Dates are inconsistent

Dates are inconsistent

523 results sorted by ID

2025/593 (PDF) Last updated: 2025-04-01
Oblivious Immutable Memory
Ananya Appan, David Heath
Cryptographic protocols

An oblivious RAM (ORAM) compiler is a cryptographic tool that transforms a program $P$ running in time $n$ into an equivalent program $\tilde P$, with the property that the sequence of memory addresses read from/written to by $\tilde P$ reveal nothing about $\tilde P$'s data (Goldreich and Ostrovsky, JACM'96). An efficient ORAM compiler $C$ should achieve some combination of the following: - Low bandwidth blow-up: $\tilde P$ should read/write a similar amount of data as does P. - Low...

2025/567 (PDF) Last updated: 2025-03-28
Starfish: A high throughput BFT protocol on uncertified DAG with linear amortized communication complexity
Nikita Polyanskii, Sebastian Mueller, Ilya Vorobyev
Cryptographic protocols

Current DAG-based BFT protocols face a critical trade-off: certified DAGs provide strong security guarantees but require additional rounds of communication to progress the DAG construction, while uncertified DAGs achieve lower latency at the cost of either reduced resistance to adversarial behaviour or higher communication costs. This paper presents Starfish, a partially synchronous DAG-based BFT protocol that achieves the security properties of certified DAGs, the efficiency of...

2025/551 (PDF) Last updated: 2025-03-25
ANARKey: A New Approach to (Socially) Recover Keys
Aniket Kate, Pratyay Mukherjee, Hamza Saleem, Pratik Sarkar, Bhaskar Roberts
Cryptographic protocols

In a social key recovery scheme, users back up their secret keys (typically using Shamir's secret sharing) with their social connections, known as a set of guardians. This places a heavy burden on the guardians, as they must manage their shares both securely and reliably. Finding and managing such a set of guardians may not be easy, especially when the consequences of losing a key are significant. We take an alternative approach of social recovery within a community, where each member...

2025/478 (PDF) Last updated: 2025-03-13
Attacking Single-Cycle Ciphers on Modern FPGAs featuring Explainable Deep Learning
Mustafa Khairallah, Trevor Yap
Implementation

In this paper, we revisit the question of key recovery using side-channel analysis for unrolled, single-cycle block ciphers. In particular, we study the Princev2 cipher. While it has been shown vulnerable in multiple previous studies, those studies were performed on side-channel friendly ASICs or older FPGAs (e.g., Xilinx Virtex II on the SASEBO-G board), and using mostly expensive equipment. We start with the goal of exploiting a cheap modern FPGA and board using power traces from a cheap...

2025/424 (PDF) Last updated: 2025-03-05
Matchmaker: Fast Secure Inference across Deployment Scenarios
Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, Arkaprava Basu
Cryptographic protocols

Secure Two-Party Computation (2PC) enables secure inference with cryptographic guarantees that protect the privacy of the model owner and client. However, it adds significant performance overhead. In this work, we make 2PC-based secure inference efficient while considering important deployment scenarios. We observe that the hitherto unconsidered latency of fetching keys from storage significantly impacts performance, as does network speed. We design a Linear Secret Sharing (LSS)-based...

2025/350 (PDF) Last updated: 2025-02-25
Bootstrapping with RMFE for Fully Homomorphic Encryption
Khin Mi Mi Aung, Enhui Lim, Jun Jie Sim, Benjamin Hong Meng Tan, Huaxiong Wang
Applications

There is a heavy preference towards instantiating BGV and BFV homomorphic encryption schemes where the cyclotomic order $m$ is a power of two, as this admits highly efficient fast Fourier transformations. Field Instruction Multiple Data (FIMD) was introduced to increase packing capacity in the case of small primes and improve amortised performance, using reverse multiplication-friendly embeddings (RMFEs) to encode more data into each SIMD slot. However, FIMD currently does not admit...

2025/346 (PDF) Last updated: 2025-02-25
Homomorphic Encryption for Large Integers from Nested Residue Number Systems
Dan Boneh, Jaehyung Kim
Public-key cryptography

Existing fully homomorphic encryption (FHE) schemes primarily support a plaintext space defined over a relatively small prime. However, in some important applications of FHE one needs arithmetic over a large prescribed prime. In this paper we construct a new FHE system that is specifically designed for this purpose. Our system composes three layers of residue systems to enable much better performance than was previously possible. Our experiments show that for arithmetic modulo a 256-bit...

2025/315 (PDF) Last updated: 2025-02-21
Cryptanalysis of Full SCARF
Antonio Flórez-Gutiérrez, Eran Lambooij, Gaëtan Leurent, Håvard Raddum, Tyge Tiessen, Michiel Verbauwhede
Secret-key cryptography

SCARF is a tweakable block cipher dedicated to cache address randomization, proposed at the USENIX Security conference. It has a 10-bit block, 48-bit tweak, and 240-bit key. SCARF is aggressively optimized to meet the harsh latency constraints of cache address randomization, and uses a dedicated model for its security claim. The full version of SCARF has 8 rounds, and its designers claim security up to $2^{40}$ queries and $2^{80}$ computations. In this work we present a distinguisher...

2025/308 (PDF) Last updated: 2025-02-20
ChiLow and ChiChi: New Constructions for Code Encryption
Yanis Belkheyar, Patrick Derbez, Shibam Ghosh, Gregor Leander, Silvia Mella, Léo Perrin, Shahram Rasoolzadeh, Lukas Stennes, Siwei Sun, Gilles Van Assche, Damian Vizár
Secret-key cryptography

We study the problem of embedded code encryption, i.e., encryption for binary software code for a secure microcontroller that is stored in an insecure external memory. As every single instruction must be decrypted before it can be executed, this scenario requires an extremely low latency decryption. We present a formal treatment of embedded code encryption security definitions, propose three constructions, namely ACE1, ACE2 and ACE3, and analyze their security. Further, we present ChiLow, a...

2025/218 (PDF) Last updated: 2025-02-14
LSM Trees in Adversarial Environments
Hayder Tirmazi
Applications

The Log Structured Merge (LSM) Tree is a popular choice for key-value stores that focus on optimized write throughput while maintaining performant, production-ready read latencies. To optimize read performance, LSM stores rely on a probabilistic data structure called the Bloom Filter (BF). In this paper, we focus on adversarial workloads that lead to a sharp degradation in read performance by impacting the accuracy of BFs used within the LSM store. Our evaluation shows up to $800\%$ increase...

2025/180 (PDF) Last updated: 2025-02-07
On the Atomicity and Efficiency of Blockchain Payment Channels
Di Wu, Shoupeng Ren, Yuman Bai, Lipeng He, Jian Liu, Wu Wen, Kui Ren, Chun Chen
Applications

Payment channels have emerged as a promising solution to address the performance limitations of cryptocurrencies payments, enabling efficient off-chain transactions while maintaining security guarantees. However, existing payment channel protocols, including the widely-deployed Lightning Network and the state-of-the-art Sleepy Channels, suffer from a fundamental vulnerability: non-atomic state transitions create race conditions that can lead to unexpected financial losses. We first formalize...

2025/176 (PDF) Last updated: 2025-02-05
HyperLoop: Rationally secure efficient cross-chain bridge
Aniket Kate, Easwar Vivek Mangipudi, Charan Nomula, Raghavendra Ramesh, Athina Terzoglou, Joshua Tobkin
Cryptographic protocols

Cross-chain bridges, realizing the transfer of information and assets between blockchains, form the core of blockchain interoperability solutions. Most existing bridge networks are modeled in an honest-malicious setting, where the bridge nodes are either honest or malicious. Rationality allows the nodes to deviate from the protocol arbitrarily for an economic incentive. In this work, we present HyperLoop, an efficient cross-chain multi-signature bridge and prove that it is safe and live...

2025/163 (PDF) Last updated: 2025-02-14
Bootstrapping (T)FHE Ciphertexts via Automorphisms: Closing the Gap Between Binary and Gaussian Keys
Olivier Bernard, Marc Joye
Implementation

The GINX method in TFHE enables low-latency ciphertext bootstrapping with relatively small bootstrapping keys, but is limited to binary or ternary key distributions. In contrast, the AP method supports arbitrary key distributions, however at the cost of significantly large bootstrapping keys. Building on AP, automorphism-based methods (LMK⁺, EUROCRYPT 2023) achieve smaller keys, though each automorphism application necessitates a key switch, introducing computational overhead and...

2025/149 (PDF) Last updated: 2025-01-30
Practical Asynchronous Distributed Key Reconfiguration and Its Applications
Hanwen Feng, Yingzi Gao, Yuan Lu, Qiang Tang, Jing Xu
Cryptographic protocols

In this paper, we study practical constructions of asynchronous distributed key reconfiguration ($\mathsf{ADKR}$), which enables an asynchronous fault-tolerant system with an existing threshold cryptosystem to efficiently generate a new threshold cryptosystem for a reconfigured set of participants. While existing asynchronous distributed threshold key generation ($\mathsf{ADKG}$) protocols theoretically solve $\mathsf{ADKR}$, they fail to deliver satisfactory scalability due to cubic...

2025/134 (PDF) Last updated: 2025-04-03
TockOwl: Asynchronous Consensus with Fault and Network Adaptability
Minghang Li, Qianhong Wu, Zhipeng Wang, Bo Qin, Bohang Wei, Hang Ruan, Shihong Xiong, Zhenyang Ding
Cryptographic protocols

BFT protocols usually have a waterfall-like degradation in performance in the face of crash faults. Some BFT protocols may not experience sudden performance degradation under crash faults. They achieve this at the expense of increased communication and round complexity in fault-free scenarios. In a nutshell, existing protocols lack the adaptability needed to perform optimally under varying conditions. We propose TockOwl, the first asynchronous consensus protocol with fault adaptability....

2025/117 (PDF) Last updated: 2025-02-03
Post-Quantum Online/Offline Signatures
Martin R. Albrecht, Nicolas Gama, James Howe, Anand Kumar Narayanan
Public-key cryptography

Post-quantum signatures have high costs compared to RSA and ECDSA, in particular for smart cards. A line of work originating from Even, Goldreich, and Micali (CRYPTO'89) aimed to reduce digital signature latency by splitting up signing into an online and offline phase. The online/offline paradigm combines an ordinary long-term signature scheme with a fast, generally one-time, signature scheme. We reconsider this paradigm in the context of lattice-based post-quantum signatures in the GPV...

2025/103 (PDF) Last updated: 2025-01-22
Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes
Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu, Zhiyu Zhang
Implementation

Boolean formula minimization is a notoriously hard problem that is known to be $\varSigma_2^P$-complete. Circuit minimization, typically studied in the context of a much broader subject known as synthesis and optimization of circuits, introduces another layer of complexity since ultimately those technology-independent epresentations (e.g., Boolean formulas and truth tables) has to be transformed into a netlist of cells of the target technology library. To manage those complexities, the...

2025/083 (PDF) Last updated: 2025-03-04
Recover from Excessive Faults in Partially-Synchronous BFT SMR
Tiantian Gong, Gustavo Franco Camilo, Kartik Nayak, Andrew Lewis-Pye, Aniket Kate
Cryptographic protocols

Byzantine fault-tolerant (BFT) state machine replication (SMR) protocols form the basis of modern blockchains as they maintain a consistent state across all blockchain nodes while tolerating a bounded number of Byzantine faults. We analyze BFT SMR in the excessive fault setting where the actual number of Byzantine faults surpasses a protocol's tolerance. We start by devising the very first repair algorithm for linearly chained and quorum-based partially synchronous SMR to recover from...

2025/072 (PDF) Last updated: 2025-01-16
PSMT: Private Segmented Membership Test for Distributed Record Linkage
Nirajan Koirala, Jonathan Takeshita, Jeremy Stevens, Sam Martin, Taeho Jung
Cryptographic protocols

In various real-world situations, a client may need to verify whether specific data elements they possess are part of a set segmented among numerous data holders. To maintain user privacy, it’s essential that both the client’s data elements and the data holders’ sets remain encrypted throughout the process. Existing approaches like Private Set Intersection (PSI), Multi-Party PSI (MPSI), Private Segmented Membership Test (PSMT), and Oblivious RAM (ORAM) face challenges in these...

2025/067 (PDF) Last updated: 2025-01-16
Constant latency and finality for dynamically available DAG
Hans Schmiedel, Runchao Han, Qiang Tang, Ron Steinfeld, Jiangshan Yu
Cryptographic protocols

Directed Acyclic Graph (DAG) based protocols have shown great promise to improve the performance of blockchains. The CAP theorem shows that it is impossible to have a single system that achieves both liveness (known as dynamic availability) and safety under network partition.This paper explores two types of DAG-based protocols prioritizing liveness or safety, named structured dissemination and Graded Common Prefix (GCP), respectively. For the former, we introduce the first...

2025/056 (PDF) Last updated: 2025-02-06
Partial-guess, Pre-sieve, Greedy-search - New Unified Key Recovery Framework of Impossible Boomerang Attacks: Full-round Attack on ARADI
Xichao Hu, Lin Jiao
Attacks and cryptanalysis

The impossible boomerang attack is a very powerful attack, and the existing results show that it is more effective than the impossible differential attack in the related-key scenario. However, several limitations persist in the current key recovery process: the division of pre-guess keys is rather coarse; the details of S-boxes are ignored in the differential propagation; the complexity estimation and the key guessing order's determination are relatively rough and primitive. These are the...

2025/048 (PDF) Last updated: 2025-01-13
ABLE: Optimizing Mixed Arithmetic and Boolean Garbled Circuit
Jianqiao Cambridge Mo, Brandon Reagen
Implementation

Privacy and security have become critical priorities in many scenarios. Privacy-preserving computation (PPC) is a powerful solution that allows functions to be computed directly on encrypted data. Garbled circuit (GC) is a key PPC technology that enables secure, confidential computing. GC comes in two forms: Boolean GC supports all operations by expressing functions as logic circuits; arithmetic GC is a newer technique to efficiently compute a set of arithmetic operations like addition and...

2025/016 (PDF) Last updated: 2025-01-04
Dynamically Available Common Subset
Yuval Efron, Ertem Nusret Tas
Cryptographic protocols

Internet-scale consensus protocols used by blockchains are designed to remain operational in the presence of unexpected temporary crash faults (the so-called sleepy model of consensus) -- a critical feature for the latency-sensitive financial applications running on these systems. However, their leader-based architecture, where a single block proposer is responsible for creating the block at each height, makes them vulnerable to short-term censorship attacks, in which the proposers profit...

2024/2097 (PDF) Last updated: 2024-12-31
NMFT: A Copyrighted Data Trading Protocol based on NFT and AI-powered Merkle Feature Tree
Dongming Zhang, Lei Xie, Yu Tao
Cryptographic protocols

With the rapid growth of blockchain-based Non-Fungible Tokens (NFTs), data trading has evolved to incorporate NFTs for ownership verification. However, the NFT ecosystem faces significant challenges in copyright protection, particularly when malicious buyers slightly modify the purchased data and re-mint it as a new NFT, infringing upon the original owner's rights. In this paper, we propose a copyright-preserving data trading protocol to address this challenge. First, we introduce the...

2024/2057 (PDF) Last updated: 2024-12-20
Leveraging remote attestation APIs for secure image sharing in messaging apps
Joel Samper, Bernardo Ferreira
Applications

Sensitive pictures such as passport photos and nudes are commonly shared through mobile chat applications. One popular strategy for the privacy protection of this material is to use ephemeral messaging features, such as the view once snaps in Snapchat. However, design limitations and implementation bugs in messaging apps may allow attackers to bypass the restrictions imposed by those features on the received material. One way by which attackers may accomplish so is by tampering with the...

2024/2048 (PDF) Last updated: 2025-03-12
TinyLabels: How to Compress Garbled Circuit Input Labels, Efficiently
Marian Dietz, Hanjun Li, Huijia Lin
Foundations

Garbled circuits are a foundational primitive in both theory and practice of cryptography. Given $(\hat{C}, K[x])$, where $\hat{C}$ is the garbling of a circuit C and $K[x] = \{K[i, x_i]\}$ are the input labels for an input $x$, anyone can recover $C(x)$, but nothing else about the input $x$. Most research efforts focus on minimizing the size of the garbled circuit $\hat{C}$. In contrast, the work by Applebaum, Ishai, Kushilevitz, and Waters (CRYPTO' 13) initiated the study of minimizing the...

2024/2033 (PDF) Last updated: 2024-12-17
General Practical Cryptanalysis of the Sum of Round-Reduced Block Ciphers and ZIP-AES
Antonio Flórez-Gutiérrez, Lorenzo Grassi, Gregor Leander, Ferdinand Sibleyras, Yosuke Todo
Secret-key cryptography

We introduce a new approach between classical security proofs of modes of operation and dedicated security analysis for known cryptanalysis families: General Practical Cryptanalysis. This allows us to analyze generically the security of the sum of two keyed permutations against known attacks. In many cases (of course, not all), we show that the security of the sum is strongly linked to that of the composition of the two permutations. This enables the construction of beyond-birthday bound...

2024/2027 (PDF) Last updated: 2024-12-14
Impact Tracing: Identifying the Culprit of Misinformation in Encrypted Messaging Systems
Zhongming Wang, Tao Xiang, Xiaoguo Li, Biwen Chen, Guomin Yang, Chuan Ma, Robert H. Deng
Applications

Encrypted messaging systems obstruct content moderation, although they provide end-to-end security. As a result, misinformation proliferates in these systems, thereby exacerbating online hate and harassment. The paradigm of ``Reporting-then-Tracing" shows great potential in mitigating the spread of misinformation. For instance, message traceback (CCS'19) traces all the dissemination paths of a message, while source tracing (CCS'21) traces its originator. However, message traceback lacks...

2024/2021 (PDF) Last updated: 2024-12-13
PrivQuant: Communication-Efficient Private Inference with Quantized Network/Protocol Co-Optimization
Tianshi Xu, Shuzhang Zhong, Wenxuan Zeng, Runsheng Wang, Meng Li
Applications

Private deep neural network (DNN) inference based on secure two-party computation (2PC) enables secure privacy protection for both the server and the client. However, existing secure 2PC frameworks suffer from a high inference latency due to enormous communication. As the communication of both linear and non-linear DNN layers reduces with the bit widths of weight and activation, in this paper, we propose PrivQuant, a framework that jointly optimizes the 2PC-based quantized inference...

2024/2011 (PDF) Last updated: 2024-12-12
Honest-Majority Threshold ECDSA with Batch Generation of Key-Independent Presignatures
Jonathan Katz, Antoine Urban
Cryptographic protocols

Several protocols have been proposed recently for threshold ECDSA signatures, mostly in the dishonest-majority setting. Yet in so-called key-management networks, where a fixed set of servers share a large number of keys on behalf of multiple users, it may be reasonable to assume that a majority of the servers remain uncompromised, and in that case there may be several advantages to using an honest-majority protocol. With this in mind, we describe an efficient protocol for honest-majority...

2024/2008 (PDF) Last updated: 2024-12-12
PrivCirNet: Efficient Private Inference via Block Circulant Transformation
Tianshi Xu, Lemeng Wu, Runsheng Wang, Meng Li
Applications

Homomorphic encryption (HE)-based deep neural network (DNN) inference protects data and model privacy but suffers from significant computation overhead. We observe transforming the DNN weights into circulant matrices converts general matrix-vector multiplications into HE-friendly 1-dimensional convolutions, drastically reducing the HE computation cost. Hence, in this paper, we propose PrivCirNet, a protocol/network co-optimization framework based on block circulant transformation. At the...

2024/1996 (PDF) Last updated: 2025-01-10
A Framework for Generating S-Box Circuits with Boyar-Peralta Algorithm-Based Heuristics, and Its Applications to AES, SNOW3G, and Saturnin
Yongjin Jeon, Seungjun Baek, Giyoon Kim, Jongsung Kim
Secret-key cryptography

In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...

2024/1976 (PDF) Last updated: 2024-12-06
HI-CKKS: Is High-Throughput Neglected? Reimagining CKKS Efficiency with Parallelism
Fuyuan Chen, Jiankuo Dong, Xiaoyu Hu, Zhenjiang Dong, Wangchen Dai, Jingqiang Lin, Fu Xiao
Implementation

The proliferation of data outsourcing and cloud services has heightened privacy vulnerabilities. CKKS, among the most prominent homomorphic encryption schemes, allows computations on encrypted data, serving as a critical privacy safeguard. However, performance remains a central bottleneck, hindering widespread adoption. Existing optimization efforts often prioritize latency reduction over throughput performance. This paper presents HI-CKKS, a throughput-oriented High-performance...

2024/1970 (PDF) Last updated: 2024-12-05
Scribe: Low-memory SNARKs via Read-Write Streaming
Anubhav Baweja, Pratyush Mishra, Tushar Mopuri, Karan Newatia, Steve Wang
Cryptographic protocols

Succinct non-interactive arguments of knowledge (SNARKs) enable a prover to produce a short and efficiently verifiable proof of the validity of an arbitrary NP statement. Recent constructions of efficient SNARKs have led to interest in using them for a wide range of applications, but unfortunately, deployment of SNARKs in these applications faces a key bottleneck: SNARK provers require a prohibitive amount of time and memory to generate proofs for even moderately large statements. While...

2024/1965 (PDF) Last updated: 2025-01-23
Onion Franking: Abuse Reports for Mix-Based Private Messaging
Matthew Gregoire, Margaret Pierce, Saba Eskandarian
Applications

The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a...

2024/1962 (PDF) Last updated: 2025-02-24
uKNIT: Breaking Round-alignment for Cipher Design -- Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher
Kai Hu, Mustafa Khairallah, Thomas Peyrin, Quan Quan Tan
Secret-key cryptography

Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...

2024/1896 (PDF) Last updated: 2024-11-22
Shardora: Towards Scaling Blockchain Sharding via Unleashing Parallelism
Yu Tao, Lu Zhou, Lei Xie, Dongming Zhang, Xinyu Lei, Fei Xu, Zhe Liu
Cryptographic protocols

Sharding emerges as a promising solution to enhance blockchain scalability. However, it faces two critical limitations during shard reconfiguration: (1) the TPS-Degradation issue, arising from ledger synchronization conflicts during transaction processing, and (2) the Zero-TPS issue, caused by disruptions in transaction processing due to key negotiation. To this end, we propose Shardora, a blockchain sharding system for scaling blockchain by unleashing parallelism. In Shardora, we implement...

2024/1889 (PDF) Last updated: 2025-03-07
IO-Optimized Design-Time Configurable Negacyclic Seven-Step NTT Architecture for FHE Applications
Emre Koçer, Selim Kırbıyık, Tolun Tosun, Ersin Alaybeyoğlu, Erkay Savaş

FHE enables computations on encrypted data, proving itself to be an essential building block for privacy-preserving applications. However, it involves computationally demanding operations such as polynomial multiplication, with the NTT being the state-of-the-art solution to perform it. Considering that most FHE schemes operate over the negacyclic ring of polynomials, we introduce a novel formulation of the hierarchical Four-Step NTT approach for the negacyclic ring, eliminating the need for...

2024/1884 (PDF) Last updated: 2024-11-19
Age-aware Fairness in Blockchain Transaction Ordering for Reducing Tail Latency
Yaakov Sokolik, Mohammad Nassar, Ori Rottenstriech
Cryptographic protocols

In blockchain networks, transaction latency is crucial for determining the quality of service (QoS). The latency of a transaction is measured as the time between its issuance and its inclusion in a block in the chain. A block proposer often prioritizes transactions with higher fees or transactions from accounts it is associated with, to minimize their latencies. To maintain fairness among transactions, a block proposer is expected to select the included transactions randomly. The random...

2024/1881 (PDF) Last updated: 2024-11-19
THOR: Secure Transformer Inference with Homomorphic Encryption
Jungho Moon, Dongwoo Yoo, Xiaoqian Jiang, Miran Kim
Cryptographic protocols

As language models are increasingly deployed in cloud environments, privacy concerns have become a significant issue. To address this, we design THOR, a secure inference framework for transformer models on encrypted data. Specifically, we first propose new fast matrix multiplication algorithms based on diagonal-major order encoding and extend them to parallel matrix computation through the compact ciphertext packing technique. Second, we design efficient protocols for secure computations of...

2024/1867 (PDF) Last updated: 2024-11-25
Symmetric Twin Column Parity Mixers and their Applications
Hao Lei, Raghvendra Rohit, Guoxiao Liu, Jiahui He, Mohamed Rachidi, Keting Jia, Kai Hu, Meiqin Wang
Secret-key cryptography

The circulant twin column parity mixer (TCPM) is a type of mixing layer for the round function of cryptographic permutations designed by Hirch et al. at CRYPTO 2023. It has a bitwise differential branch number of 12 and a bitwise linear branch number of 4, which makes it competitive in applications where differential security is required. Hirch et al. gave a concrete instantiation of a permutation using such a mixing layer, named Gaston, and showed the best 3-round differential and linear...

2024/1862 (PDF) Last updated: 2024-11-14
BatchZK: A Fully Pipelined GPU-Accelerated System for Batch Generation of Zero-Knowledge Proofs
Tao Lu, Yuxun Chen, Zonghui Wang, Xiaohang Wang, Wenzhi Chen, Jiaheng Zhang
Implementation

Zero-knowledge proof (ZKP) is a cryptographic primitive that enables one party to prove the validity of a statement to other parties without disclosing any secret information. With its widespread adoption in applications such as blockchain and verifiable machine learning, the demand for generating zero-knowledge proofs has increased dramatically. In recent years, considerable efforts have been directed toward developing GPU-accelerated systems for proof generation. However, these previous...

2024/1831 (PDF) Last updated: 2024-11-07
Fast Two-party Threshold ECDSA with Proactive Security
Brian Koziel, S. Dov Gordon, Craig Gentry
Cryptographic protocols

We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme of Lindell and improving his scheme in several ways. ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the signing function. Lindell's scheme uses Paillier encryption to encrypt one party's key share and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero knowledge proofs over the Paillier group during the signing process. However,...

2024/1827 (PDF) Last updated: 2024-11-07
OPTIMSM: FPGA hardware accelerator for Zero-Knowledge MSM
Xander Pottier, Thomas de Ruijter, Jonas Bertels, Wouter Legiest, Michiel Van Beirendonck, Ingrid Verbauwhede
Implementation

The Multi-Scalar Multiplication (MSM) is the main barrier to accelerating Zero-Knowledge applications. In recent years, hardware acceleration of this algorithm on both FPGA and GPU has become a popular research topic and the subject of a multi-million dollar prize competition (ZPrize). This work presents OPTIMSM: Optimized Processing Through Iterative Multi-Scalar Multiplication. This novel accelerator focuses on the acceleration of the MSM algorithm for any Elliptic Curve (EC) by improving...

2024/1772 (PDF) Last updated: 2024-10-31
Byte-wise equal property of ARADI
Sunyeop Kim, Insung Kim, Dongjae Lee, Deukjo Hong, Jaechul Sung, Seokhie Hong
Secret-key cryptography

ARADI is a low-latency block cipher proposed by the NSA (National Security Agency) in 2024 for memory encryption. Bellini et al. experimentally demonstrated that in specific cubes of 5-round ARADI, the cube sums are byte-wise equal, for example, to 0x9d9dc5c5. This paper modifies the MILP-based division property algorithm to prove this and observes that the rotation amount of 8 in ARADI causes cancellations of monomials, allowing us to extend the byte-wise equal property up to 8 rounds. As a...

2024/1753 (PDF) Last updated: 2024-10-28
HTCNN: High-Throughput Batch CNN Inference with Homomorphic Encryption for Edge Computing
Zewen Ye, Tianshun Huang, Tianyu Wang, Yonggen Li, Chengxuan Wang, Ray C.C. Cheung, Kejie Huang
Public-key cryptography

Homomorphic Encryption (HE) technology allows for processing encrypted data, breaking through data isolation barriers and providing a promising solution for privacy-preserving computation. The integration of HE technology into Convolutional Neural Network (CNN) inference shows potential in addressing privacy issues in identity verification, medical imaging diagnosis, and various other applications. The CKKS HE algorithm stands out as a popular option for homomorphic CNN inference due to its...

2024/1740 (PDF) Last updated: 2024-11-13
OpenNTT: An Automated Toolchain for Compiling High-Performance NTT Accelerators in FHE
Florian Krieger, Florian Hirner, Ahmet Can Mert, Sujoy Sinha Roy
Implementation

Modern cryptographic techniques such as fully homomorphic encryption (FHE) have recently gained broad attention. Most of these cryptosystems rely on lattice problems wherein polynomial multiplication forms the computational bottleneck. A popular method to accelerate these polynomial multiplications is the Number-Theoretic Transformation (NTT). Recent works aim to improve the practical deployability of NTT and propose toolchains supporting the NTT hardware accelerator design processes....

2024/1729 (PDF) Last updated: 2024-10-22
cuTraNTT: A Novel Transposed Number Theoretic Transform Targeting Low Latency Homomorphic Encryption for IoT Applications
Supriya Adhikary, Wai Kong Lee, Angshuman Karmakar, Yongwoo Lee, Seong Oun Hwang, Ramachandra Achar
Implementation

Large polynomial multiplication is one of the computational bottlenecks in fully homomorphic encryption implementations. Usually, these multiplications are implemented using the number-theoretic transformation to speed up the computation. State-of-the-art GPU-based implementation of fully homomorphic encryption computes the number theoretic transformation in two different kernels, due to the necessary synchronization between GPU blocks to ensure correctness in computation. This can be a...

2024/1708 (PDF) Last updated: 2024-10-18
Subliminal Encrypted Multi-Maps and Black-Box Leakage Absorption
Amine Bahi, Seny Kamara, Tarik Moataz, Guevara Noubir
Cryptographic protocols

We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two modes: low-leakage mode, which reveals minimal information such as data size, expected response length, and query arrival rate; and subliminal mode, which reveals only the data size while hiding metadata including query and update times, the number of operations executed, and even whether an operation was executed at all---albeit at the cost of full correctness. We achieve this by exploiting a tradeoff...

2024/1702 (PDF) Last updated: 2024-10-18
Secure and efficient transciphering for FHE-based MPC
Diego F. Aranha, Antonio Guimarães, Clément Hoffmann, Pierrick Méaux
Cryptographic protocols

Transciphering (or Hybrid-Homomorphic Encryption, HHE) is an es- tablished technique for avoiding ciphertext expansion in HE applications, saving communication and storage resources. Recently, it has also been shown to be a fundamental component in the practical construction of HE-based multi-party computation (MPC) protocols, being used both for input data and intermediary results (Smart, IMACC 2023). In these protocols, however, ciphers are used with keys that are jointly generated by...

2024/1699 (PDF) Last updated: 2024-10-18
HADES: Range-Filtered Private Aggregation on Public Data
Xiaoyuan Liu, Ni Trieu, Trinabh Gupta, Ishtiyaque Ahmad, Dawn Song
Cryptographic protocols

In aggregation queries, predicate parameters often reveal user intent. Protecting these parameters is critical for user privacy, regardless of whether the database is public or private. While most existing works focus on private data settings, we address a public data setting where the server has access to the database. Current solutions for this setting either require additional setups (e.g., noncolluding servers, hardware enclaves) or are inefficient for practical workloads. Furthermore,...

2024/1643 (PDF) Last updated: 2024-10-12
Optimizing Liveness for Blockchain-Based Sealed-Bid Auctions in Rational Settings
Maozhou Huang, Xiangyu Su, Mario Larangeira, Keisuke Tanaka
Cryptographic protocols

Blockchain-based auction markets offer stronger fairness and transparency compared to their centralized counterparts. Deposits and sealed bid formats are usually applied to enhance security and privacy. However, to our best knowledge, the formal treatment of deposit-enabled sealed-bid auctions remains lacking in the cryptographic literature. To address this gap, we first propose a decentralized anonymous deposited-bidding (DADB) scheme, providing formal syntax and security definitions....

2024/1633 (PDF) Last updated: 2024-10-11
Efficient Boolean-to-Arithmetic Mask Conversion in Hardware
Aein Rezaei Shahmirzadi, Michael Hutter
Implementation

Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating...

2024/1600 (PDF) Last updated: 2025-04-06
Pacmann: Efficient Private Approximate Nearest Neighbor Search
Mingxun Zhou, Elaine Shi, Giulia Fanti
Cryptographic protocols

We propose a new private Approximate Nearest Neighbor (ANN) search scheme named Pacmann that allows a client to perform ANN search in a vector database without revealing the query vector to the server. Unlike prior constructions that run encrypted search on the server side, Pacmann carefully offloads limited computation and storage to the client, no longer requiring computationally-intensive cryptographic techniques. Specifically, clients run a graph-based ANN search, where in each hop on...

2024/1587 (PDF) Last updated: 2024-12-13
Fully Homomorphic Encryption for Cyclotomic Prime Moduli
Robin Geelen, Frederik Vercauteren
Public-key cryptography

This paper presents a Generalized BFV (GBFV) fully homomorphic encryption scheme that encrypts plaintext spaces of the form $\mathbb{Z}[x]/(\Phi_m(x), t(x))$ with $\Phi_m(x)$ the $m$-th cyclotomic polynomial and $t(x)$ an arbitrary polynomial. GBFV encompasses both BFV where $t(x) = p$ is a constant, and the CLPX scheme (CT-RSA 2018) where $m = 2^k$ and $t(x) = x-b$ is a linear polynomial. The latter can encrypt a single huge integer modulo $\Phi_m(b)$, has much lower noise growth than BFV...

2024/1559 (PDF) Last updated: 2024-10-04
Mind the Composition of Toffoli Gates: Structural Algebraic Distinguishers of ARADI
Emanuele Bellini, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
Secret-key cryptography

This paper reveals a critical flaw in the design of ARADI, a recently proposed low-latency block cipher by NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks. The weakness exploits the specific composition of Toffoli gates in the round function of ARADI's nonlinear layer, and it allows the extension of a given algebraic distinguisher to one extra round without any change in the data complexity. More precisely, we show that the cube-sum values, though depending on the secret key...

2024/1543 (PDF) Last updated: 2024-10-02
HEonGPU: a GPU-based Fully Homomorphic Encryption Library 1.0
Ali Şah Özcan, Erkay Savaş
Implementation

HEonGPU is a high-performance library designed to optimize Fully Homomorphic Encryption (FHE) operations on Graphics Processing Unit (GPU). By leveraging the parallel processing capac- ity of GPUs, HEonGPU significantly reduces the computational overhead typically associated with FHE by executing complex operation concurrently. This allows for faster execution of homomorphic computations on encrypted data, enabling real-time applications in privacy-preserving machine learn- ing and secure...

2024/1526 (PDF) Last updated: 2024-09-28
Overpass Channels: Horizontally Scalable, Privacy-Enhanced, with Independent Verification, Fluid Liquidity, and Robust Censorship Proof, Payments
Brandon "Cryptskii" Ramsay
Cryptographic protocols

Overpass Channels presents a groundbreaking approach to blockchain scalability, offering a horizontally scalable, privacy-enhanced payment network with independent verification, fluid liquidity, and robust censorship resistance. This paper introduces a novel architecture that leverages zero-knowledge proofs, specifically zk-SNARKs, to ensure transaction validity and privacy while enabling unprecedented throughput and efficiency. By eliminating the need for traditional consensus mechanisms...

2024/1485 (PDF) Last updated: 2024-09-23
LARMix$\mathbf{++}$: Latency-Aware Routing in Mix Networks with Free Routes Topology
Mahdi Rahimi
Applications

Mix networks (mixnets) enhance anonymity by routing client messages through multiple hops, intentionally delaying or reordering these messages to ensure unlinkability. However, this process increases end-to-end latency, potentially degrading the client experience. To address this issue, LARMix (NDSS, 2024) proposed a low-latency routing methodology specifically designed for stratified mixnet architectures. Our paper extends this concept to Free Routes mixnet designs, where, unlike stratified...

2024/1460 (PDF) Last updated: 2024-09-18
PPSA: Polynomial Private Stream Aggregation for Time-Series Data Analysis
Antonia Januszewicz, Daniela Medrano Gutierrez, Nirajan Koirala, Jiachen Zhao, Jonathan Takeshita, Jaewoo Lee, Taeho Jung
Cryptographic protocols

Modern data analytics requires computing functions on streams of data points from many users that are challenging to calculate, due to both the high scale and nontrivial nature of the computation at hand. The need for data privacy complicates this matter further, as general-purpose privacy-enhancing technologies face limitations in at least scalability or utility. Existing work has attempted to improve this by designing purpose-built protocols for the use case of Private Stream Aggregation;...

2024/1454 (PDF) Last updated: 2024-09-17
Interval Key-Encapsulation Mechanism
Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, Daniel Wichs
Public-key cryptography

Forward-Secure Key-Encapsulation Mechanism (FS-KEM; Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key $k$ to Bob for some time $t$ such that Bob can decapsulate it at any time $t'\leq t$. Crucially, a corruption of Bob's secret key after time $t$ does not reveal $k$. In this work, we generalize and extend this idea by also taking Post-Compromise Security (PCS) into account and call it Interval Key-Encapsulation Mechanism (IKEM). Thus, we do not only protect confidentiality...

2024/1408 (PDF) Last updated: 2024-09-09
Multiple-Tweak Differential Attack Against SCARF
Christina Boura, Shahram Rasoolzadeh, Dhiman Saha, Yosuke Todo
Secret-key cryptography

In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...

2024/1391 (PDF) Last updated: 2024-09-14
Scalable Equi-Join Queries over Encrypted Database
Kai Du, Jianfeng Wang, Jiaojiao Wu, Yunling Wang
Cryptographic protocols

Secure join queries over encrypted databases, the most expressive class of SQL queries, have attracted extensive attention recently. The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join queries on encrypted relational databases without pre-computing all possible joins. However, JXT can merely support join queries over two tables (in encrypted databases) with some high-entropy join attributes. In this paper, we propose an equi-join query protocol over two tables dubbed JXT+,...

2024/1365 (PDF) Last updated: 2024-08-30
High-Throughput GPU Implementation of Dilithium Post-Quantum Digital Signature
Shiyu Shen, Hao Yang, Wangchen Dai, Hong Zhang, Zhe Liu, Yunlei Zhao
Implementation

Digital signatures are fundamental building blocks in various protocols to provide integrity and authenticity. The development of the quantum computing has raised concerns about the security guarantees afforded by classical signature schemes. CRYSTALS-Dilithium is an efficient post-quantum digital signature scheme based on lattice cryptography and has been selected as the primary algorithm for standardization by the National Institute of Standards and Technology. In this work, we present a...

2024/1324 (PDF) Last updated: 2024-08-29
CLAASPing ARADI: Automated Analysis of the ARADI Block Cipher
Emanuele Bellini, Mattia Formenti, David Gérault, Juan Grados, Anna Hambitzer, Yun Ju Huang, Paul Huynh, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
Attacks and cryptanalysis

In early August 2024, three NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks -- published the technical specifications for a new low-latency block cipher, ARADI, along with its corresponding authenticated encryption mode, LLAMA, which is specifically designed for memory encryption applications. Their manuscript offered minimal security analysis of the design, only briefly discussing the differential, linear and algebraic properties of cipher's underlying components. In this...

2024/1323 (PDF) Last updated: 2024-08-29
SoK: Instruction Set Extensions for Cryptographers
Hao Cheng, Johann Großschädl, Ben Marshall, Daniel Page, Markku-Juhani O. Saarinen
Implementation

Framed within the general context of cyber-security, standard cryptographic constructions often represent an enabling technology for associated solutions. Alongside or in combination with their design, therefore, the implementation of such constructions is an important challenge: beyond delivering artefacts that are usable in practice, implementation can impact many quality metrics (such as efficiency and security) which determine fitness-for-purpose. A rich design space of implementation...

2024/1299 (PDF) Last updated: 2024-08-20
Permissionless Verifiable Information Dispersal (Data Availability for Bitcoin Rollups)
Ben Fisch, Arthur Lazzaretti, Zeyu Liu, Lei Yang
Cryptographic protocols

Rollups are special applications on distributed state machines (aka blockchains) for which the underlying state machine only logs, but does not execute transactions. Rollups have become a popular way to scale applications on Ethereum and there is now growing interest in running rollups on Bitcoin. Rollups scale throughput and reduce transaction costs by using auxiliary machines that have higher throughput and lower cost of executing transactions than the underlying blockchain. State updates...

2024/1277 (PDF) Last updated: 2024-08-13
Robust but Relaxed Probing Model
Nicolai Müller, Amir Moradi
Applications

Masking has become a widely applied and heavily researched method to protect cryptographic implementations against SCA attacks. The success of masking is primarily attributed to its strong theoretical foundation enabling it to formally prove security by modeling physical properties through so-called probing models. Specifically, the robust $d$-probing model enables us to prove the security for arbitrarily masked hardware circuits, manually or with the assistance of automated tools, even when...

2024/1270 (PDF) Last updated: 2024-08-11
Meet-in-the-Middle Attack on 4+4 Rounds of SCARF under Single-Tweak Setting
Siwei Chen, Kai Hu, Guozhen Liu, Zhongfeng Niu, Quan Quan Tan, Shichang Wang
Attacks and cryptanalysis

\scarf, an ultra low-latency tweakable block cipher, is the first cipher designed for cache randomization. The block cipher design is significantly different from the other common tweakable block ciphers; with a block size of only 10 bits, and yet the input key size is a whopping $240$ bits. Notably, the majority of the round key in its round function is absorbed into the data path through AND operations, rather than the typical XOR operations. In this paper, we present a key-recovery...

2024/1255 (PDF) Last updated: 2024-09-05
Compass: Encrypted Semantic Search with High Accuracy
Jinhao Zhu, Liana Patel, Matei Zaharia, Raluca Ada Popa
Applications

We introduce Compass, a semantic search system over encrypted data that offers high accuracy, comparable to state-of-the-art plaintext search algorithms while protecting data, queries and search results from a fully compromised server. Additionally, Compass enables privacy-preserving RAG where both the RAG database and the query are protected. Compass contributes a novel way to traverse the Hierarchical Navigable Small Worlds (HNSW) graph, a top-performing nearest neighbor search index, over...

2024/1253 (PDF) Last updated: 2024-08-08
FELIX (XGCD for FALCON): FPGA-based Scalable and Lightweight Accelerator for Large Integer Extended GCD
Sam Coulon, Tianyou Bao, Jiafeng Xie
Implementation

The Extended Greatest Common Divisor (XGCD) computation is a critical component in various cryptographic applications and algorithms, including both pre- and post-quantum cryptosystems. In addition to computing the greatest common divisor (GCD) of two integers, the XGCD also produces Bezout coefficients $b_a$ and $b_b$ which satisfy $\mathrm{GCD}(a,b) = a\times b_a + b\times b_b$. In particular, computing the XGCD for large integers is of significant interest. Most recently, XGCD computation...

2024/1250 (PDF) Last updated: 2024-08-06
AutoHoG: Automating Homomorphic Gate Design for Large-Scale Logic Circuit Evaluation
Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, Song Bian
Applications

Recently, an emerging branch of research in the field of fully homomorphic encryption (FHE) attracts growing attention, where optimizations are carried out in developing fast and efficient homomorphic logic circuits. While existing works have pointed out that compound homomorphic gates can be constructed without incurring significant computational overheads, the exact theory and mechanism of homomorphic gate design have not yet been explored. In this work, we propose AutoHoG, an automated...

2024/1249 (PDF) Last updated: 2024-08-06
Koala: A Low-Latency Pseudorandom Function
Parisa Amiri Eliasi, Yanis Belkheyar, Joan Daemen, Santosh Ghosh, Daniël Kuijsters, Alireza Mehrdad, Silvia Mella, Shahram Rasoolzadeh, Gilles Van Assche
Secret-key cryptography

This paper introduces the Koala PRF, which maps a variable-length sequence of $64$-bit input blocks to a single $257$-bit output block. Its design focuses on achieving low latency in its implementation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the $8$-fold iteration of a simple round function inspired by that of Subterranean. Based on...

2024/1241 (PDF) Last updated: 2024-08-06
PROF: Protected Order Flow in a Profit-Seeking World
Kushal Babel, Nerla Jean-Louis, Yan Ji, Ujval Misra, Mahimna Kelkar, Kosala Yapa Mudiyanselage, Andrew Miller, Ari Juels
Applications

Users of decentralized finance (DeFi) applications face significant risks from adversarial actions that manipulate the order of transactions to extract value from users. Such actions---an adversarial form of what is called maximal-extractable value (MEV)---impact both individual outcomes and the stability of the DeFi ecosystem. MEV exploitation, moreover, is being institutionalized through an architectural paradigm known Proposer-Builder Separation (PBS). This work introduces a system...

2024/1240 (PDF) Last updated: 2024-09-05
ARADI and LLAMA: Low-Latency Cryptography for Memory Encryption
Patricia Greene, Mark Motley, Bryan Weeks
Secret-key cryptography

In this paper, we describe a low-latency block cipher (ARADI) and authenticated encryption mode (LLAMA) intended to support memory encryption applications.

2024/1235 (PDF) Last updated: 2025-02-05
Blue fish, red fish, live fish, dead fish
Victor Shoup
Cryptographic protocols

We show that the DAG-based consensus protocol Tusk [DKSS22] does not achieve liveness, at least under certain reasonable assumptions on the implementation that are consistent with its specification. In addition, we give a simple 2-round variation of Tusk with lower latency and strong liveness properties, but with suboptimal resilience. We also show that another 2-round protocol, GradedDAG [DZX+24], which has optimal resilience, also has liveness problems analogous to Tusk.

2024/1209 (PDF) Last updated: 2024-07-27
Collaborative CP-NIZKs: Modular, Composable Proofs for Distributed Secrets
Mohammed Alghazwi, Tariq Bontekoe, Leon Visscher, Fatih Turkmen
Cryptographic protocols

Non-interactive zero-knowledge (NIZK) proofs of knowledge have proven to be highly relevant for securely realizing a wide array of applications that rely on both privacy and correctness. They enable a prover to convince any party of the correctness of a public statement for a secret witness. However, most NIZKs do not natively support proving knowledge of a secret witness that is distributed over multiple provers. Previously, collaborative proofs [51] have been proposed to overcome this...

2024/1187 (PDF) Last updated: 2024-07-23
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis

Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...

2024/1186 (PDF) Last updated: 2024-07-25
MATTER: A Wide-Block Tweakable Block Cipher
Roberto Avanzi, Orr Dunkelman, Kazuhiko Minematsu
Secret-key cryptography

In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software. MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function. The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key. Key and tweak are...

2024/1127 (PDF) Last updated: 2024-09-18
Curl: Private LLMs through Wavelet-Encoded Look-Up Tables
Manuel B. Santos, Dimitris Mouris, Mehmet Ugurbil, Stanislaw Jarecki, José Reis, Shubho Sengupta, Miguel de Vega
Cryptographic protocols

Recent advancements in transformers have revolutionized machine learning, forming the core of Large language models (LLMs). However, integrating these systems into everyday applications raises privacy concerns as client queries are exposed to model owners. Secure multiparty computation (MPC) allows parties to evaluate machine learning applications while keeping sensitive user inputs and proprietary models private. Due to inherent MPC costs, recent works introduce model-specific optimizations...

2024/1120 (PDF) Last updated: 2024-07-09
A Fast and Efficient SIKE Co-Design: Coarse-Grained Reconfigurable Accelerators with Custom RISC-V Microcontroller on FPGA
Jing Tian, Bo Wu, Lang Feng, Haochen Zhang, Zhongfeng Wang
Implementation

This paper proposes a fast and efficient FPGA-based hardware-software co-design for the supersingular isogeny key encapsulation (SIKE) protocol controlled by a custom RISC-V processor. Firstly, we highly optimize the core unit, the polynomial-based field arithmetic logic unit (FALU), with the proposed fast convolution-like multiplier (FCM) to significantly reduce the resource consumption while still maintaining low latency and constant time for all the four SIKE parameters. Secondly, we pack...

2024/1113 (PDF) Last updated: 2025-01-06
Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors
Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, Mehdi Tibouchi
Cryptographic protocols

A threshold signature scheme splits the signing key among $\ell$ parties, such that any $t$-subset of parties can jointly generate signatures on a given message. Designing concretely efficient post-quantum threshold signatures is a pressing question, as evidenced by NIST's recent call. In this work, we propose, implement, and evaluate a lattice-based threshold signature scheme, Ringtail, which is the first to achieve a combination of desirable properties: (i) The signing...

2024/1108 (PDF) Last updated: 2024-07-08
Faster Asynchronous Blockchain Consensus and MVBA
Matthieu Rambaud
Applications

Blockchain consensus, a.k.a. BFT SMR, are protocols enabling $n$ processes to decide on an ever-growing chain. The fastest known asynchronous one is called 2-chain VABA (PODC'21 and FC'22), and is used as fallback chain in Abraxas* (CCS'23). It has a claimed $9.5\delta$ expected latency when used for a single shot instance, a.k.a. an MVBA. We exhibit attacks breaking it. Hence, the title of the fastest asynchronous MVBA with quadratic messages complexity goes to sMVBA (CCS'22), with...

2024/1099 (PDF) Last updated: 2024-07-05
FHE-MENNs: Opportunities and Pitfalls for Accelerating Fully Homomorphic Private Inference with Multi-Exit Neural Networks
Lars Wolfgang Folkerts, Nektarios Georgios Tsoutsos
Applications

With concerns about data privacy growing in a connected world, cryptography researchers have focused on fully homomorphic encryption (FHE) for promising machine learning as a service solutions. Recent advancements have lowered the computational cost by several orders of magnitude, but the latency of fully homomorphic neural networks remains a barrier to adoption. This work proposes using multi-exit neural networks (MENNs) to accelerate the FHE inference. MENNs are network architectures that...

2024/1091 (PDF) Last updated: 2024-07-04
MatcHEd: Privacy-Preserving Set Similarity based on MinHash
Rostin Shokri, Charles Gouert, Nektarios Georgios Tsoutsos
Applications

Fully homomorphic encryption (FHE) enables arbitrary computation on encrypted data, but certain applications remain prohibitively expensive in the encrypted domain. As a case in point, comparing two encrypted sets of data is extremely computationally expensive due to the large number of comparison operators required. In this work, we propose a novel methodology for encrypted set similarity inspired by the MinHash algorithm and the CGGI FHE scheme. Doing comparisons in FHE requires...

2024/1090 (PDF) Last updated: 2024-07-04
PolyFHEmus: Rethinking Multiplication in Fully Homomorphic Encryption
Charles Gouert, Nektarios Georgios Tsoutsos
Implementation

Homomorphic encryption is a powerful technology that solves key privacy concerns in cloud computing by enabling computation on encrypted data. However, it has not seen widespread adoption due to prohibitively high latencies. In this article, we identify polynomial multiplication as a bottleneck and investigate alternative algorithms to accelerate encrypted computing.

2024/1084 (PDF) Last updated: 2024-07-03
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications

Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...

2024/1073 (PDF) Last updated: 2024-07-01
Message Latency in Waku Relay with Rate Limiting Nullifiers
Alvaro Revuelta, Sergei Tikhomirov, Aaryamann Challani, Hanno Cornelius, Simon Pierre Vivier
Applications

Waku is a privacy-preserving, generalized, and decentralized messaging protocol suite. Waku uses GossipSub for message routing and Rate Limiting Nullifiers (RLN) for spam protection. GossipSub ensures fast and reliable peer-to-peer message delivery in a permissionless environment, while RLN enforces a common publishing rate limit using zero-knowledge proofs. This paper presents a practical evaluation of message propagation latency in Waku. First, we estimate latencies analytically,...

2024/1064 (PDF) Last updated: 2024-06-30
ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption
Zhou Zhang, Song Bian, Zian Zhao, Ran Mao, Haoyi Zhou, Jiafeng Hua, Yier Jin, Zhenyu Guan
Cryptographic protocols

Fully homomorphic encryption (FHE) based database outsourcing is drawing growing research interests. At its current state, there exist two primary obstacles against FHE-based encrypted databases (EDBs): i) low data precision, and ii) high computational latency. To tackle the precision-performance dilemma, we introduce ArcEDB, a novel FHE-based SQL evaluation infrastructure that simultaneously achieves high data precision and fast query evaluation. Based on a set of new plaintext encoding...

2024/1052 (PDF) Last updated: 2024-10-18
A New Fine Tuning Method for FHEW/TFHE Bootstrapping with IND-CPAD Security
Deokhwa Hong, Young-Sik Kim, Yongwoo Lee, Eunyoung Seo
Public-key cryptography

Fully homomorphic encryption (FHE) schemes enable computations on encrypted data, making them as a crucial component of privacy-enhancing technologies. Ducas and Micciancio introduced the FHEW scheme (Eurocrypt '15), which was further enhanced by Chillotti et al. with TFHE (Asiacrypt '17). These schemes support low-latency homomorphic evaluations of binary (or larger) gates due to their small parameter size. However, the evaluation failure probability in these schemes is highly sensitive to...

2024/1029 (PDF) Last updated: 2024-06-25
Oblivious Single Access Machines: A New Model for Oblivious Computation
Ananya Appan, David Heath, Ling Ren
Cryptographic protocols

Oblivious RAM (ORAM) allows a client to securely outsource memory storage to an untrusted server. It has been shown that no ORAM can simultaneously achieve small bandwidth blow-up, small client storage, and a single roundtrip of latency. We consider a weakening of the RAM model, which we call the Single Access Machine (SAM) model. In the SAM model, each memory slot can be written to at most once and read from at most once. We adapt existing tree-based ORAM to obtain an oblivious SAM...

2024/975 (PDF) Last updated: 2024-06-17
ZLR: a fast online authenticated encryption scheme achieving full security
Wonseok Choi, Seongha Hwang, Byeonghak Lee, Jooyoung Lee
Secret-key cryptography

Online authenticated encryption has been considered of practical relevance in light-weight environments due to low latency and constant memory usage. In this paper, we propose a new tweakable block cipher-based online authenticated encryption scheme, dubbed ZLR, and its domain separation variant, dubbed DS-ZLR. ZLR and DS-ZLR follow the Encrypt-MixEncrypt paradigm. However, in contrast to existing schemes using the same paradigm such as ELmE and CoLM, ZLR and DS-ZLR enjoy n-bit security by...

2024/967 (PDF) Last updated: 2024-07-08
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation

Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...

2024/936 (PDF) Last updated: 2024-10-16
Willow: Secure Aggregation with One-Shot Clients
James Bell-Clark, Adrià Gascón, Baiyu Li, Mariana Raykova, Phillipp Schoppmann
Cryptographic protocols

A common drawback of secure vector summation protocols in the single-server model is that they impose at least one synchronization point between all clients contributing to the aggregation. This results in clients waiting on each other to advance through the rounds of the protocol, leading to large latency (or failures due to too many dropouts) even if the protocol is computationally efficient. In this paper we propose protocols in the single-server model where clients contributing data to...

2024/925 (PDF) Last updated: 2024-06-10
Time Sharing - A Novel Approach to Low-Latency Masking
Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede
Implementation

We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitch-extended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools...

2024/892 (PDF) Last updated: 2024-06-04
Flock: A Framework for Deploying On-Demand Distributed Trust
Darya Kaviani, Sijun Tan, Pravein Govindan Kannan, Raluca Ada Popa
Applications

Recent years have exhibited an increase in applications that distribute trust across $n$ servers to protect user data from a central point of attack. However, these deployments remain limited due to a core obstacle: establishing $n$ distinct trust domains. An application provider, a single trust domain, cannot directly deploy multiple trust domains. As a result, application providers forge business relationships to enlist third-parties as trust domains, which is a manual, lengthy, and...

2024/891 (PDF) Last updated: 2024-06-08
Glitch-Stopping Circuits: Hardware Secure Masking without Registers
Zhenda Zhang, Svetla Nikova, Ventzislav Nikov
Implementation

Masking is one of the most popular countermeasures to protect implementations against power and electromagnetic side channel attacks, because it offers provable security. Masking has been shown secure against d-threshold probing adversaries by Ishai et al. at CRYPTO'03, but this adversary's model doesn't consider any physical hardware defaults and thus such masking schemes were shown to be still vulnerable when implemented as hardware circuits. To addressed these limitations glitch-extended...

2024/888 (PDF) Last updated: 2024-06-04
zkCross: A Novel Architecture for Cross-Chain Privacy-Preserving Auditing
Yihao Guo, Minghui Xu, Xiuzhen Cheng, Dongxiao Yu, Wangjie Qiu, Gang Qu, Weibing Wang, Mingming Song
Cryptographic protocols

One of the key areas of focus in blockchain research is how to realize privacy-preserving auditing without sacrificing the system’s security and trustworthiness. However, simultaneously achieving auditing and privacy protection, two seemingly contradictory objectives, is challenging because an auditing system would require transparency and accountability which might create privacy and security vulnerabilities. This becomes worse in cross-chain scenarios, where the information silos from...

2024/883 (PDF) Last updated: 2024-06-03
Low-Latency Linear Transformations with Small Key Transmission for Private Neural Network on Homomorphic Encryption
Byeong-Seo Min, Joon-Woo Lee
Applications

In the field of Artificial Intelligence (AI), convolution operations have primarily been used in Convolutional Neural Networks (CNNs). However, its utility is increasing with the appearance of convolution integrated transformers or state space models where convolution is a constituent element. In the field of private AI, generalized algorithm, multiplexed parallel convolution was recently proposed to implement CNNs based on the Homomorphic Encryption scheme, residue number system variant...

2024/873 (PDF) Last updated: 2024-06-01
Cryptanalysis of Algebraic Verifiable Delay Functions
Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaëtan Leurent, María Naya-Plasencia, Benjamin Wesolowski
Attacks and cryptanalysis

Verifiable Delay Functions (VDF) are a class of cryptographic primitives aiming to guarantee a minimum computation time, even for an adversary with massive parallel computational power. They are useful in blockchain protocols, and several practical candidates have been proposed based on exponentiation in a large finite field: Sloth++, Veedo, MinRoot. The underlying assumption of these constructions is that computing an exponentiation $x^e$ requires at least $\log_2 e$ sequential...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.