937 results sorted by ID
Doubly Efficient Fuzzy Private Set Intersection for High-dimensional Data with Cosine Similarity
Hyunjung Son, Seunghun Paik, Yunki Kim, Sunpill Kim, Heewon Chung, Jae Hong Seo
Cryptographic protocols
Fuzzy private set intersection (Fuzzy PSI) is a cryptographic protocol for privacy-preserving similarity matching, which is one of the essential operations in various real-world applications such as facial authentication, information retrieval, or recommendation systems. Despite recent advancements in fuzzy PSI protocols, still a huge barrier remains in deploying them for these applications. The main obstacle is the high dimensionality, e.g., from 128 to 512, of data; lots of existing...
Separating Broadcast from Cheater Identification
Yashvanth Kondi, Divya Ravi
Cryptographic protocols
Secure Multiparty Computation (MPC) protocols that achieve Identifiable Abort (IA) guarantee honest parties that in the event that they are denied output, they will be notified of the identity of at least one corrupt party responsible for the abort. Cheater identification provides recourse in the event of a protocol failure, and in some cases can even be desired over Guaranteed Output Delivery. However, protocols in the literature typically make use of broadcast as a necessary tool in...
The Meta-Complexity of Secret Sharing
Benny Applebaum, Oded Nir
Cryptographic protocols
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness
Huayi Qi, Minghui Xu, Xiaohua Jia, Xiuzhen Cheng
Cryptographic protocols
Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers.
Implementing a publicly verifiable...
Delegated Multi-party Private Set Intersection from Secret Sharing
Jingwei Hu, Zhiqi Liu, Cong Zuo
Cryptographic protocols
In this work, we address the problem of Delegated PSI (D-PSI), where a cloud server is introduced to handle most computational and communication tasks. D-PSI enables users to securely delegate their private sets to the cloud, ensuring the privacy of their data while allowing efficient computation of the intersection. The cloud operates under strict security requirements, learning nothing about the individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user...
Asymptotically Optimal Adaptive Asynchronous Common Coin and DKG with Silent Setup
Hanwen Feng, Qiang Tang
Cryptographic protocols
This paper presents the first optimal-resilient, adaptively secure asynchronous common coin protocol with $O(\lambda n^2)$ communication complexity and $O(1)$ rounds, requiring only a public silent setup. Our protocol immediately implies a sequence of quadratic-communication, constant-round asynchronous Byzantine agreement protocols and asynchronous distributed key generation with a silent setup. Along the way, we formulate a new primitive called asynchronous subset alignment and introduce a...
Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani
Cryptographic protocols
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
ClusterGuard: Secure Clustered Aggregation for Federated Learning with Robustness
Yulin Zhao, Zhiguo Wan, Zhangshuang Guan
Applications
Federated Learning (FL) enables collaborative model training while preserving data privacy by avoiding the sharing of raw data. However, in large-scale FL systems, efficient secure aggregation and dropout handling remain critical challenges. Existing state-of-the-art methods, such as those proposed by Liu et al. (UAI'22) and Li et al. (ASIACRYPT'23), suffer from prohibitive communication overhead, implementation complexity, and vulnerability to poisoning attacks. Alternative approaches that...
Perfectly Secure Fluid MPC with Abort and Linear Communication Complexity
Alexander Bienstock, Daniel Escudero, Antigoni Polychroniadou
Cryptographic protocols
The \emph{Fluid} multiparty computation (MPC) model, introduced in (Choudhuri \emph{et al.} CRYPTO 2021), addresses dynamic scenarios where participants can join or leave computations between rounds. Communication complexity initially stood at $\Omega(n^2)$ elements per gate, where $n$ is the number of parties in a committee online at a time. This held for both statistical security (honest majority) and computational security (dishonest majority) in (Choudhuri \emph{et al.}~CRYPTO'21) and...
Multilateral Trade Credit Set-off in MPC via Graph Anonymization and Network Simplex
Enrico Bottazzi, Chan Nam Ngo, Masato Tsutsumi
Applications
Multilateral Trade Credit Set-off (MTCS) is a process run by a service provider that collects trade credit data (i.e. obligations from a firm to pay another firm) from a network of firms and detects cycles of debts that can be removed from the system. The process yields liquidity savings for the participants, who can discharge their debts without relying on expensive loans. We propose an MTCS protocol that protects firms' sensitive data, such as the obligation amount or the identity of the...
Simple is COOL: Graded Dispersal and its Applications for Byzantine Fault Tolerance
Ittai Abraham, Gilad Asharov, Anirudh Chandramouli
Cryptographic protocols
The COOL protocol of Chen (DISC'21) is a major advance that enables perfect security for various tasks (in particular, Byzantine Agreement in Synchrony and Reliable Broadcast in Asynchrony). For an input of size $L$ bits, its communication complexity is $O(nL+n^2 \log n)$, which is optimal up to a $\log n$ factor.
Unfortunately, Chen’s analysis is rather intricate and complex.
Our main contribution is a simple analysis of a new variant of COOL based on elementary counting arguments....
Hash-Prune-Invert: Improved Differentially Private Heavy-Hitter Detection in the Two-Server Model
Borja Balle, James Bell, Albert Cheu, Adria Gascon, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Thomas Steinke
Cryptographic protocols
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
Ring Ring! Who's There? A Privacy Preserving Mobile Number Search
Akshit Aggarwal
Applications
Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main limitations of their protocols are 1) high communication complexity, that is, $O(xlogy)$ (where $x$ is total number of...
Garbled Circuits with 1 Bit per Gate
Hanlin Liu, Xiao Wang, Kang Yang, Yu Yu
Applications
We present a garbling scheme for Boolean circuits with 1 bit per gate communication based on either ring learning with errors (RLWE) or NTRU assumption, with key-dependent message security. The garbling consists of 1) a homomorphically encrypted seed that can be expanded to encryption of many pseudo-random bits and 2) one-bit stitching information per gate to reconstruct garbled tables from the expanded ciphertexts. By using low-complexity PRGs, both the garbling and evaluation of each...
Efficient Succinct Zero-Knowledge Arguments in the CL Framework
Agathe Beaugrand, Guilhem Castagnos, Fabien Laguillaumie
Cryptographic protocols
The CL cryptosystem, introduced by Castagnos and Laguillaumie in 2015, is a linearly homomorphic encryption scheme that has seen numerous developments and applications in recent years, particularly in the field of secure multiparty computation. Designing efficient zero-knowledge proofs for the CL framework is critical, especially for achieving adaptive security for such multiparty protocols. This is a challenging task due to the particularities of class groups of quadratic fields used to...
Gold OPRF: Post-Quantum Oblivious Power Residue PRF
Yibin Yang, Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Tal Rabin
Cryptographic protocols
We propose plausible post-quantum (PQ) oblivious pseudorandom functions (OPRFs) based on the Power Residue PRF (Damgård CRYPTO’88), a generalization of the Legendre PRF. For security parameter $\lambda$, we consider the PRF $\mathsf{Gold}_k(x)$ that maps an integer $x$ modulo a public prime $p = 2^\lambda\cdot g + 1$ to the element $(k + x)^g \bmod p$, where $g$ is public and $\log g \approx 2\lambda$.
At the core of our constructions are efficient novel methods for evaluating...
Truncation Untangled: Scaling Fixed-Point Arithmetic for Privacy-Preserving Machine Learning to Large Models and Datasets
Christopher Harth-Kitzerow, Georg Carle
Cryptographic protocols
Fixed point arithmetic (FPA) is essential to enable practical Privacy-Preserving Machine Learning. When multiplying two fixed-point numbers, truncation is required to ensure that the product maintains correct precision. While multiple truncation schemes based on Secure Multiparty Computation (MPC) have been proposed, which of the different schemes offers the best trade-off between accuracy and efficiency on common PPML datasets and models has remained underexplored.
In this work, we...
Multiparty Shuffle: Linear Online Phase is Almost for Free
Jiacheng Gao, Yuan Zhang, Sheng Zhong
Cryptographic protocols
Shuffle is a frequently used operation in secure multiparty computations, with various applications, including joint data analysis and anonymous communication systems. Most existing MPC shuffle protocols are constructed from MPC permutation protocols, which allows a party to securely apply its private permutation to an array of $m$ numbers shared among all $n$ parties. Following a ``permute-in-turn'' paradigm, these protocols result in $\Omega(n^2m)$ complexity in the semi-honest setting....
Deterministic Consensus using Overpass Channels in Distributed Ledger Technology
Brandon "Cryptskii" Ramsay
Cryptographic protocols
Presenting a formal analysis of the Overpass protocol's hierarchical state channel architecture, focusing on its unique approach to state synchronization and tamper detection through cryptographic primitives. The protocol achieves global state consistency without traditional consensus mechanisms by leveraging Sparse Merkle Trees (SMTs), zero-knowledge proofs, and a deterministic hierarchical structure. We provide mathematical proofs of security properties and analyze the protocol's...
Improved PIR Schemes using Matching Vectors and Derivatives
Fatemeh Ghasemi, Swastik Kopparty, Madhu Sudan
Cryptographic protocols
In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are
based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector based PIRs of Yekhanin and Efremenko. Previously such a combination was achieved in an ingenious way by Dvir and Gopi, using polynomials and derivatives over certain exotic rings, en route to their...
$\mathsf{Cirrus}$: Performant and Accountable Distributed SNARK
Wenhao Wang, Fangyan Shi, Dani Vilardell, Fan Zhang
Cryptographic protocols
As Succinct Non-interactive Arguments of Knowledge (SNARKs) gain traction for large-scale applications, distributed proof generation is a promising technique to horizontally scale up the performance. In such protocols, the workload to generate SNARK proofs is distributed among a set of workers, potentially with the help of a coordinator. Desiderata include linear worker time (in the size of their sub-tasks), low coordination overhead, low communication complexity, and accountability (the...
Tightly-Secure Group Key Exchange with Perfect Forward Secrecy
Emanuele Di Giandomenico, Doreen Riepel, Sven Schäge
Public-key cryptography
In this work, we present a new paradigm for constructing Group Authenticated Key Exchange (GAKE). This result is the first tightly secure GAKE scheme in a strong security model that allows maximum exposure attacks (MEX) where the attacker is allowed to either reveal the secret session state or the long-term secret of all communication partners. Moreover, our protocol features the strong and realistic notion of (full) perfect forward secrecy (PFS), that allows the attacker to actively modify...
Khatam: Reducing the Communication Complexity of Code-Based SNARKs
Hadas Zeilberger
Foundations
We prove that Basefold(Crypto 2024) is secure in the $\textit{list decoding regime}$, within the double Johnson bound and with error probability $\frac{O(n)}{|F|}$. At the heart of this proof is a new, stronger statement for $\textit{correlated agreement}$, which roughly states that if a linear combination of vectors $\pi_L + r \pi_R$ agrees with a codeword at every element in $S \subset [n]$, then so do $\pi_L, \pi_R$. Our result is purely combinatorial and therefore extends to any finite...
Encrypted RAM Delegation: Applications to Rate-1 Extractable Arguments, Homomorphic NIZKs, MPC, and more
Abtin Afshar, Jiaqi Cheng, Rishab Goyal, Aayush Yadav, Saikumar Yadugiri
Foundations
In this paper we introduce the notion of encrypted RAM delegation. In an encrypted RAM delegation scheme, the prover creates a succinct proof for a group of two input strings $x_\mathsf{pb}$ and $x_\mathsf{pr}$, where $x_\mathsf{pb}$ corresponds to a large \emph{public} input and $x_\mathsf{pr}$ is a \emph{private} input. A verifier can check correctness of computation of $\mathcal{M}$ on $(x_\mathsf{pb}, x_\mathsf{pr})$, given only the proof $\pi$ and $x_\mathsf{pb}$.
We design encrypted...
How Much Public Randomness Do Modern Consensus Protocols Need?
Joseph Bonneau, Benedikt Bünz, Miranda Christ, Yuval Efron
Cryptographic protocols
Modern blockchain-based consensus protocols
aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries.
These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary.
Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
HTCNN: High-Throughput Batch CNN Inference with Homomorphic Encryption for Edge Computing
Zewen Ye, Tianshun Huang, Tianyu Wang, Yonggen Li, Chengxuan Wang, Ray C.C. Cheung, Kejie Huang
Public-key cryptography
Homomorphic Encryption (HE) technology allows for processing encrypted data, breaking through data isolation barriers and providing a promising solution for privacy-preserving computation. The integration of HE technology into Convolutional Neural Network (CNN) inference shows potential in addressing privacy issues in identity verification, medical imaging diagnosis, and various other applications. The CKKS HE algorithm stands out as a popular option for homomorphic CNN inference due to its...
$\widetilde{\mbox{O}}$ptimal Adaptively Secure Hash-based Asynchronous Common Subset
Hanwen Feng, Zhenliang Lu, Qiang Tang
Cryptographic protocols
Asynchronous multiparty computation (AMPC) requires an input agreement phase where all participants have a consistent view of the set of private inputs. While the input agreement problem can be precisely addressed by a Byzantine fault-tolerant consensus known as Asynchronous Common Subset (ACS), existing ACS constructions with potential post-quantum security have a large $\widetilde{\mathcal{O}}(n^3)$ communication complexity for a network of $n$ nodes. This poses a bottleneck for AMPC in...
Subliminal Encrypted Multi-Maps and Black-Box Leakage Absorption
Amine Bahi, Seny Kamara, Tarik Moataz, Guevara Noubir
Cryptographic protocols
We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two
modes: low-leakage mode, which reveals minimal information such as data
size, expected response length, and query arrival rate; and subliminal
mode, which reveals only the data size while hiding metadata including query
and update times, the number of operations executed, and even whether an
operation was executed at all---albeit at the cost of full correctness. We
achieve this by exploiting a tradeoff...
Concretely Efficient Asynchronous MPC from Lightweight Cryptography
Akhil Bandarupalli, Xiaoyu Ji, Aniket Kate, Chen-Da Liu-Zhang, Yifan Song
Cryptographic protocols
We consider the setting of asynchronous multi-party computation (AMPC) with optimal resilience $n=3t+1$ and linear communication complexity, and employ only ``lightweight'' cryptographic primitives, such as random oracle hash.
In this model, we introduce two concretely efficient AMPC protocols for a circuit with $|C|$ multiplication gates: a protocol achieving fairness with $\mathcal{O}(|C|\cdot n + n^3)$ field elements of communication, and a protocol achieving guaranteed output delivery...
Consensus on SNARK pre-processed circuit polynomials
Jehyuk Jang
Applications
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
$\Sigma$-Check: Compressed $\Sigma$-protocol Theory from Sum-check
Shang Gao, Chen Qian, Tianyu Zheng, Yu Guo, Bin Xiao
Cryptographic protocols
The theory of compressed $\Sigma$-protocols [AC20, ACF21] provides a standardized framework for creating efficient $\Sigma$-protocols. This method involves two main phases: first, amortization, which combines multiple instances that satisfy a homomorphic relation into a single instance; and second, Bulletproofs compression [BBB+18], which minimizes communication overhead to a logarithmic scale during the verification of the combined instance. For high-degree polynomial (non-homomorphic)...
Towards Practical Oblivious Map
Xinle Cao, Weiqi Feng, Jian Liu, Jinjin Zhou, Wenjing Fang, Lei Wang, Quanqing Xu, Chuanhui Yang, Kui Ren
Cryptographic protocols
Oblivious map (OMAP) is an important component in encrypted databases, utilized to safeguard against the server inferring sensitive information about client's encrypted key-value stores based on access patterns. Despite its widespread usage and importance, existing OMAP solutions face practical challenges, including the need for a large number of interaction rounds between the client and server, as well as the substantial communication bandwidth requirements. For example, the...
Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement
Daniel Collins, Yuval Efron, Jovan Komatovic
Cryptographic protocols
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t<n/2$ corruptions, bypassing the setup-free $t<n/3$ barrier. Alas, the overwhelming majority of protocols in the literature have the caveat that their security crucially hinges on the security of the cryptography and setup, to the point where if the cryptography is broken, even a single corrupted party can violate the security of the protocol. Thus these protocols provide higher...
Simplified PIR and CDS Protocols and Improved Linear Secret-Sharing Schemes
Bar Alon, Amos Beimel, Or Lasri
Cryptographic protocols
We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives have many applications in cryptography. We study these primitives requiring information-theoretic security. The complexity of these primitives has been dramatically improved in the last few years are they are closely related, i.e., the the 2-server PIR protocol of Dvir and Gopi (J. ACM 2016) was...
DART: Distributed argument of knowledge for rough terrains
Steve Thakur
Cryptographic protocols
We describe a fully distributed KZG-based Snark instantiable with any pairing-friendly curve with a sufficiently large scalar field. In particular, the proof system is compatible with Cocks-Pinch
or Brezing-Weng outer curves to the the widely used curves such as secp256k1, ED25519, BLS12-381 and BN254.
This allows us to retain the fully parallelizable nature and the O(1) communication complexity of Pianist ([LXZ+23]) in conjunction with circumventing the huge overhead of non-native...
$\mathsf{Protoss}$ Protocol for Tight Optimal Symmetric Security
Emanuele Di Giandomenico, Yong Li, Sven Schäge
Cryptographic protocols
We present $\mathsf{Protoss}$, a new balanced PAKE protocol with optimal communication efficiency. Messages are only 160 bits long and the computational complexity is lower than all previous approaches. Our protocol is proven secure in the random oracle model and features a security proof in a strong security model with multiple parties and multiple sessions, while allowing for generous attack queries including multiple $\mathsf{Test}$-queries. Moreover, the proof is in the practically...
Private Laconic Oblivious Transfer with Preprocessing
Rishabh Bhadauria, Nico Döttling, Carmit Hazay, Chuanwei Lin
Cryptographic protocols
Laconic cryptography studies two-message protocols that securely compute on large amounts of data with minimal communication cost. Laconic oblivious transfer (OT) is a central primitive where the receiver's input is a large database $\mathsf{DB}$ and the sender's inputs are two messages $m_0$, $m_1$ along with an index $i$, such that the receiver learns the message determined by the choice bit $\mathsf{DB}_i$. OT becomes even more useful for secure computation when considering its laconic...
Cryptographic Characterization of Quantum Advantage
Tomoyuki Morimae, Yuki Shirakawa, Takashi Yamakawa
Foundations
Quantum computational advantage refers to an existence of computational tasks that are easy for quantum computing but hard for classical one. Unconditionally showing quantum advantage is beyond our current understanding of complexity theory, and therefore some computational assumptions are needed. Which complexity assumption is necessary and sufficient for quantum advantage? In this paper, we show that inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if...
BEAT-MEV: Epochless Approach to Batched Threshold Encryption for MEV Prevention
Jan Bormet, Sebastian Faust, Hussien Othman, Ziyan Qu
Cryptographic protocols
In decentralized finance (DeFi), the public availability of pending transactions presents significant privacy concerns, enabling market manipulation through miner extractable value (MEV). MEV occurs when block proposers exploit the ability to reorder, omit, or include transactions, causing financial loss to users from frontrunning. Recent research has focused on encrypting pending transactions, hiding transaction data until block finalization. To this end, Choudhuri et al. (USENIX '24)...
Scalable Mixnets from Two-Party Mercurial Signatures on Randomizable Ciphertexts
Masayuki Abe, Masaya Nanri, Miyako Ohkubo, Octavio Perez Kempner, Daniel Slamanig, Mehdi Tibouchi
Cryptographic protocols
A mixnet developed by Hébant et al. (PKC '20) employs certified ciphertexts that carry homomorphic signatures from an authority, reducing the complexity of the shuffling proof, and thereby enabling efficient large-scale deployment. However, their privacy relies on trusting the authority, making it unsuitable for voting, the primary application of mixnets.
Building on the prior work, we leverage recent advances in equivalence class signatures by replacing homomorphic signatures with newly...
Concretely Efficient Private Set Union via Circuit-based PSI
Gowri R Chandran, Thomas Schneider, Maximilian Stillger, Christian Weinert
Cryptographic protocols
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist. However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU): For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead.
In this work, we present the first PSU protocol that is mainly based on...
Compact Proofs of Partial Knowledge for Overlapping CNF Formulae
Gennaro Avitabile, Vincenzo Botta, Daniele Friolo, Daniele Venturi, Ivan Visconti
Cryptographic protocols
At CRYPTO '94, Cramer, Damgaard, and Schoenmakers introduced a general technique for constructing
honest-verifier zero-knowledge proofs of partial knowledge (PPK), where a prover Alice wants to prove to a verifier Bob she knows $\tau$ witnesses for $\tau$ claims out of $k$ claims without revealing the indices of those $\tau$ claims.
Their solution starts from a base honest-verifier zero-knowledge proof of knowledge $\Sigma$ and requires to run in parallel $k$ execution of the base...
The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing
Katharina Boudgoust, Mark Simkin
Foundations
Proofs of partial knowledge, first considered by Cramer, Damgård and Schoenmakers (CRYPTO'94) and De Santis et al. (FOCS'94), allow for proving the validity of $k$ out of $n$ different statements without revealing which ones those are. In this work, we present a new approach for transforming certain proofs system into new ones that allows for proving partial knowledge. The communication complexity of the resulting proof system only depends logarithmically on the total number of statements...
Honest Majority GOD MPC with $O(\mathsf{depth}(C))$ Rounds and Low Online Communication
Amit Agarwal, Alexander Bienstock, Ivan Damgård, Daniel Escudero
Foundations
In the context of secure multiparty computation (MPC) protocols with guaranteed output delivery (GOD) for the honest majority setting, the state-of-the-art in terms of communication is the work of (Goyal et al. CRYPTO'20), which communicates O(n|C|) field elements, where |C| is the size of the circuit being computed and n is the number of parties. Their round complexity, as usual in secret-sharing based MPC, is proportional to O(depth(C)), but only in the optimistic case where there is no...
A Note on Low-Communication Secure Multiparty Computation via Circuit Depth-Reduction
Pierre Charbit, Geoffroy Couteau, Pierre Meyer, Reza Naserasr
Cryptographic protocols
We consider the graph-theoretic problem of removing (few) nodes from a directed acyclic graph in order to reduce its depth. While this problem is intractable in the general case, we provide a variety of algorithms in the case where the graph is that of a circuit of fan-in (at most) two, and explore applications of these algorithms to secure multiparty computation with low communication. Over the past few years, a paradigm for low-communication secure multiparty computation has found success...
P2C2T: Preserving the Privacy of Cross-Chain Transfer
Panpan Han, Zheng Yan, Laurence T. Yang, Elisa Bertino
Cryptographic protocols
Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...
Dishonest Majority Constant-Round MPC with Linear Communication from DDH
Vipul Goyal, Junru Li, Ankit Kumar Misra, Rafail Ostrovsky, Yifan Song, Chenkai Weng
Cryptographic protocols
In this work, we study constant round multiparty computation (MPC) for Boolean circuits against a fully malicious adversary who may control up to $n-1$ out of $n$ parties. Without relying on fully homomorphic encryption (FHE), the best-known results in this setting are achieved by Wang et al. (CCS 2017) and Hazay et al. (ASIACRYPT 2017) based on garbled circuits, which require a quadratic communication in the number of parties $O(|C|\cdot n^2)$. In contrast, for non-constant round MPC, the...
Asynchronous Verifiable Secret Sharing with Elastic Thresholds and Distributed Key Generation
Junming Li, Zhi Lu, Renfei Shen, Yuanqing Feng, Songfeng Lu
Public-key cryptography
Distributed Key Generation (DKG) is a technique that enables the generation of threshold cryptography keys among a set of mutually untrusting nodes. DKG generates keys for a range of decentralized applications such as threshold signatures, multiparty computation, and Byzantine consensus. Over the past five years, research on DKG has focused on optimizing network communication protocols to improve overall system efficiency by reducing communication complexity. However, SOTA asynchronous...
Randomness in Private Sequential Stateless Protocols
Hari Krishnan P. Anilkumar, Varun Narayanan, Manoj Prabhakaran, Vinod M. Prabhakaran
Foundations
A significant body of work in information-theoretic cryptography has been devoted to the fundamental problem of understanding the power of randomness in private computation. This has included both in-depth study of the randomness complexity of specific functions (e.g., Couteau and Ros ́en, ASIACRYPT 2022, gives an upper bound of 6 for n-party $\mathsf{AND}$), and results for broad classes of functions (e.g., Kushilevitz et al. STOC 1996, gives an $O(1)$ upper bound for all functions with...
Updatable Private Set Intersection Revisited: Extended Functionalities, Deletion, and Worst-Case Complexity
Saikrishna Badrinarayanan, Peihan Miao, Xinyi Shi, Max Tromanhauser, Ruida Zeng
Cryptographic protocols
Private set intersection (PSI) allows two mutually distrusting parties each holding a private set of elements, to learn the intersection of their sets without revealing anything beyond the intersection. Recent work (Badrinarayanan et al., PoPETS'22) initiates the study of updatable PSI (UPSI), which allows the two parties to compute PSI on a regular basis with sets that constantly get updated, where both the computation and communication complexity only grow with the size of the small...
Privacy-Preserving Breadth-First-Search and Maximal-Flow
Vincent Ehrmanntraut, Ulrike Meyer
Cryptographic protocols
We present novel Secure Multi-Party Computation (SMPC) protocols to perform Breadth-First-Searches (BFSs) and determine maximal flows on dense secret-shared graphs. In particular, we introduce a novel BFS protocol that requires only $\mathcal{O}(\log n)$ communication rounds on graphs with $n$ nodes, which is a big step from prior work that requires $\mathcal{O}(n \log n)$ rounds. This BFS protocol is then used in a maximal flow protocol based on the Edmonds-Karp algorithm, which requires...
The Black-Box Simulation Barrier Persists in a Fully Quantum World
Nai-Hui Chia, Kai-Min Chung, Xiao Liang, Jiahui Liu
Foundations
Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their fundamental importance and versatility in modern cryptography. However, the inherently different nature of quantum information significantly alters the landscape, necessitating a re-examination of ZK designs.
A crucial aspect of ZK protocols is their round complexity, intricately linked to $\textit{simulation}$, which forms the foundation of their formal definition and security proofs. In the...
Efficient Batch Algorithms for the Post-Quantum Crystals Dilithium Signature Scheme and Crystals Kyber Encryption Scheme
Nazlı Deniz TÜRE, Murat CENK
Cryptographic protocols
Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...
Practical Blind Signatures in Pairing-Free Groups
Michael Klooß, Michael Reichle, Benedikt Wagner
Public-key cryptography
Blind signatures have garnered significant attention in recent years, with several efficient constructions in the random oracle model relying on well-understood assumptions. However, this progress does not apply to pairing-free cyclic groups: fully secure constructions over cyclic groups rely on pairings, remain inefficient, or depend on the algebraic group model or strong interactive assumptions. To address this gap, Chairattana-Apirom, Tessaro, and Zhu (CTZ, Crypto 2024) proposed a new...
FLIP-and-prove R1CS
Anca Nitulescu, Nikitas Paslis, Carla Ràfols
Cryptographic protocols
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
Unbalanced Private Set Union with Reduced Computation and Communication
Cong Zhang, Yu Chen, Weiran Liu, Liqiang Peng, Meng Hao, Anyu Wang, Xiaoyun Wang
Cryptographic protocols
Private set union (PSU) is a cryptographic protocol that allows two parties to compute the union of their sets without revealing anything else. Despite some efficient PSU protocols that have been proposed, they mainly focus on the balanced setting, where the sets held by the parties are of similar size. Recently, Tu et al. (CCS 2023) proposed the first unbalanced PSU protocol which achieves sublinear communication complexity in the size of the larger set.
In this paper, we are interested...
MAESTRO: Multi-party AES using Lookup Tables
Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, Daniel Tschudi
Cryptographic protocols
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography.
In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our protocols...
HyperPianist: Pianist with Linear-Time Prover and Logarithmic Communication Cost
Chongrong Li, Pengfei Zhu, Yun Li, Cheng Hong, Wenjie Qu, Jiaheng Zhang
Cryptographic protocols
Recent years have seen great improvements in zero-knowledge proofs (ZKPs). Among them, zero-knowledge SNARKs are notable for their compact and efficiently-verifiable proofs, but suffer from high prover costs. Wu et al. (Usenix Security 2018) proposed to distribute the proving task across multiple machines, and achieved significant improvements in proving time. However, existing distributed ZKP systems still have quasi-linear prover cost, and may incur a communication cost that is linear in...
Improved YOSO Randomness Generation with Worst-Case Corruptions
Chen-Da Liu-Zhang, Elisaweta Masserova, João Ribeiro, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols
We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...
A Composable View of Homomorphic Encryption and Authenticator
Ganyuan Cao
Public-key cryptography
Homomorphic Encryption (HE) is a cutting-edge cryptographic technique that enables computations on encrypted data to be mirrored on the original data. This has quickly attracted substantial interest from the research community due to its extensive practical applications, such as in cloud computing and privacy-preserving machine learning.
In addition to confidentiality, the importance of authenticity has emerged to ensure data integrity during transmission and evaluation. To address...
Efficient Two-Party Secure Aggregation via Incremental Distributed Point Function
Nan Cheng, Aikaterini Mitrokotsa, Feng Zhang, Frank Hartmann
Cryptographic protocols
Computing the maximum from a list of secret inputs is a widely-used functionality that is employed ei- ther indirectly as a building block in secure computation frameworks, such as ABY (NDSS’15) or directly used in multiple applications that solve optimisation problems, such as secure machine learning or secure aggregation statistics. Incremental distributed point function (I-DPF) is a powerful primitive (IEEE S&P’21) that significantly reduces the client- to-server communication and are...
Updatable Private Set Intersection from Structured Encryption
Archita Agarwal, David Cash, Marilyn George, Seny Kamara, Tarik Moataz, Jaspal Singh
Cryptographic protocols
Many efficient custom protocols have been developed for two-party private set intersection (PSI), that allow the parties to learn the intersection of their private sets. However, these approaches do not yield efficient solutions in the dynamic setting when the parties’ sets evolve and the intersection has to be computed repeatedly. In this work we propose a new framework for this problem of updatable PSI — with elements being inserted and deleted — in the semihonest model based on structured...
Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness
Reo Eriguchi
Cryptographic protocols
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols introduced to achieve load-balancing in large-scale networks, which is defined as the maximum communication complexity required by any one player within the protocol execution. Towards the goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing symmetric functions in the correlated randomness model, where players are given input-independent correlated...
Breaking Free: Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions
Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai
Cryptographic protocols
Multi-party private set union (MPSU) protocol enables $m$ $(m > 2)$ parties, each holding a set, to collectively compute the union of their sets without revealing any additional information to other parties. There are two main categories of multi-party private set union (MPSU) protocols: The first category builds on public-key techniques, where existing works require a super-linear number of public-key operations, resulting in their poor practical efficiency. The second category builds on...
A New PPML Paradigm for Quantized Models
Tianpei Lu, Bingsheng Zhang, Xiaoyuan Zhang, Kui Ren
Cryptographic protocols
Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks.
In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...
Curl: Private LLMs through Wavelet-Encoded Look-Up Tables
Manuel B. Santos, Dimitris Mouris, Mehmet Ugurbil, Stanislaw Jarecki, José Reis, Shubho Sengupta, Miguel de Vega
Cryptographic protocols
Recent advancements in transformers have revolutionized machine learning, forming the core of Large language models (LLMs). However, integrating these systems into everyday applications raises privacy concerns as client queries are exposed to model owners. Secure multiparty computation (MPC) allows parties to evaluate machine learning applications while keeping sensitive user inputs and proprietary models private. Due to inherent MPC costs, recent works introduce model-specific optimizations...
Securely Training Decision Trees Efficiently
Divyanshu Bhardwaj, Sandhya Saravanan, Nishanth Chandran, Divya Gupta
Cryptographic protocols
Decision trees are an important class of supervised learning algorithms. When multiple entities contribute data to train a decision tree (e.g. for fraud detection in the financial sector), data privacy concerns necessitate the use of a privacy-enhancing technology such as secure multi-party computation (MPC) in order to secure the underlying training data. Prior state-of-the-art (Hamada et al.) construct an MPC protocol for decision tree training with a communication of $\mathcal{O}(hmN\log...
AITIA: Efficient Secure Computation of Bivariate Causal Discovery
Truong Son Nguyen, Lun Wang, Evgenios M. Kornaropoulos, Ni Trieu
Cryptographic protocols
Researchers across various fields seek to understand causal relationships but often find controlled experiments impractical. To address this, statistical tools for causal discovery from naturally observed data have become crucial. Non-linear regression models, such as Gaussian process regression, are commonly used in causal inference but have limitations due to high costs when adapted for secure computation. Support vector regression (SVR) offers an alternative but remains costly in an...
Shuffle Arguments Based on Subset-Checking
Behzad Abdolmaleki, Prastudy Fauzi, Toomas Krips, Janno Siim
Cryptographic protocols
Zero-knowledge shuffle arguments are a useful tool for constructing mix-nets which enable anonymous communication. We propose a new shuffle argument using a novel technique that probabilistically checks that each weighted set of input elements corresponds to some weighted set of output elements, with weights from the same set as the input element weights. We achieve this using standard discrete log assumptions and the shortest integer solution (SIS) assumption. Our shuffle argument has...
Distributional Secure Merge
Gayathri Garimella, Srinivasan Raghuramam, Peter Rindal
Cryptographic protocols
Secure merge refers to the problem of merging two sorted lists. The problem appears in different settings where each list is held by one of two parties, or the lists are themselves shared among two or more parties. The output of a secure merge protocol is secret shared. Each variant of the problem offers many useful applications.
The difficulty in designing secure merge protocols vis-a-vis insecure merge protocols (which work in linear time with a single pass over the lists) has to do...
Dishonest Majority Multi-Verifier Zero-Knowledge Proofs for Any Constant Fraction of Corrupted Verifiers
Daniel Escudero, Antigoni Polychroniadou, Yifan Song, Chenkai Weng
Cryptographic protocols
In this work we study the efficiency of Zero-Knowledge (ZK) arguments of knowledge, particularly exploring Multi-Verifier ZK (MVZK) protocols as a midway point between Non-Interactive ZK and Designated-Verifier ZK, offering versatile applications across various domains. We introduce a new MVZK protocol designed for the preprocessing model, allowing any constant fraction of verifiers to be corrupted, potentially colluding with the prover. Our contributions include the first MVZK over rings....
Great-LaKeys: An Improved Threshold-PRF and a Novel Exponent-VRF from LWR
Matthias Geihs
Cryptographic protocols
Building on the recently proposed LWR-based threshold-PRF LaKey, we propose two new constructions. First, we propose an optimized threshold-PRF with significantly reduced round and communication complexity. We achieve this by improving the underlying bit truncation protocol, as well as the lower bound on the required number of LWR instances. Second, we show that the same underlying PRF construction lends itself as a basis for a novel and efficient exponent-VRF. We implement prototypes of...
Privacy-Preserving Dijkstra
Benjamin Ostrovsky
Cryptographic protocols
Given a graph $G(V,E)$, represented as a secret-sharing of an adjacency list, we show how to obliviously convert it into an alternative, MPC-friendly secret-shared representation, so-called $d$-normalized replicated adjacency list (which we abbreviate to $d$-normalized), where the size of our new data-structure is only 4x larger -- compared to the original (secret-shared adjacency list) representation of $G$. Yet, this new data structure enables us to execute oblivious graph algorithms that...
Towards Optimal Parallel Broadcast under a Dishonest Majority
Daniel Collins, Sisi Duan, Julian Loss, Charalampos Papamanthou, Giorgos Tsimos, Haochen Wang
Cryptographic protocols
The parallel broadcast (PBC) problem generalises the classic Byzantine broadcast problem to the setting where all $n$ nodes broadcast a message and deliver $O(n)$ messages. PBC arises naturally in many settings including multi-party computation. Recently, Tsimos, Loss, and Papamanthou (CRYPTO 2022) showed PBC protocols with improved communication, against an adaptive adversary who can corrupt all but a constant fraction $\epsilon$ of nodes (i.e., $f < (1 - \epsilon)n$). However, their study...
Efficient Secure Communication Over Dynamic Incomplete Networks With Minimal Connectivity
Ivan Damgård, Divya Ravi, Lawrence Roy, Daniel Tschudi, Sophia Yakoubov
Cryptographic protocols
We study the problem of implementing unconditionally secure reliable and private communication (and hence secure computation) in dynamic incomplete networks.
Our model assumes that the network is always $k$-connected, for some $k$, but the concrete connection graph is adversarially chosen in each round of interaction.
We show that, with $n$ players and $t$ malicious corruptions, perfectly secure communication is possible if and only if $k > 2t$. This disproves a conjecture from earlier...
Shared OT and Its Applications to Unconditional Secure Integer Equality, Comparison and Bit-Decomposition
Lucas Piske, Jeroen van de Graaf, Anderson C. A. Nascimento, Ni Trieu
Cryptographic protocols
We present unconditionally perfectly secure protocols in the
semi-honest setting for several functionalities: (1) private elementwise
equality; (2) private bitwise integer comparison; and (3) bit-decomposition.
These protocols are built upon a new concept called Shared Oblivious Transfer (Shared OT). Shared OT extends the one-out-of-N String OT by replacing strings with integers modulo $M$ and allowing additive secret-sharing of all inputs and outputs. These extensions can be...
Communication Complexity vs Randomness Complexity in Interactive Proofs
Benny Applebaum, Kaartik Bhushan, Manoj Prabhakaran
Foundations
In this note, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any $I$-round interactive protocol that uses $\rho$ random bits into another one for the same problem with the additional property that the verifier's communication is bounded by $O(I\cdot \rho)$. Importantly, this is done with...
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
Constant-Round Arguments for Batch-Verification and Bounded-Space Computations from One-Way Functions
Noga Amit, Guy N. Rothblum
Cryptographic protocols
What are the minimal cryptographic assumptions that suffice for constructing efficient argument systems, and for which tasks? Recently, Amit and Rothblum [STOC 2023] showed that one-way functions suffice for constructing constant-round arguments for bounded-depth computations. In this work we ask: what other tasks have efficient argument systems based only on one-way functions? We show two positive results:
First, we construct a new argument system for batch-verification of $k$ $UP$...
Fully Secure MPC and zk-FLIOP Over Rings: New Constructions, Improvements and Extensions
Anders Dalskov, Daniel Escudero, Ariel Nof
Cryptographic protocols
We revisit the question of the overhead to achieve full security (i.e., guaranteed output delivery) in secure multiparty computation (MPC). Recent works have closed the gap between full security and semi-honest security, by introducing protocols where the parties first compute the circuit using a semi-honest protocol and then run a verification step with sublinear communication in the circuit size. However, in these works the number of interaction rounds in the verification step is also...
Multivariate Multi-Polynomial Commitment and its Applications
Xiao Yang, Chengru Zhang, Mark Ryan, Gao Meng
Cryptographic protocols
We introduce and formally define Multivariate Multi-Polynomial (MMP) commitment, a commitment scheme on multiple multivariate polynomials, and illustrate the concept with an efficient construction, which enjoys constant commitment size and logarithmic proof size. We further enhance our MMP scheme to achieve the zero-knowledge property.
Additionally, combined with a novel zero-knowledge range proof for Pedersen subvector commitment, we present a Zero-Knowledge Range Proof (ZKRP) for MMP...
Succinct Homomorphic Secret Sharing
Damiano Abram, Lawrence Roy, Peter Scholl
Cryptographic protocols
This work introduces homomorphic secret sharing (HSS) with succinct share size. In HSS, private inputs are shared between parties, who can then homomorphically evaluate a function on their shares, obtaining a share of the function output. In succinct HSS, a portion of the inputs can be distributed using shares whose size is sublinear in the number of such inputs. The parties can then locally evaluate a function $f$ on the shares, with the restriction that $f$ must be linear in the succinctly...
Information-theoretic Multi-server Private Information Retrieval with Client Preprocessing
Jaspal Singh, Yu Wei, Vassilis Zikas
Cryptographic protocols
A private information retrieval (PIR) protocol allows a client to fetch any entry from single or multiple servers who hold a public database (of size $n$) while ensuring no server learns any information about the client's query. Initial works on PIR were focused on reducing the communication complexity of PIR schemes. However, standard PIR protocols are often impractical to use in applications involving large databases, due to its inherent large server-side computation complexity, that's at...
Secure Multiparty Computation in the Presence of Covert Adaptive Adversaries
Isheeta Nargis, Anwar Hasan
Cryptographic protocols
We design a new MPC protocol for arithmetic circuits secure against erasure-free covert adaptive adversaries with deterrence 1/2. The new MPC protocol has the same asymptotic communication cost, the number of PKE operations and the number of exponentiation operations as the most efficient MPC protocol for arithmetic circuits secure against covert static adversaries. That means, the new MPC protocol improves security from covert static security to covert adaptive adversary almost for free....
$\mathsf{OPA}$: One-shot Private Aggregation with Single Client Interaction and its Applications to Federated Learning
Harish Karthikeyan, Antigoni Polychroniadou
Applications
Our work aims to minimize interaction in secure computation due to the high cost and challenges associated with communication rounds, particularly in scenarios with many clients. In this work, we revisit the problem of secure aggregation in the single-server setting where a single evaluation server can securely aggregate client-held individual inputs. Our key contribution is the introduction of One-shot Private Aggregation ($\mathsf{OPA}$) where clients speak only once (or even choose not to...
An Improved Threshold Homomorphic Cryptosystem Based on Class Groups
Lennart Braun, Guilhem Castagnos, Ivan Damgård, Fabien Laguillaumie, Kelsey Melissaris, Claudio Orlandi, Ida Tucker
Cryptographic protocols
We present distributed key generation and decryption protocols for an additively homomorphic cryptosystem based on class groups, improving on a similar system proposed by Braun, Damgård, and Orlandi at CRYPTO '23. Our key generation is similarly constant round but achieves lower communication complexity than the previous work. This improvement is in part the result of relaxing the reconstruction property required of the underlying integer verifiable secret sharing scheme. This eliminates the...
A Theoretical Take on a Practical Consensus Protocol
Victor Shoup
Cryptographic protocols
The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed computing. Very recently, Das et al. (2024) developed a new ACS protocol with several desirable properties: (i) it provides optimal resilience, tolerating up to $t < n/3$ corrupt parties out of $n$ parties in total, (ii) it does not rely on a trusted set up, (iii) it utilizes only "lighweight" cryptography, which can be instantiated using just a hash function, and (iv) it has expected round complexity...
Committing AVID with Partial Retrieval and Optimal Storage
Nicolas Alhaddad, Leonid Reyzin, Mayank Varia
Cryptographic protocols
Asynchronous Verifiable Information Dispersal (AVID) allows a dealer to disperse a message $M$ across a collection of server replicas consistently and efficiently, such that any future client can reliably retrieve the message $M$ if some servers fail.
Since AVID was introduced by Cachin and Tessaro in 2005, several works improved the asymptotic communication complexity of AVID protocols.
However, recent gains in communication complexity have come at the expense of sub-optimal storage,...
Approximate PSI with Near-Linear Communication
Wutichai Chongchitmate, Steve Lu, Rafail Ostrovsky
Cryptographic protocols
Private Set Intersection (PSI) is a protocol where two parties with individually held confidential sets want to jointly learn (or secret-share) the intersection of these two sets and reveal nothing else to each other. In this paper, we introduce a natural extension of this notion to approximate matching. Specifically, given a distance metric between elements, an approximate PSI (Approx-PSI) allows to run PSI where ``close'' elements match. Assuming that elements are either ``close'' or...
Xproofs: New Aggregatable and Maintainable Matrix Commitment with Optimal Proof Size
Xinwei Yong, Jiaojiao Wu, Jianfeng Wang
Cryptographic protocols
Vector Commitment (VC) enables one to commit to a vector, and then the element at a specific position can be opened, with proof of consistency to the initial commitment. VC is a powerful primitive with various applications, including stateless cryptocurrencies. Recently, matrix commitment Matproofs (Liu and Zhang CCS 2022), as an extension of VC, has been proposed to reduce the communication and computation complexity of VC-based cryptocurrencies. However, Matproofs requires linear-sized...
Faster Private Decision Tree Evaluation for Batched Input from Homomorphic Encryption
Kelong Cong, Jiayi Kang, Georgio Nicolas, Jeongeun Park
Applications
Privacy-preserving decision tree evaluation (PDTE) allows a client that holds feature vectors to perform inferences against a decision tree model on the server side without revealing feature vectors to the server. Our work focuses on the non-interactive batched setting where the client sends a batch of encrypted feature vectors and then obtains classifications, without any additional interaction. This is useful in privacy-preserving credit scoring, biometric authentication, and many more...
2024/648
Last updated: 2024-09-05
Encrypted KNN Implementation on Distributed Edge Device Network
B Pradeep Kumar Reddy, Ruchika Meel, Ayantika Chatterjee
Applications
Machine learning (ML) as a service has emerged as a rapidly expanding field across various industries like
healthcare, finance, marketing, retail and e-commerce, Industry 4.0, etc where a huge amount of data is gen-
erated. To handle this amount of data, huge computational power is required for which cloud computing used
to be the first choice. However, there are several challenges in cloud computing like limitations of bandwidth,
network connectivity, higher latency, etc. To address...
Conditional disclosure of secrets with quantum resources
Vahid R. Asadi, Kohdai Kuroiwa, Debbie Leung, Alex May, Sabrina Pasterski, Chris Waddell
Cryptographic protocols
The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related...
Interactive Threshold Mercurial Signatures and Applications
Masayuki Abe, Masaya Nanri, Octavio Perez Kempner, Mehdi Tibouchi
Public-key cryptography
Mercurial signatures are an extension of equivalence class signatures that allow malleability for the public keys, messages, and signatures within the respective classes. Unfortunately, the most efficient construction to date suffers from a weak public key class-hiding property, where the original signer with the signing key can link the public keys in the same class. This is a severe limitation in their applications, where the signer is often considered untrustworthy of privacy.
This...
$\mathsf{Cougar}$: Cubic Root Verifier Inner Product Argument under Discrete Logarithm Assumption
Hyeonbum Lee, Seunghun Paik, Hyunjung Son, Jae Hong Seo
Cryptographic protocols
An inner product argument (IPA) is a cryptographic primitive used to construct a zero-knowledge proof system, which is a notable privacy-enhancing technology. We propose a novel efficient IPA called $\mathsf{Cougar}$. $\mathsf{Cougar}$ features cubic root verifier and logarithmic communication under the discrete logarithm (DL) assumption. At Asiacrypt2022, Kim et al. proposed two square root verifier IPAs under the DL assumption. Our main objective is to overcome the limitation of square...
MiniCast: Minimizing the Communication Complexity of Reliable Broadcast
Thomas Locher, Victor Shoup
Cryptographic protocols
We give a new protocol for reliable broadcast with improved communication complexity for long messages. Namely, to reliably broadcast a message a message $m$ over an asynchronous network to a set of $n$ parties, of which fewer than $n/3$ may be corrupt, our protocol achieves a communication complexity of $1.5 |m| n + O( \kappa n^2 \log(n) )$, where $\kappa$ is the output length of a collision-resistant hash function. This result improves on the previously best known bound for long...
Actively Secure Private Set Intersection in the Client-Server Setting
Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Xiao Wang
Cryptographic protocols
Private set intersection (PSI) allows two parties to compute the intersection of their sets without revealing anything else. In some applications of PSI, a server holds a large set and runs a PSI protocol with multiple clients, each with its own smaller set. In this setting, existing protocols fall short: they either achieve only semi-honest security, or else require the server to run the protocol from scratch for each execution.
We design an efficient protocol for this setting with...
Communication-Efficient Multi-Party Computation for RMS Programs
Thomas Attema, Aron van Baarsen, Stefan van den Berg, Pedro Capitão, Vincent Dunning, Lisa Kohl
Cryptographic protocols
Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph.
Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for...
Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting
Aron van Baarsen, Marc Stevens
Cryptographic protocols
Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection.
In this paper we consider...
Fuzzy private set intersection (Fuzzy PSI) is a cryptographic protocol for privacy-preserving similarity matching, which is one of the essential operations in various real-world applications such as facial authentication, information retrieval, or recommendation systems. Despite recent advancements in fuzzy PSI protocols, still a huge barrier remains in deploying them for these applications. The main obstacle is the high dimensionality, e.g., from 128 to 512, of data; lots of existing...
Secure Multiparty Computation (MPC) protocols that achieve Identifiable Abort (IA) guarantee honest parties that in the event that they are denied output, they will be notified of the identity of at least one corrupt party responsible for the abort. Cheater identification provides recourse in the event of a protocol failure, and in some cases can even be desired over Guaranteed Output Delivery. However, protocols in the literature typically make use of broadcast as a necessary tool in...
A secret-sharing scheme allows the distribution of a secret $s$ among $n$ parties, such that only certain predefined “authorized” sets of parties can reconstruct the secret, while all other “unauthorized” sets learn nothing about $s$. The collection of authorized/unauthorized sets is defined by a monotone function $f: \{0,1\}^n \rightarrow \{0,1\}$. It is known that any monotone function can be realized by a secret-sharing scheme; thus, the smallest achievable \emph{total share size},...
Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers. Implementing a publicly verifiable...
In this work, we address the problem of Delegated PSI (D-PSI), where a cloud server is introduced to handle most computational and communication tasks. D-PSI enables users to securely delegate their private sets to the cloud, ensuring the privacy of their data while allowing efficient computation of the intersection. The cloud operates under strict security requirements, learning nothing about the individual sets or the intersection result. Moreover, D-PSI minimizes user-to-user...
This paper presents the first optimal-resilient, adaptively secure asynchronous common coin protocol with $O(\lambda n^2)$ communication complexity and $O(1)$ rounds, requiring only a public silent setup. Our protocol immediately implies a sequence of quadratic-communication, constant-round asynchronous Byzantine agreement protocols and asynchronous distributed key generation with a silent setup. Along the way, we formulate a new primitive called asynchronous subset alignment and introduce a...
To provide safe communication across an unprotected medium such as the internet, network protocols are being established. These protocols employ public key techniques to perform key exchange and authentication. Transport Layer Security (TLS) is a widely used network protocol that enables secure communication between a server and a client. TLS is employed in billions of transactions per second. Contemporary protocols depend on traditional methods that utilize the computational complexity of...
Federated Learning (FL) enables collaborative model training while preserving data privacy by avoiding the sharing of raw data. However, in large-scale FL systems, efficient secure aggregation and dropout handling remain critical challenges. Existing state-of-the-art methods, such as those proposed by Liu et al. (UAI'22) and Li et al. (ASIACRYPT'23), suffer from prohibitive communication overhead, implementation complexity, and vulnerability to poisoning attacks. Alternative approaches that...
The \emph{Fluid} multiparty computation (MPC) model, introduced in (Choudhuri \emph{et al.} CRYPTO 2021), addresses dynamic scenarios where participants can join or leave computations between rounds. Communication complexity initially stood at $\Omega(n^2)$ elements per gate, where $n$ is the number of parties in a committee online at a time. This held for both statistical security (honest majority) and computational security (dishonest majority) in (Choudhuri \emph{et al.}~CRYPTO'21) and...
Multilateral Trade Credit Set-off (MTCS) is a process run by a service provider that collects trade credit data (i.e. obligations from a firm to pay another firm) from a network of firms and detects cycles of debts that can be removed from the system. The process yields liquidity savings for the participants, who can discharge their debts without relying on expensive loans. We propose an MTCS protocol that protects firms' sensitive data, such as the obligation amount or the identity of the...
The COOL protocol of Chen (DISC'21) is a major advance that enables perfect security for various tasks (in particular, Byzantine Agreement in Synchrony and Reliable Broadcast in Asynchrony). For an input of size $L$ bits, its communication complexity is $O(nL+n^2 \log n)$, which is optimal up to a $\log n$ factor. Unfortunately, Chen’s analysis is rather intricate and complex. Our main contribution is a simple analysis of a new variant of COOL based on elementary counting arguments....
Differentially private (DP) heavy-hitter detection is an important primitive for data analysis. Given a threshold $t$ and a dataset of $n$ items from a domain of size $d$, such detection algorithms ignore items occurring fewer than $t$ times while identifying items occurring more than $t+\Delta$ times; we call $\Delta$ the error margin. In the central model where a curator holds the entire dataset, $(\varepsilon,\delta)$-DP algorithms can achieve error margin $\Theta(\frac 1 \varepsilon...
Private set intersection (PSI) allows any two parties (say client and server) to jointly compute the intersection of their sets without revealing anything else. Fully homomorphic encryption (FHE)-based PSI is a cryptographic solution to implement PSI-based protocols. Most FHE-based PSI protocols implement hash function approach and oblivious transfer approach. The main limitations of their protocols are 1) high communication complexity, that is, $O(xlogy)$ (where $x$ is total number of...
We present a garbling scheme for Boolean circuits with 1 bit per gate communication based on either ring learning with errors (RLWE) or NTRU assumption, with key-dependent message security. The garbling consists of 1) a homomorphically encrypted seed that can be expanded to encryption of many pseudo-random bits and 2) one-bit stitching information per gate to reconstruct garbled tables from the expanded ciphertexts. By using low-complexity PRGs, both the garbling and evaluation of each...
The CL cryptosystem, introduced by Castagnos and Laguillaumie in 2015, is a linearly homomorphic encryption scheme that has seen numerous developments and applications in recent years, particularly in the field of secure multiparty computation. Designing efficient zero-knowledge proofs for the CL framework is critical, especially for achieving adaptive security for such multiparty protocols. This is a challenging task due to the particularities of class groups of quadratic fields used to...
We propose plausible post-quantum (PQ) oblivious pseudorandom functions (OPRFs) based on the Power Residue PRF (Damgård CRYPTO’88), a generalization of the Legendre PRF. For security parameter $\lambda$, we consider the PRF $\mathsf{Gold}_k(x)$ that maps an integer $x$ modulo a public prime $p = 2^\lambda\cdot g + 1$ to the element $(k + x)^g \bmod p$, where $g$ is public and $\log g \approx 2\lambda$. At the core of our constructions are efficient novel methods for evaluating...
Fixed point arithmetic (FPA) is essential to enable practical Privacy-Preserving Machine Learning. When multiplying two fixed-point numbers, truncation is required to ensure that the product maintains correct precision. While multiple truncation schemes based on Secure Multiparty Computation (MPC) have been proposed, which of the different schemes offers the best trade-off between accuracy and efficiency on common PPML datasets and models has remained underexplored. In this work, we...
Shuffle is a frequently used operation in secure multiparty computations, with various applications, including joint data analysis and anonymous communication systems. Most existing MPC shuffle protocols are constructed from MPC permutation protocols, which allows a party to securely apply its private permutation to an array of $m$ numbers shared among all $n$ parties. Following a ``permute-in-turn'' paradigm, these protocols result in $\Omega(n^2m)$ complexity in the semi-honest setting....
Presenting a formal analysis of the Overpass protocol's hierarchical state channel architecture, focusing on its unique approach to state synchronization and tamper detection through cryptographic primitives. The protocol achieves global state consistency without traditional consensus mechanisms by leveraging Sparse Merkle Trees (SMTs), zero-knowledge proofs, and a deterministic hierarchical structure. We provide mathematical proofs of security properties and analyze the protocol's...
In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector based PIRs of Yekhanin and Efremenko. Previously such a combination was achieved in an ingenious way by Dvir and Gopi, using polynomials and derivatives over certain exotic rings, en route to their...
As Succinct Non-interactive Arguments of Knowledge (SNARKs) gain traction for large-scale applications, distributed proof generation is a promising technique to horizontally scale up the performance. In such protocols, the workload to generate SNARK proofs is distributed among a set of workers, potentially with the help of a coordinator. Desiderata include linear worker time (in the size of their sub-tasks), low coordination overhead, low communication complexity, and accountability (the...
In this work, we present a new paradigm for constructing Group Authenticated Key Exchange (GAKE). This result is the first tightly secure GAKE scheme in a strong security model that allows maximum exposure attacks (MEX) where the attacker is allowed to either reveal the secret session state or the long-term secret of all communication partners. Moreover, our protocol features the strong and realistic notion of (full) perfect forward secrecy (PFS), that allows the attacker to actively modify...
We prove that Basefold(Crypto 2024) is secure in the $\textit{list decoding regime}$, within the double Johnson bound and with error probability $\frac{O(n)}{|F|}$. At the heart of this proof is a new, stronger statement for $\textit{correlated agreement}$, which roughly states that if a linear combination of vectors $\pi_L + r \pi_R$ agrees with a codeword at every element in $S \subset [n]$, then so do $\pi_L, \pi_R$. Our result is purely combinatorial and therefore extends to any finite...
In this paper we introduce the notion of encrypted RAM delegation. In an encrypted RAM delegation scheme, the prover creates a succinct proof for a group of two input strings $x_\mathsf{pb}$ and $x_\mathsf{pr}$, where $x_\mathsf{pb}$ corresponds to a large \emph{public} input and $x_\mathsf{pr}$ is a \emph{private} input. A verifier can check correctness of computation of $\mathcal{M}$ on $(x_\mathsf{pb}, x_\mathsf{pr})$, given only the proof $\pi$ and $x_\mathsf{pb}$. We design encrypted...
Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries. These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
Homomorphic Encryption (HE) technology allows for processing encrypted data, breaking through data isolation barriers and providing a promising solution for privacy-preserving computation. The integration of HE technology into Convolutional Neural Network (CNN) inference shows potential in addressing privacy issues in identity verification, medical imaging diagnosis, and various other applications. The CKKS HE algorithm stands out as a popular option for homomorphic CNN inference due to its...
Asynchronous multiparty computation (AMPC) requires an input agreement phase where all participants have a consistent view of the set of private inputs. While the input agreement problem can be precisely addressed by a Byzantine fault-tolerant consensus known as Asynchronous Common Subset (ACS), existing ACS constructions with potential post-quantum security have a large $\widetilde{\mathcal{O}}(n^3)$ communication complexity for a network of $n$ nodes. This poses a bottleneck for AMPC in...
We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two modes: low-leakage mode, which reveals minimal information such as data size, expected response length, and query arrival rate; and subliminal mode, which reveals only the data size while hiding metadata including query and update times, the number of operations executed, and even whether an operation was executed at all---albeit at the cost of full correctness. We achieve this by exploiting a tradeoff...
We consider the setting of asynchronous multi-party computation (AMPC) with optimal resilience $n=3t+1$ and linear communication complexity, and employ only ``lightweight'' cryptographic primitives, such as random oracle hash. In this model, we introduce two concretely efficient AMPC protocols for a circuit with $|C|$ multiplication gates: a protocol achieving fairness with $\mathcal{O}(|C|\cdot n + n^3)$ field elements of communication, and a protocol achieving guaranteed output delivery...
This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits, referred to as wire maps, which may change based on program inputs or statements being argued. Preparing commitments to wire maps in advance is essential for certain SNARK protocols to maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider receiving wire maps from an...
The theory of compressed $\Sigma$-protocols [AC20, ACF21] provides a standardized framework for creating efficient $\Sigma$-protocols. This method involves two main phases: first, amortization, which combines multiple instances that satisfy a homomorphic relation into a single instance; and second, Bulletproofs compression [BBB+18], which minimizes communication overhead to a logarithmic scale during the verification of the combined instance. For high-degree polynomial (non-homomorphic)...
Oblivious map (OMAP) is an important component in encrypted databases, utilized to safeguard against the server inferring sensitive information about client's encrypted key-value stores based on access patterns. Despite its widespread usage and importance, existing OMAP solutions face practical challenges, including the need for a large number of interaction rounds between the client and server, as well as the substantial communication bandwidth requirements. For example, the...
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t<n/2$ corruptions, bypassing the setup-free $t<n/3$ barrier. Alas, the overwhelming majority of protocols in the literature have the caveat that their security crucially hinges on the security of the cryptography and setup, to the point where if the cryptography is broken, even a single corrupted party can violate the security of the protocol. Thus these protocols provide higher...
We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives have many applications in cryptography. We study these primitives requiring information-theoretic security. The complexity of these primitives has been dramatically improved in the last few years are they are closely related, i.e., the the 2-server PIR protocol of Dvir and Gopi (J. ACM 2016) was...
We describe a fully distributed KZG-based Snark instantiable with any pairing-friendly curve with a sufficiently large scalar field. In particular, the proof system is compatible with Cocks-Pinch or Brezing-Weng outer curves to the the widely used curves such as secp256k1, ED25519, BLS12-381 and BN254. This allows us to retain the fully parallelizable nature and the O(1) communication complexity of Pianist ([LXZ+23]) in conjunction with circumventing the huge overhead of non-native...
We present $\mathsf{Protoss}$, a new balanced PAKE protocol with optimal communication efficiency. Messages are only 160 bits long and the computational complexity is lower than all previous approaches. Our protocol is proven secure in the random oracle model and features a security proof in a strong security model with multiple parties and multiple sessions, while allowing for generous attack queries including multiple $\mathsf{Test}$-queries. Moreover, the proof is in the practically...
Laconic cryptography studies two-message protocols that securely compute on large amounts of data with minimal communication cost. Laconic oblivious transfer (OT) is a central primitive where the receiver's input is a large database $\mathsf{DB}$ and the sender's inputs are two messages $m_0$, $m_1$ along with an index $i$, such that the receiver learns the message determined by the choice bit $\mathsf{DB}_i$. OT becomes even more useful for secure computation when considering its laconic...
Quantum computational advantage refers to an existence of computational tasks that are easy for quantum computing but hard for classical one. Unconditionally showing quantum advantage is beyond our current understanding of complexity theory, and therefore some computational assumptions are needed. Which complexity assumption is necessary and sufficient for quantum advantage? In this paper, we show that inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if...
In decentralized finance (DeFi), the public availability of pending transactions presents significant privacy concerns, enabling market manipulation through miner extractable value (MEV). MEV occurs when block proposers exploit the ability to reorder, omit, or include transactions, causing financial loss to users from frontrunning. Recent research has focused on encrypting pending transactions, hiding transaction data until block finalization. To this end, Choudhuri et al. (USENIX '24)...
A mixnet developed by Hébant et al. (PKC '20) employs certified ciphertexts that carry homomorphic signatures from an authority, reducing the complexity of the shuffling proof, and thereby enabling efficient large-scale deployment. However, their privacy relies on trusting the authority, making it unsuitable for voting, the primary application of mixnets. Building on the prior work, we leverage recent advances in equivalence class signatures by replacing homomorphic signatures with newly...
Private set intersection (PSI) is a type of private set operation (PSO) for which concretely efficient linear-complexity protocols do exist. However, the situation is currently less satisfactory for other relevant PSO problems such as private set union (PSU): For PSU, the most promising protocols either rely entirely on computationally expensive public-key operations or suffer from substantial communication overhead. In this work, we present the first PSU protocol that is mainly based on...
At CRYPTO '94, Cramer, Damgaard, and Schoenmakers introduced a general technique for constructing honest-verifier zero-knowledge proofs of partial knowledge (PPK), where a prover Alice wants to prove to a verifier Bob she knows $\tau$ witnesses for $\tau$ claims out of $k$ claims without revealing the indices of those $\tau$ claims. Their solution starts from a base honest-verifier zero-knowledge proof of knowledge $\Sigma$ and requires to run in parallel $k$ execution of the base...
Proofs of partial knowledge, first considered by Cramer, Damgård and Schoenmakers (CRYPTO'94) and De Santis et al. (FOCS'94), allow for proving the validity of $k$ out of $n$ different statements without revealing which ones those are. In this work, we present a new approach for transforming certain proofs system into new ones that allows for proving partial knowledge. The communication complexity of the resulting proof system only depends logarithmically on the total number of statements...
In the context of secure multiparty computation (MPC) protocols with guaranteed output delivery (GOD) for the honest majority setting, the state-of-the-art in terms of communication is the work of (Goyal et al. CRYPTO'20), which communicates O(n|C|) field elements, where |C| is the size of the circuit being computed and n is the number of parties. Their round complexity, as usual in secret-sharing based MPC, is proportional to O(depth(C)), but only in the optimistic case where there is no...
We consider the graph-theoretic problem of removing (few) nodes from a directed acyclic graph in order to reduce its depth. While this problem is intractable in the general case, we provide a variety of algorithms in the case where the graph is that of a circuit of fan-in (at most) two, and explore applications of these algorithms to secure multiparty computation with low communication. Over the past few years, a paradigm for low-communication secure multiparty computation has found success...
Blockchain-enabled digital currency systems have typically operated in isolation, lacking necessary mechanisms for seamless interconnection. Consequently, transferring assets across distinct currency systems remains a complex challenge, with existing schemes often falling short in ensuring security, privacy, and practicality. This paper proposes P2C2T -- a privacy-preserving cross-chain transfer scheme. It is the first scheme to address atomicity, unlinkability, indistinguishability,...
In this work, we study constant round multiparty computation (MPC) for Boolean circuits against a fully malicious adversary who may control up to $n-1$ out of $n$ parties. Without relying on fully homomorphic encryption (FHE), the best-known results in this setting are achieved by Wang et al. (CCS 2017) and Hazay et al. (ASIACRYPT 2017) based on garbled circuits, which require a quadratic communication in the number of parties $O(|C|\cdot n^2)$. In contrast, for non-constant round MPC, the...
Distributed Key Generation (DKG) is a technique that enables the generation of threshold cryptography keys among a set of mutually untrusting nodes. DKG generates keys for a range of decentralized applications such as threshold signatures, multiparty computation, and Byzantine consensus. Over the past five years, research on DKG has focused on optimizing network communication protocols to improve overall system efficiency by reducing communication complexity. However, SOTA asynchronous...
A significant body of work in information-theoretic cryptography has been devoted to the fundamental problem of understanding the power of randomness in private computation. This has included both in-depth study of the randomness complexity of specific functions (e.g., Couteau and Ros ́en, ASIACRYPT 2022, gives an upper bound of 6 for n-party $\mathsf{AND}$), and results for broad classes of functions (e.g., Kushilevitz et al. STOC 1996, gives an $O(1)$ upper bound for all functions with...
Private set intersection (PSI) allows two mutually distrusting parties each holding a private set of elements, to learn the intersection of their sets without revealing anything beyond the intersection. Recent work (Badrinarayanan et al., PoPETS'22) initiates the study of updatable PSI (UPSI), which allows the two parties to compute PSI on a regular basis with sets that constantly get updated, where both the computation and communication complexity only grow with the size of the small...
We present novel Secure Multi-Party Computation (SMPC) protocols to perform Breadth-First-Searches (BFSs) and determine maximal flows on dense secret-shared graphs. In particular, we introduce a novel BFS protocol that requires only $\mathcal{O}(\log n)$ communication rounds on graphs with $n$ nodes, which is a big step from prior work that requires $\mathcal{O}(n \log n)$ rounds. This BFS protocol is then used in a maximal flow protocol based on the Edmonds-Karp algorithm, which requires...
Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their fundamental importance and versatility in modern cryptography. However, the inherently different nature of quantum information significantly alters the landscape, necessitating a re-examination of ZK designs. A crucial aspect of ZK protocols is their round complexity, intricately linked to $\textit{simulation}$, which forms the foundation of their formal definition and security proofs. In the...
Digital signatures ensure authenticity and secure communication. They are used to verify the integrity and authenticity of signed documents and are widely utilized in various fields such as information technologies, finance, education, and law. They are crucial in securing servers against cyber attacks and authenticating connections between clients and servers. Additionally, encryption is used in many areas, such as secure communication, cloud, server and database security to ensure data...
Blind signatures have garnered significant attention in recent years, with several efficient constructions in the random oracle model relying on well-understood assumptions. However, this progress does not apply to pairing-free cyclic groups: fully secure constructions over cyclic groups rely on pairings, remain inefficient, or depend on the algebraic group model or strong interactive assumptions. To address this gap, Chairattana-Apirom, Tessaro, and Zhu (CTZ, Crypto 2024) proposed a new...
In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...
Private set union (PSU) is a cryptographic protocol that allows two parties to compute the union of their sets without revealing anything else. Despite some efficient PSU protocols that have been proposed, they mainly focus on the balanced setting, where the sets held by the parties are of similar size. Recently, Tu et al. (CCS 2023) proposed the first unbalanced PSU protocol which achieves sublinear communication complexity in the size of the larger set. In this paper, we are interested...
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography. In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our protocols...
Recent years have seen great improvements in zero-knowledge proofs (ZKPs). Among them, zero-knowledge SNARKs are notable for their compact and efficiently-verifiable proofs, but suffer from high prover costs. Wu et al. (Usenix Security 2018) proposed to distribute the proving task across multiple machines, and achieved significant improvements in proving time. However, existing distributed ZKP systems still have quasi-linear prover cost, and may incur a communication cost that is linear in...
We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...
Homomorphic Encryption (HE) is a cutting-edge cryptographic technique that enables computations on encrypted data to be mirrored on the original data. This has quickly attracted substantial interest from the research community due to its extensive practical applications, such as in cloud computing and privacy-preserving machine learning. In addition to confidentiality, the importance of authenticity has emerged to ensure data integrity during transmission and evaluation. To address...
Computing the maximum from a list of secret inputs is a widely-used functionality that is employed ei- ther indirectly as a building block in secure computation frameworks, such as ABY (NDSS’15) or directly used in multiple applications that solve optimisation problems, such as secure machine learning or secure aggregation statistics. Incremental distributed point function (I-DPF) is a powerful primitive (IEEE S&P’21) that significantly reduces the client- to-server communication and are...
Many efficient custom protocols have been developed for two-party private set intersection (PSI), that allow the parties to learn the intersection of their private sets. However, these approaches do not yield efficient solutions in the dynamic setting when the parties’ sets evolve and the intersection has to be computed repeatedly. In this work we propose a new framework for this problem of updatable PSI — with elements being inserted and deleted — in the semihonest model based on structured...
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols introduced to achieve load-balancing in large-scale networks, which is defined as the maximum communication complexity required by any one player within the protocol execution. Towards the goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing symmetric functions in the correlated randomness model, where players are given input-independent correlated...
Multi-party private set union (MPSU) protocol enables $m$ $(m > 2)$ parties, each holding a set, to collectively compute the union of their sets without revealing any additional information to other parties. There are two main categories of multi-party private set union (MPSU) protocols: The first category builds on public-key techniques, where existing works require a super-linear number of public-key operations, resulting in their poor practical efficiency. The second category builds on...
Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks. In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...
Recent advancements in transformers have revolutionized machine learning, forming the core of Large language models (LLMs). However, integrating these systems into everyday applications raises privacy concerns as client queries are exposed to model owners. Secure multiparty computation (MPC) allows parties to evaluate machine learning applications while keeping sensitive user inputs and proprietary models private. Due to inherent MPC costs, recent works introduce model-specific optimizations...
Decision trees are an important class of supervised learning algorithms. When multiple entities contribute data to train a decision tree (e.g. for fraud detection in the financial sector), data privacy concerns necessitate the use of a privacy-enhancing technology such as secure multi-party computation (MPC) in order to secure the underlying training data. Prior state-of-the-art (Hamada et al.) construct an MPC protocol for decision tree training with a communication of $\mathcal{O}(hmN\log...
Researchers across various fields seek to understand causal relationships but often find controlled experiments impractical. To address this, statistical tools for causal discovery from naturally observed data have become crucial. Non-linear regression models, such as Gaussian process regression, are commonly used in causal inference but have limitations due to high costs when adapted for secure computation. Support vector regression (SVR) offers an alternative but remains costly in an...
Zero-knowledge shuffle arguments are a useful tool for constructing mix-nets which enable anonymous communication. We propose a new shuffle argument using a novel technique that probabilistically checks that each weighted set of input elements corresponds to some weighted set of output elements, with weights from the same set as the input element weights. We achieve this using standard discrete log assumptions and the shortest integer solution (SIS) assumption. Our shuffle argument has...
Secure merge refers to the problem of merging two sorted lists. The problem appears in different settings where each list is held by one of two parties, or the lists are themselves shared among two or more parties. The output of a secure merge protocol is secret shared. Each variant of the problem offers many useful applications. The difficulty in designing secure merge protocols vis-a-vis insecure merge protocols (which work in linear time with a single pass over the lists) has to do...
In this work we study the efficiency of Zero-Knowledge (ZK) arguments of knowledge, particularly exploring Multi-Verifier ZK (MVZK) protocols as a midway point between Non-Interactive ZK and Designated-Verifier ZK, offering versatile applications across various domains. We introduce a new MVZK protocol designed for the preprocessing model, allowing any constant fraction of verifiers to be corrupted, potentially colluding with the prover. Our contributions include the first MVZK over rings....
Building on the recently proposed LWR-based threshold-PRF LaKey, we propose two new constructions. First, we propose an optimized threshold-PRF with significantly reduced round and communication complexity. We achieve this by improving the underlying bit truncation protocol, as well as the lower bound on the required number of LWR instances. Second, we show that the same underlying PRF construction lends itself as a basis for a novel and efficient exponent-VRF. We implement prototypes of...
Given a graph $G(V,E)$, represented as a secret-sharing of an adjacency list, we show how to obliviously convert it into an alternative, MPC-friendly secret-shared representation, so-called $d$-normalized replicated adjacency list (which we abbreviate to $d$-normalized), where the size of our new data-structure is only 4x larger -- compared to the original (secret-shared adjacency list) representation of $G$. Yet, this new data structure enables us to execute oblivious graph algorithms that...
The parallel broadcast (PBC) problem generalises the classic Byzantine broadcast problem to the setting where all $n$ nodes broadcast a message and deliver $O(n)$ messages. PBC arises naturally in many settings including multi-party computation. Recently, Tsimos, Loss, and Papamanthou (CRYPTO 2022) showed PBC protocols with improved communication, against an adaptive adversary who can corrupt all but a constant fraction $\epsilon$ of nodes (i.e., $f < (1 - \epsilon)n$). However, their study...
We study the problem of implementing unconditionally secure reliable and private communication (and hence secure computation) in dynamic incomplete networks. Our model assumes that the network is always $k$-connected, for some $k$, but the concrete connection graph is adversarially chosen in each round of interaction. We show that, with $n$ players and $t$ malicious corruptions, perfectly secure communication is possible if and only if $k > 2t$. This disproves a conjecture from earlier...
We present unconditionally perfectly secure protocols in the semi-honest setting for several functionalities: (1) private elementwise equality; (2) private bitwise integer comparison; and (3) bit-decomposition. These protocols are built upon a new concept called Shared Oblivious Transfer (Shared OT). Shared OT extends the one-out-of-N String OT by replacing strings with integers modulo $M$ and allowing additive secret-sharing of all inputs and outputs. These extensions can be...
In this note, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any $I$-round interactive protocol that uses $\rho$ random bits into another one for the same problem with the additional property that the verifier's communication is bounded by $O(I\cdot \rho)$. Importantly, this is done with...
In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...
What are the minimal cryptographic assumptions that suffice for constructing efficient argument systems, and for which tasks? Recently, Amit and Rothblum [STOC 2023] showed that one-way functions suffice for constructing constant-round arguments for bounded-depth computations. In this work we ask: what other tasks have efficient argument systems based only on one-way functions? We show two positive results: First, we construct a new argument system for batch-verification of $k$ $UP$...
We revisit the question of the overhead to achieve full security (i.e., guaranteed output delivery) in secure multiparty computation (MPC). Recent works have closed the gap between full security and semi-honest security, by introducing protocols where the parties first compute the circuit using a semi-honest protocol and then run a verification step with sublinear communication in the circuit size. However, in these works the number of interaction rounds in the verification step is also...
We introduce and formally define Multivariate Multi-Polynomial (MMP) commitment, a commitment scheme on multiple multivariate polynomials, and illustrate the concept with an efficient construction, which enjoys constant commitment size and logarithmic proof size. We further enhance our MMP scheme to achieve the zero-knowledge property. Additionally, combined with a novel zero-knowledge range proof for Pedersen subvector commitment, we present a Zero-Knowledge Range Proof (ZKRP) for MMP...
This work introduces homomorphic secret sharing (HSS) with succinct share size. In HSS, private inputs are shared between parties, who can then homomorphically evaluate a function on their shares, obtaining a share of the function output. In succinct HSS, a portion of the inputs can be distributed using shares whose size is sublinear in the number of such inputs. The parties can then locally evaluate a function $f$ on the shares, with the restriction that $f$ must be linear in the succinctly...
A private information retrieval (PIR) protocol allows a client to fetch any entry from single or multiple servers who hold a public database (of size $n$) while ensuring no server learns any information about the client's query. Initial works on PIR were focused on reducing the communication complexity of PIR schemes. However, standard PIR protocols are often impractical to use in applications involving large databases, due to its inherent large server-side computation complexity, that's at...
We design a new MPC protocol for arithmetic circuits secure against erasure-free covert adaptive adversaries with deterrence 1/2. The new MPC protocol has the same asymptotic communication cost, the number of PKE operations and the number of exponentiation operations as the most efficient MPC protocol for arithmetic circuits secure against covert static adversaries. That means, the new MPC protocol improves security from covert static security to covert adaptive adversary almost for free....
Our work aims to minimize interaction in secure computation due to the high cost and challenges associated with communication rounds, particularly in scenarios with many clients. In this work, we revisit the problem of secure aggregation in the single-server setting where a single evaluation server can securely aggregate client-held individual inputs. Our key contribution is the introduction of One-shot Private Aggregation ($\mathsf{OPA}$) where clients speak only once (or even choose not to...
We present distributed key generation and decryption protocols for an additively homomorphic cryptosystem based on class groups, improving on a similar system proposed by Braun, Damgård, and Orlandi at CRYPTO '23. Our key generation is similarly constant round but achieves lower communication complexity than the previous work. This improvement is in part the result of relaxing the reconstruction property required of the underlying integer verifiable secret sharing scheme. This eliminates the...
The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed computing. Very recently, Das et al. (2024) developed a new ACS protocol with several desirable properties: (i) it provides optimal resilience, tolerating up to $t < n/3$ corrupt parties out of $n$ parties in total, (ii) it does not rely on a trusted set up, (iii) it utilizes only "lighweight" cryptography, which can be instantiated using just a hash function, and (iv) it has expected round complexity...
Asynchronous Verifiable Information Dispersal (AVID) allows a dealer to disperse a message $M$ across a collection of server replicas consistently and efficiently, such that any future client can reliably retrieve the message $M$ if some servers fail. Since AVID was introduced by Cachin and Tessaro in 2005, several works improved the asymptotic communication complexity of AVID protocols. However, recent gains in communication complexity have come at the expense of sub-optimal storage,...
Private Set Intersection (PSI) is a protocol where two parties with individually held confidential sets want to jointly learn (or secret-share) the intersection of these two sets and reveal nothing else to each other. In this paper, we introduce a natural extension of this notion to approximate matching. Specifically, given a distance metric between elements, an approximate PSI (Approx-PSI) allows to run PSI where ``close'' elements match. Assuming that elements are either ``close'' or...
Vector Commitment (VC) enables one to commit to a vector, and then the element at a specific position can be opened, with proof of consistency to the initial commitment. VC is a powerful primitive with various applications, including stateless cryptocurrencies. Recently, matrix commitment Matproofs (Liu and Zhang CCS 2022), as an extension of VC, has been proposed to reduce the communication and computation complexity of VC-based cryptocurrencies. However, Matproofs requires linear-sized...
Privacy-preserving decision tree evaluation (PDTE) allows a client that holds feature vectors to perform inferences against a decision tree model on the server side without revealing feature vectors to the server. Our work focuses on the non-interactive batched setting where the client sends a batch of encrypted feature vectors and then obtains classifications, without any additional interaction. This is useful in privacy-preserving credit scoring, biometric authentication, and many more...
Machine learning (ML) as a service has emerged as a rapidly expanding field across various industries like healthcare, finance, marketing, retail and e-commerce, Industry 4.0, etc where a huge amount of data is gen- erated. To handle this amount of data, huge computational power is required for which cloud computing used to be the first choice. However, there are several challenges in cloud computing like limitations of bandwidth, network connectivity, higher latency, etc. To address...
The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related...
Mercurial signatures are an extension of equivalence class signatures that allow malleability for the public keys, messages, and signatures within the respective classes. Unfortunately, the most efficient construction to date suffers from a weak public key class-hiding property, where the original signer with the signing key can link the public keys in the same class. This is a severe limitation in their applications, where the signer is often considered untrustworthy of privacy. This...
An inner product argument (IPA) is a cryptographic primitive used to construct a zero-knowledge proof system, which is a notable privacy-enhancing technology. We propose a novel efficient IPA called $\mathsf{Cougar}$. $\mathsf{Cougar}$ features cubic root verifier and logarithmic communication under the discrete logarithm (DL) assumption. At Asiacrypt2022, Kim et al. proposed two square root verifier IPAs under the DL assumption. Our main objective is to overcome the limitation of square...
We give a new protocol for reliable broadcast with improved communication complexity for long messages. Namely, to reliably broadcast a message a message $m$ over an asynchronous network to a set of $n$ parties, of which fewer than $n/3$ may be corrupt, our protocol achieves a communication complexity of $1.5 |m| n + O( \kappa n^2 \log(n) )$, where $\kappa$ is the output length of a collision-resistant hash function. This result improves on the previously best known bound for long...
Private set intersection (PSI) allows two parties to compute the intersection of their sets without revealing anything else. In some applications of PSI, a server holds a large set and runs a PSI protocol with multiple clients, each with its own smaller set. In this setting, existing protocols fall short: they either achieve only semi-honest security, or else require the server to run the protocol from scratch for each execution. We design an efficient protocol for this setting with...
Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for...
Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection. In this paper we consider...