TI) was proposed as the first countermeasure to provide provable security in masked hardware implementations. While most works on hardware masking are focused on optimizing the area requirements, with the newer and smaller...
The Internet of Things (IoT) has brought new ways for humans and machines to communicate with each other over the internet. Though sensor-driven devices have largely eased our everyday lives, most IoT infrastructures have been suffering from security challenges. Since the emergence of IoT, lightweight block ciphers have been a better option for intelligent and sensor-based applications. When public-key infrastructure dominates worldwide, the symmetric key encipherment such as Advanced...
GIFT-64 is a 64-bit block cipher with a 128-bit key that is more lightweight than PRESENT. This paper provides a detailed analysis of GIFT-64 against differential and linear attacks. Our work complements automatic search methods for the best differential and linear characteristics with a careful manual analysis. This hybrid approach leads to new insights. In the differential setting, we theoretically explain the existence of differential characteristics with two active S-boxes per round and...
One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework for building block ciphers from small components, such as cryptographic $S$-boxes, and then argue why iterating such small components for sufficiently many rounds would yield a secure construction. Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional security proofs cannot get security beyond $2^{-n}$, where $n$ is the size of the corresponding...
This work investigates a generic way of combining two very effective and well-studied cryptanalytic tools, proposed almost 18 years apart, namely the boomerang attack introduced by Wagner in FSE 1999 and the yoyo attack by Ronjom et. al. in Asiacrypt 2017. In doing so, the s-box switch and ladder switch techniques are leveraged to embed a yoyo trail inside a boomerang trail. As an immediate application, a 6-round key recovery attack on AES-128 is mounted with time complexity of $2^{78}$. A...
Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the number of multiplications over $\mathbb{F}_p$ for a large prime $p$ have been recently proposed in the literature. This goal is often achieved by instantiating the non-linear layer via power maps $x\mapsto x^d$. In this paper, we start an analysis of new non-linear...
The area is one of the most important criteria for an S-box in hardware implementation when designing lightweight cryptography primitives. The area can be well estimated by the number of gate equivalent (GE). However, to our best knowledge, there is no efficient method to search for an S-box implementation with the least GE. Previous approaches can be classified into two categories, one is a heuristic that aims at finding an implementation with a satisfying but not necessarily the smallest...
The SM4 block cipher is a Chinese national standard and an ISO international standard. Since white-box cryptography has many real-life applications nowadays, a few white-box implementations of SM4 has been proposed, among which a type of constructions is dominated, that uses a linear or affine diagonal block encoding to protect the original three 32-bit branches entering a round function and uses its inverse as the input encoding to the S-box layer. In this paper, we analyse the security of...
In order to provide benefits in the areas of fully homomorphic encryption (FHE), multi-party computation (MPC), post-quantum signature schemes, or efficient masked implementations for side-channel resistance, reducing the number of multiplications has become a quite popular trend for the symmetric cryptographic primitive designs. With an aggressive design strategy exploiting the extremely simple and low-degree S-box and low number of rounds, Pyjamask, the fundamental block cipher of the AEAD...
We revisit designing AND-RX block ciphers, that is, the designs assembled with the most fundamental binary operations---AND, Rotation and XOR operations and do not rely on existing units. Likely, the most popular representative is the NSA cipher \texttt{SIMON}, which remains one of the most efficient designs, but suffers from difficulty in security evaluation. As our main contribution, we propose \texttt{SAND}, a new family of lightweight AND-RX block ciphers. To overcome the difficulty...