2000 results sorted by ID
Possible spell-corrected query: Block cipher
A Note on the Rank Defect Phenomena in The Linearization Attack on Elisabeth-4
Antoine Bak
Secret-key cryptography
This note gives an explanation for a phenomenon which appeared in the cryptanalysis of the Elisabeth-4 stream cipher, a stream cipher optimized for Torus Fully Homomorphic Encryption (TFHE). This primitive was broken in 2023 by a linearization attack. The authors of this attack made an observation on the rank of the linear system they generated, which was lower than expected. They have provided a partial explanation for it using some properties of the negacyclic lookup tables (NLUT), one of...
Cryptographic Treatment of Key Control Security -- In Light of NIST SP 800-108
Ritam Bhaumik, Avijit Dutta, Akiko Inoue, Tetsu Iwata, Ashwin Jha, Kazuhiko Minematsu, Mridul Nandi, Yu Sasaki, Meltem Sönmez Turan, Stefano Tessaro
Secret-key cryptography
This paper studies the security of key derivation functions (KDFs), a central class of cryptographic algorithms used to derive multiple independent-looking keys (each associated with a particular context) from a single secret. The main security requirement is that these keys are pseudorandom (i.e., the KDF is a pseudorandom function). This paper initiates the study of an additional security property, called key control (KC) security, first informally put forward in a recent update to NIST...
Oracle-Based Multistep Strategy for Solving Polynomial Systems Over Finite Fields and Algebraic Cryptanalysis of the Aradi Cipher
Roberto La Scala, Sharwan K. Tiwari
Attacks and cryptanalysis
The multistep solving strategy consists in a divide-and-conquer approach: when a multivariate polynomial system is computationally infeasible to solve directly, one variable is assigned over the elements of the base finite field, and the procedure is recursively applied to the resulting simplified systems. In a previous work by the same authors (among others), this approach proved effective in the algebraic cryptanalysis of the Trivium cipher.
In this paper, we present a new...
PRESENT Full Round Emulation : Structural Flaws and Predictable Outputs
Gopal Singh
Attacks and cryptanalysis
The Internet of Things (IoT) has become integral to modern life, enabling smart cities, healthcare, and industrial automation. However, the increasing connectivity of IoT devices exposes them to various cyber threats, necessitating robust encryption methods. The PRESENT cipher, a lightweight block cipher, is well-suited for resource-constrained IoT environments, offering strong security with minimal computational overhead. This paper explores the application of deep learning (DL) techniques...
Synergy: A Lightweight Block Cipher with Variable Bit Rotation Feistel Network
Anders Lindman
Secret-key cryptography
Synergy is a lightweight block cipher designed for resource-constrained environments such as IoT devices, embedded systems, and mobile applications. Built around a 16-round Feistel network, 8 independent pseudorandom number generators (PRNGs) ensure strong diffusion and confusion through the generation of per-block unique round keys. With a 1024-bit key and a 64-bit block size, Synergy mitigates vulnerabilities to ML-based cryptanalysis by using a large key size in combination with key- and...
Integral Resistance of Block Ciphers with Key Whitening by Modular Addition
Christof Beierle, Phil Hebborn, Gregor Leander, Yevhen Perehuda
Secret-key cryptography
Integral attacks exploit structural weaknesses in symmetric cryptographic primitives by analyzing how subsets of inputs propagate to produce outputs with specific algebraic properties. For the case of (XOR) key-alternating block ciphers using (independent) round keys, at ASIACRYPT'21, Hebborn et al. established the first non-trivial lower bounds on the number of rounds required for ensuring integral resistance in a quite general sense. For the case of adding keys by modular addition, no...
Quasidifferential Saves Infeasible Differential: Improved Weak-Key Key-Recovery Attacks on Round-Reduced GIFT
Chengcheng Chang, Meiqin Wang, Wei Wang, Kai Hu
Secret-key cryptography
\gift, including \gift-64 and \gift-128, is a family of lightweight block ciphers with outstanding implementation performance and high security, which is a popular underlying primitive chosen by many AEADs such as \sundae. Currently, differential cryptanalysis is the best key-recovery attack on both ciphers, but they have stuck at 21 and 27 rounds for \gift-64 and \gift-128, respectively. Recently, Beyne and Rijmen proposed the quasidifferential transition matrix for differential...
The Large Block Cipher Family Vistrutah
Roberto Avanzi, Bishwajit Chakraborty, Eik List
Secret-key cryptography
Vistrutah is a large block cipher with block sizes of 256 and 512 bits. It iterates a step function that applies two AES rounds to each 128-bit block of the state, followed by a state-wide cell permutation. Like Simpira, Haraka, Pholkos, and ASURA, Vistrutah leverages AES instructions to achieve high performance.
For each component of Vistrutah, we conduct a systematic evaluation of functions that can be efficiently implemented on both Intel and Arm architectures. We therefore expect...
An almost key-homomorphic post-quantum block cipher with key rotation and security update for long-term secret storage
Thomas Prévost, Bruno Martin, Olivier Alibart
Foundations
In this paper, we propose a new block cipher primitive, based on ring-LWE, which allows key rotation with a possible security update. This makes it possible to double the security of the ciphertext with each key rotation. Our scheme could therefore be used for long-term secret storage, allowing the security of the ciphertext to be adapted to the attacker's computing power, without the need for decryption.
We propose an implementation of our cryptographic scheme and prove its security.
Towards Better Integral Distinguishers over $\mathbb{F}_{p}$ Based on Exact Coefficients of Monomials
Muzhou Li, Jiamin Cui, Longzheng Cui, Kai Hu, Chao Niu, Meiqin Wang
Secret-key cryptography
Symmetric primitives used in multi-party computation, fully homomorphic encryption, and zero-knowledge proofs are often defined over Finite Field $\mathbb{F}_{q}$ with $q=2^t$ or an odd prime $p$. Integral attack is one of the most effective methods against such primitives due to the common use of low-degree non-linear layers. This in turn highlights the importance of a deeper understanding of degree growth. For ciphers defined over $\mathbb{F}_{2^t}$, numerous works have explored the growth...
Tight Multi-User Security of CCM and Enhancement by Tag-Based Key Derivation Applied to GCM and CCM
Yusuke Naito, Yu Sasaki, Takeshi Sugawara
Secret-key cryptography
$\textsf{GCM}$ and $\textsf{CCM}$ are block cipher (BC) based authenticated encryption modes. In multi-user (mu) security, a total number of BC invocations by all users $\sigma$ and the maximum number of BC invocations per user $\sigma_\mathsf{u}$ are crucial factors. For $\textsf{GCM}$, the tight mu-security bound has been identified as $\frac{\sigma_\mathsf{u} \sigma}{2^n} + \frac{u p + u^2}{2^k}$, where $k$ and $n$ are respectively the key and block sizes, $u$ is the number of users, $p$...
Quantum Security Analysis of the Key-Alternating Ciphers
Chen Bai, Mehdi Esmaili, Atul Mantri
Secret-key cryptography
In this work, we study the quantum security of key-alternating ciphers (KAC), a natural multi-round generalization of the Even–Mansour (EM) cipher underlying many block cipher constructions, including AES. While the classical security of KAC and the quantum security of the $1$-round KAC (i.e. Even-Mansour) cipher are well understood, the quantum resistance of multi-round KAC remains largely unexplored. We focus on the $2$-round KAC construction, defined using public $n$-bit permutations...
Improved differential cryptanalysis of SPEEDY
Tim Beyne, Addie Neyt
Secret-key cryptography
SPEEDY is a family of lightweight block ciphers designed by Leander et al. Several differential attacks have been reported on the SPEEDY variants. However, nearly all of these attacks are based on differential characteristics with probabilities that differ from their reported values. These discrepancies arise from incorrect calculations of the (key-averaged) probability, particularly in consecutive steps within one round without intermediate key addition. In this paper, we revisit all...
Tweakable Permutation-based Luby-Rackoff Constructions
Bishwajit Chakraborty, Abishanka Saha
Secret-key cryptography
Liskov, Rivest, and Wagner, in their seminal work, formulated tweakable blockciphers and proposed two blockcipher-based design paradigms, LRW1 and LRW2, where the basic design strategy is to xor the masked tweak to the input and output of a blockcipher. The 2-round cascaded LRW2 and 4-round cascaded LRW1 have been proven to be secure up to $\mathcal{O}(2^{3n/4})$ queries, but $n$-bit optimal security still remains elusive for these designs. In their paper, Liskov also posed an open challenge...
A New Approach for LPN-based Pseudorandom Functions: Low-Depth and Key-Homomorphic
Youlong Ding, Aayush Jain, Ilan Komargodski
Foundations
We give new constructions of pseudorandom functions (PRFs) computable in $\mathsf{NC}^1$ from (variants of the) Learning Parity with Noise (LPN) assumption. Prior to our work, the only $\mathsf{NC}^1$-computable PRF from LPN-style assumptions was due to Boyle et al. (FOCS 2020) who constructed a weak PRF from a new heuristic variant of LPN called variable-density LPN. We give the following three results:
(1) A weak PRF computable in $\mathsf{NC}^1$ from standard LPN.
(2) A...
SPEEDY: Caught at Last
Christina Boura, Patrick Derbez, Baptiste Germon, Rachelle Heim Boissier, María Naya-Plasencia
Secret-key cryptography
SPEEDY is a family of ultra-low-latency block ciphers designed by Leander et al. in 2021. In 2023, Boura et al. proposed a differential attack on the full 7-round variant, SPEEDY-7-192. However, shortly thereafter, Beyne and Neyt demonstrated that this attack was invalid, as the dominant differential characteristic it relied upon had probability zero. A similar issue affects another differential attack proposed the same year by Wang et al., which also targets SPEEDY-7-192 and suffers from...
Distinguishing Full-Round AES-256 in a Ciphertext-Only Setting via Hybrid Statistical Learning
Gopal Singh
Attacks and cryptanalysis
The security of block ciphers such as AES-128, AES-192, and AES-256 relies on the assumption that their ciphertext outputs are computationally indistinguishable from random permutations. While distinguishers have been proposed for reduced-round variants or under non-standard models such as known-key or chosen-key settings, no effective distinguisher has been demonstrated for the full-round AES ciphers in the standard secret-key model.
This work introduces FESLA (Feature Enhanced...
Towards Optimal Differential Attacks on FLY and PIPO
Insung Kim, Seonggyeom Kim, Sunyeop Kim, Donggeun Kwon, Hanbeom Shin, Dongjae Lee, Deukjo Hong, Jaechul Sung, Seokhie Hong
Secret-key cryptography
Lightweight block ciphers such as PIPO and FLY are designed to operate efficiently and securely in constrained environments. While the differential attack on PIPO-64-128 has already been studied by the designers, no concrete differential attack had been conducted for PIPO-64-256 and FLY. Motivated by this gap, we revisit the security of PIPO against differential attacks and generalize the analysis framework to make it applicable to structurally related ciphers. Based on this generalized...
Security Analysis of NIST Key Derivation Using Pseudorandom Functions
Yaobin Shen, Lei Wang, Dawu Gu
Secret-key cryptography
Key derivation functions can be used to derive variable-length random strings that serve as cryptographic keys. They are integral to many widely-used communication protocols such as TLS, IPsec and Signal. NIST SP 800-108 specifies several key derivation functions based on pseudorandom functions such as \mode{CMAC} and \mode{HMAC}, that can be used to derive additional keys from an existing cryptographic key. This standard either explicitly or implicitly requests their KDFs to be variable...
AES Is Not Enough: the Block Ciphers Zoo Goes Homormorphic (over TFHE)
Daphné Trama, Aymen Boudguiga, Renaud Sirdey
Applications
The dream of achieving data privacy during external computations has
become increasingly concrete in recent years. Indeed, since the early days of Fully Homomorphic Encryption (FHE) more than a decade ago, new cryptosystems and techniques have constantly optimized the efficiency of computation on encrypted data.
However, one of the main disadvantages of FHE, namely its significant ciphertext expansion factor, remains at the center of the efficiency bottleneck of FHE schemes. To tackle the...
Blockcipher-Based Key Commitment for Nonce-Derived Schemes
Panos Kampanakis, Shai Halevi, Nevine Ebeid, Matt Campagna
Foundations
AES-GCM has been the status quo for efficient symmetric encryption for decades. As technology and cryptographic applications evolved over time, AES-GCM has posed some challenges to certain use-cases due to its default 96-bit nonce size, 128-bit block size, and lack of key commitment. Nonce-derived schemes are one way of addressing these challenges: Such schemes derive multiple keys from nonce values, then apply standard AES-GCM with the derived keys (and possibly another 96-bit nonce). The...
Improved Differential Meet-In-The-Middle Cryptanalysis on SIMON and Piccolo (Full Version)
Weiqing Deng, Jianing Zhang, Haoyang Wang
Secret-key cryptography
Differential meet-in-the-middle (MITM) cryptanalysis, introduced by Boura et al. at CRYPTO 2023, has been demonstrated to be an effective technique for analyzing the security of block ciphers. In this paper, we introduce an improved parallel partitioning technique, and incorporate it into a new framework with a flexible key recovery strategy. This framework is applicable to both SPN and Feistel ciphers. We apply the new framework to SIMON and Piccolo-128 for demonstration. In particular, we...
Exploring Key-Recovery-Friendly Differential Distinguishers for SM4 and Their Performance in Differential Attacks (Full Version)
Bingqing Li, Ling Sun
Attacks and cryptanalysis
In this paper, we focus on SM4, a widely used and standardized Chinese block cipher. After revisiting the previously proposed optimal 19-round differential characteristic, we observe that its applicability in differential attacks is limited by a reduced pre-sieving probability, causing the time complexity to exceed that of brute force. To overcome this issue, we employ an automated search approach to identify more promising optimal 19-round differential characteristics. By translating key...
A Multi-Differential Approach to Enhance Related-Key Neural Distinguishers
Xue Yuan, Qichun Wang
Attacks and cryptanalysis
At CRYPTO 2019, Gohr pioneered the integration of differential cryptanalysis with neural networks, demonstrating significant advantages over traditional distinguishers. Subsequently, at Inscrypt 2020, Su et al. proposed the concept of constructing polyhedral differential neural distinguishers by leveraging multiple effective input differences. More recently, at FSE 2024, Bellini et al. introduced a general-purpose tool for automating the training of single-key differential neural...
Impossible Differential Attack on SAND-128
Nobuyuki Sugio
Attacks and cryptanalysis
Impossible differential attack is one of the major cryptanalytical methods for symmetric-key block ciphers. In this paper, we evaluate the security of SAND-128 against impossible differential attack. SAND is an AND-RX-based lightweight block cipher proposed by Chen et al. in Designs, Codes and Cryptography 2022. There are two variants of SAND, namely SAND-64 and SAND-128, due to structural differences. In this paper, we search for impossible differential distinguishers of SAND-128 using the...
Impossible Differential Attack on SAND-64
Nobuyuki Sugio
Attacks and cryptanalysis
SAND is an AND-RX-based lightweight block cipher proposed by Chen et al. There are two variants of SAND, namely SAND-64 and SAND-128, due to structural differences. In this paper, we search for impossible differential distinguishers of SAND-64 using the Constraint Programming (CP) and reveal 56 types of impossible differential distinguishers up to 11 rounds. Furthermore, we demonstrate a key recovery attack on 17-round SAND-64. The complexities for the attack require $2^{56}$ data, $2^{127}$...
Counter Galois Onion (CGO) for Tor: Fast Non-Malleable Onion Encryption
Jean Paul Degabriele, Alessandro Melloni, Jean-Pierre Münch, Martijn Stam
Cryptographic protocols
In 2012, the Tor project expressed the need to upgrade Tor's onion encryption scheme to protect against tagging attacks and thereby strengthen its end-to-end integrity protection. Tor proposal 261, where each encryption layer is processed by a strongly secure, yet relatively expensive tweakable wide-block cipher, is the only concrete candidate replacement to be backed by formal, yet partial, security proofs (Degabriele and Stam, EUROCRYPT 2018, and Rogaway and Zhang, PoPETS 2018).
We...
Making GCM Great Again: Toward Full Security and Longer Nonces
Woohyuk Chung, Seongha Hwang, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee
Secret-key cryptography
The GCM authenticated encryption (AE) scheme is one of the most widely used AE schemes in the world, while it suffers from risk of nonce misuse, short message length per encryption and an insufficient level of security. The goal of this paper is to design new AE schemes achieving stronger provable security in the standard model and accepting longer nonces (or providing nonce misuse resistance), with the design rationale behind GCM.
As a result, we propose two enhanced variants of GCM and...
Improved Framework of Related-key Differential Neural Distinguisher and Applications to the Standard Ciphers
Rui-Tao Su, Jiong-Jiong Ren, Shao-Zhen Chen
Attacks and cryptanalysis
In recent years, the integration of deep learning with differential cryptanalysis has led to differential neural cryptanalysis, enabling efficient data-driven security evaluation of modern cryptographic algorithms. Compared to traditional differential cryptanalysis, differential neural cryptanalysis enhances the efficiency and automation of the analysis by training neural networks to automatically extract statistical features from ciphertext pairs. As research advances, neural distinguisher...
mid-pSquare: Leveraging the Strong Side-Channel Security of Prime-Field Masking in Software
Brieuc Balon, Lorenzo Grassi, Pierrick Méaux, Thorben Moos, François-Xavier Standaert, Matthias Johann Steiner
Implementation
Efficiently protecting embedded software implementations of standard symmetric cryptographic primitives against side-channel attacks has been shown to be a considerable challenge in practice. This is, in part, due to the most natural countermeasure for such ciphers, namely Boolean masking, not amplifying security well in the absence of sufficient physical noise in the measurements. So-called prime-field masking has been demonstrated to provide improved theoretical guarantees in this context,...
Attacking Single-Cycle Ciphers on Modern FPGAs featuring Explainable Deep Learning
Mustafa Khairallah, Trevor Yap
Implementation
In this paper, we revisit the question of key recovery using side-channel analysis for unrolled, single-cycle block ciphers. In particular, we study the Princev2 cipher. While it has been shown vulnerable in multiple previous studies, those studies were performed on side-channel friendly ASICs or older FPGAs (e.g., Xilinx Virtex II on the SASEBO-G board), and using mostly expensive equipment. We start with the goal of exploiting a cheap modern FPGA and board using power traces from a cheap...
A 10-bit S-box generated by Feistel construction from cellular automata
Thomas Prévost, Bruno Martin
Foundations
In this paper, we propose a new 10-bit S-box generated from a Feistel construction. The subpermutations are generated by a 5-cell cellular automaton based on a unique well-chosen rule and bijective affine transformations. In particular, the cellular automaton rule is chosen based on empirical tests of its ability to generate good pseudorandom output on a ring cellular automaton. Similarly, Feistel's network layout is based on empirical data regarding the quality of the output S-box.
We...
A proof of P≠NP (New symmetric encryption algorithm against any linear attacks and differential attacks)
Gao Ming
Foundations
P vs NP problem is the most important unresolved problem in the field of computational complexity. Its impact has penetrated into all aspects of algorithm design, especially in the field of cryptography. The security of cryptographic algorithms based on short keys depends on whether P is equal to NP. In fact, Shannon strictly proved that the one-time-pad system meets unconditional security, but because the one-time-pad system requires the length...
Trail-Estimator: An Automated Verifier for Differential Trails in Block Ciphers
Thomas Peyrin, Quan Quan Tan, Hongyi Zhang, Chunning Zhou
Attacks and cryptanalysis
Differential cryptanalysis is a powerful technique for attacking block ciphers, wherein the Markov cipher assumption and stochastic hypothesis are commonly employed to simplify the search and probability estimation of differential trails. However, these assumptions often neglect inherent algebraic constraints, potentially resulting in invalid trails and inaccurate probability estimates. Some studies identified violations of these assumptions and explored how they impose constraints on key...
Differential Cryptanalysis of the Reduced Pointer Authentication Code Function used in Arm’s FEAT_PACQARMA3 Feature
Roberto Avanzi, Orr Dunkelman, Shibam Ghosh
Secret-key cryptography
The Pointer Authentication Code ($\textsf{PAC}$) feature in the Arm architecture is used to enforce the Code Flow Integrity ($\textsf{CFI}$) of running programs.
It does so by generating a short $\textsf{MAC}$ - called the $\textsf{PAC}$ - of the return address and some additional context information upon function entry, and checking it upon exit.
An attacker that wants to overwrite the stack with manipulated addresses now faces an additional hurdle, as they now have to guess,...
Cryptanalysis of Full SCARF
Antonio Flórez-Gutiérrez, Eran Lambooij, Gaëtan Leurent, Håvard Raddum, Tyge Tiessen, Michiel Verbauwhede
Secret-key cryptography
SCARF is a tweakable block cipher dedicated to cache address randomization, proposed at the USENIX Security conference. It has a 10-bit block, 48-bit tweak, and 240-bit key. SCARF is aggressively optimized to meet the harsh latency constraints of cache address randomization, and uses a dedicated model for its security claim.
The full version of SCARF has 8 rounds, and its designers claim security up to $2^{40}$ queries and $2^{80}$ computations. In this work we present a distinguisher...
ChiLow and ChiChi: New Constructions for Code Encryption
Yanis Belkheyar, Patrick Derbez, Shibam Ghosh, Gregor Leander, Silvia Mella, Léo Perrin, Shahram Rasoolzadeh, Lukas Stennes, Siwei Sun, Gilles Van Assche, Damian Vizár
Secret-key cryptography
We study the problem of embedded code encryption, i.e., encryption for binary software code for a secure microcontroller that is stored in an insecure external memory. As every single instruction must be decrypted before it can be executed, this scenario requires an extremely low latency decryption. We present a formal treatment of embedded code encryption security definitions, propose three constructions, namely ACE1, ACE2 and ACE3, and analyze their security. Further, we present ChiLow, a...
How to Securely Implement Cryptography in Deep Neural Networks
David Gerault, Anna Hambitzer, Eyal Ronen, Adi Shamir
Attacks and cryptanalysis
The wide adoption of deep neural networks (DNNs) raises the question of how can we equip them with a desired cryptographic functionality (e.g, to decrypt an encrypted input, to verify that this input is authorized, or to hide a secure watermark in the output). The problem is that cryptographic primitives are typically designed to run on digital computers that use Boolean gates to map sequences of bits to sequences of bits, whereas DNNs are a special type of analog computer that uses linear...
New Exchanged Boomerang Distinguishers for 5-Round AES
Hanbeom Shin, Seonkyu Kim, Byoungjin Seok, Dongjae Lee, Deukjo Hong, Jaechul Sung, Seokhie Hong
Attacks and cryptanalysis
In block ciphers, the attacker should not be able to distinguish a block cipher from a random permutation; therefore the existence of a distinguisher is important. Cryptanalysis of the reduced-round variants of block ciphers is also important in cryptographic design. AES is the most widely used block cipher, and currently, the best-known distinguisher for 5-round AES has a data and time complexity of $2^{29.95}$ with a success probability of 55\%. In this paper, we propose the massive...
AutoDiVer: Automatically Verifying Differential Characteristics and Learning Key Conditions
Marcel Nageler, Shibam Ghosh, Marlene Jüttler, Maria Eichlseder
Attacks and cryptanalysis
Differential cryptanalysis is one of the main methods of cryptanalysis and has been applied to a wide range of ciphers. While it is very successful, it also relies on certain assumptions that do not necessarily hold in practice. One of these is the hypothesis of stochastic equivalence, which states that the probability of a differential characteristic behaves similarly for all keys. Several works have demonstrated examples where this hypothesis is violated, impacting the attack complexity...
Improved Differential and Linear Cryptanalysis on Round-Reduced SIMON
Chao Niu, Muzhou Li, Jifu Zhang, Meiqin Wang
Secret-key cryptography
SIMON is a lightweight block cipher proposed by the National Security Agency.
According to previous cryptanalytic results on SIMON, differential and linear cryptanalysis are the two most effective attacks on it.
Usually, there are many trails sharing the same input and output differences (resp. masks).
These trails comprise the differential (resp. linear hull) and can be used together when mounting attacks.
In ASIACRYPT 2021, Leurent et al. proposed a matrix-based method on...
Optimizing Key Recovery in Impossible Cryptanalysis and Its Automated Tool
Jianing Zhang, Haoyang Wang
Attacks and cryptanalysis
Impossible differential (ID) cryptanalysis and impossible boomerang (IB) cryptanalysis are two methods of impossible cryptanalysis against block ciphers. Since the seminal work introduced by Boura et al. in 2014, there have been no substantial advancements in the key recovery process for impossible cryptanalysis, particularly for the IB attack.In this paper, we propose a generic key recovery framework for impossible cryptanalysis that supports arbitrary key-guessing strategies, enabling...
Breaking the Blindfold: Deep Learning-based Blind Side-channel Analysis
Azade Rezaeezade, Trevor Yap, Dirmanto Jap, Shivam Bhasin, Stjepan Picek
Attacks and cryptanalysis
Physical side-channel analysis (SCA) operates on the foundational assumption of access to known plaintext or ciphertext. However, this assumption can be easily invalidated in various scenarios, ranging from common encryption modes like Cipher Block Chaining (CBC) to complex hardware implementations, where such data may be inaccessible. Blind SCA addresses this challenge by operating without the knowledge of plaintext or ciphertext. Unfortunately, prior such approaches have shown limited...
Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM
Jeremiah Blocki, Seunghoon Lee
Public-key cryptography
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
Post-Quantum Threshold Ring Signature Applications from VOLE-in-the-Head
James Hsin-Yu Chiang, Ivan Damgård, William R. Duro, Sunniva Engan, Sebastian Kolby, Peter Scholl
Public-key cryptography
We propose efficient, post-quantum threshold ring signatures constructed from one-wayness of AES encryption and the VOLE-in-the-Head zero-knowledge proof system. Our scheme scales efficiently to large rings and extends the linkable ring signatures paradigm. We define and construct key-binding deterministic tags for signature linkability, that also enable succinct aggregation with approximate lower bound arguments of knowledge; this allows us to achieve succinct aggregation of our signatures...
A Survey on Transciphering and Symmetric Ciphers for Homomorphic Encryption
Indranil Thakur, Angshuman Karmakar, Chaoyun Li, Bart Preneel
Cryptographic protocols
Data privacy concerns are sharply rising in the current digital era, hyperdriven by cloud computing, big data analytics, and the Internet of Things. Homomorphic Encryption (HE) has emerged as an ideal technique for computing on encrypted data, but current schemes suffer from slow encryption speed and large ciphertext expansion. Practical implementation is hindered, especially when the client has limited bandwidth, memory, and computing power. In 2011, Naehrig et al. proposed transciphering,...
Conditional Constant Function Problem and Its Quantum Solutions: Attacking Feistel Ciphers
Zhenqiang Li, Shuqin Fan, Fei Gao, Yonglin Hao, Xichao Hu, Linchun Wan, Hongwei Sun, Qi Su
Attacks and cryptanalysis
In this paper, we define the conditional constant function problem (CCFP) and, for a special case of CCFP, we propose a quantum algorithm for solving it efficiently. Such an algorithm enables us to make new evaluations to the quantum security of Feistel block cipher in the case where a quantum adversary only has the ability to make online queries in a classical manner, which is relatively realistic. Specifically, we significantly improved the chosen-plaintext key recovery attacks on two ...
Partial-guess, Pre-sieve, Greedy-search - New Unified Key Recovery Framework of Impossible Boomerang Attacks: Full-round Attack on ARADI
Xichao Hu, Lin Jiao
Attacks and cryptanalysis
The impossible boomerang attack is a very powerful attack, and the existing results show that it is more effective than the impossible differential attack in the related-key scenario. However, several limitations persist in the current key recovery process: the division of pre-guess keys is rather coarse; the details of S-boxes are ignored in the differential propagation; the complexity estimation and the key guessing order's determination are relatively rough and primitive. These are the...
Breaking the Shadow: Key Recovery Attack on Full-Round Shadow Block Ciphers with Minimal Data
Anda Che, Shahram Rasoolzadeh
Secret-key cryptography
Shadow is a family of lightweight block ciphers introduced by Guo, Li, and Liu in 2021, with Shadow-32 having a 32-bit block size and a 64-bit key, and Shadow-64 having a 64-bit block size and a 128-bit key. Both variants use a generalized Feistel network with four branches, incorporating the AND-Rotation-XOR operation similar to the Simon family for their bridging function. This paper reveals that the security claims of the Shadow family are not as strong as suggested. We present a key...
Greedy Algorithm for Representative Sets: Applications to IVLBC and GIFT-64 in Impossible Differential Attack
Manjeet Kaur, Tarun Yadav, Manoj Kumar, Dhananjoy Dey
Attacks and cryptanalysis
The impossible differential (ID) attack is crucial for analyzing the strength of block ciphers. The critical aspect of this technique is to identify IDs, and the researchers introduced several methods to detect them. Recently, the researchers extended the mixed-integer linear programming (MILP) approach by partitioning the input and output differences to identify IDs. The researchers proposed techniques to determine the representative set and partition table of a set over any nonlinear...
Optimally Secure TBC Based Accordion Mode
Nilanjan Datta, Avijit Dutta, Shibam Ghosh, Hrithik Nandi
Secret-key cryptography
The design of tweakable wide block ciphers has advanced significantly over the past two decades. This evolution began with the approach of designing a wide block cipher by Naor and Reingold. Since then, numerous tweakable wide block ciphers have been proposed, many of which build on existing block ciphers and are secure up to the birthday bound for the total number of blocks queried. Although there has been a slowdown in the development of tweakable wide block cipher modes in last couple of...
BBB Secure Arbitrary Length Tweak TBC from n-bit Block Ciphers
Arghya Bhattacharjee, Ritam Bhaumik, Nilanjan Datta, Avijit Dutta, Shibam Ghosh, Sougata Mandal
Secret-key cryptography
At FSE'15, Mennink introduced the concept of designing beyond-the-birthday bound secure tweakable block cipher from an ideal block cipher. They proposed two tweakable block ciphers $\widetilde{F}[1]$ and $\widetilde{F}[2]$ that accepts $n$-bit tweak using a block cipher of $n$-bit key and $n$-bit data. Mennink proved that the constructions achieve security up to $2^{2n/3}$ and $2^n$ queries, respectively, assuming the underlying block cipher is ideal. Later, at ASIACRYPT'16, Wang et al....
Revisiting Boomerang Attacks on Lightweight ARX and AND-RX Ciphers with Applications to KATAN, SIMON and CHAM
Li Yu, Je Sen Teh
Attacks and cryptanalysis
In this paper, we investigate the security of lightweight block ciphers, focusing on those that utilize the ADD-Rotate-XOR (ARX) and AND-Rotate-XOR (AND-RX) design paradigms. More specifically, we examine their resilience against boomerang-style attacks. First, we propose an automated search strategy that leverages the boomerang connectivity table (BCT) for AND operations ($\wedge BCT$) to conduct a complete search for boomerang and rectangle distinguishers for AND-RX ciphers. The proposed...
General Practical Cryptanalysis of the Sum of Round-Reduced Block Ciphers and ZIP-AES
Antonio Flórez-Gutiérrez, Lorenzo Grassi, Gregor Leander, Ferdinand Sibleyras, Yosuke Todo
Secret-key cryptography
We introduce a new approach between classical security proofs of modes of operation and dedicated security analysis for known cryptanalysis families: General Practical Cryptanalysis. This allows us to analyze generically the security of the sum of two keyed permutations against known attacks. In many cases (of course, not all), we show that the security of the sum is strongly linked to that of the composition of the two permutations. This enables the construction of beyond-birthday bound...
Qubit Optimized Quantum Implementation of SLIM
Hasan Ozgur Cildiroglu, Oguz Yayla
Implementation
The advent of quantum computing has profound implications for current technologies, offering advancements in optimization while posing significant threats to cryptographic algorithms. Public-key cryptosystems relying on prime factorization or discrete logarithms are particularly vulnerable, whereas block ciphers (BCs) remain secure through increased key lengths. In this study, we introduce a novel quantum implementation of SLIM, a lightweight block cipher optimized for 32-bit plaintext and...
Impossible Differential Automation: Model Generation and New Techniques
Emanuele Bellini, Paul Huynh, David Gerault, Andrea Visconti, Alessandro De Piccoli, Simone Pelizzola
Secret-key cryptography
In this paper, we aim to enhance and automate advanced techniques for impossible differential attacks. To demonstrate these advancements, we present improved attacks on the LBlock and HIGHT block ciphers. More precisely, we
(a) introduce a methodology to automatically invert symmetric ciphers when represented as directed acyclic graphs, a fundamental step in the search for impossible differential trails and in key recovery techniques;
(b) automate the search for impossible differential...
Improved Quantum Linear Attacks and Application to CAST
Kaveh Bashiri, Xavier Bonnetain, Akinori Hosoyamada, Nathalie Lang, André Schrottenloher
Attacks and cryptanalysis
This paper studies quantum linear key-recovery attacks on block ciphers.
The first such attacks were last-rounds attacks proposed by Kaplan et al. (ToSC 2016), which combine a linear distinguisher with a guess of a partial key. However, the most efficient classical attacks use the framework proposed by Collard et al. (ICISC 2007), which computes experimental correlations using the Fast Walsh-Hadamard Transform. Recently, Schrottenloher (CRYPTO 2023) proposed a quantum version of this...
Side-Channel Attack on ARADI
Donggeun Kwon, Seokhie Hong
Attacks and cryptanalysis
In this study, we present the first side-channel attack on the ARADI block cipher, exposing its vulnerabilities to physical attacks in non-profiled scenarios. We propose a novel bitwise divide-and-conquer methodology tailored for ARADI, enabling key recovery. Furthermore, based on our attack approach, we present a stepwise method for recovering the full 256-bit master key. Through experiments on power consumption traces from an ARM processor, we demonstrate successful recovery of target key...
New Results in Quantum Analysis of LED: Featuring One and Two Oracle Attacks
Siyi Wang, Kyungbae Jang, Anubhab Baksi, Sumanta Chakraborty, Bryan Lee, Anupam Chattopadhyay, Hwajeong Seo
Secret-key cryptography
Quantum computing has attracted substantial attention from researchers across various fields. In case of the symmetric key cryptography, the main problem is posed by the application of Grover's search. In this work, we focus on quantum analysis of the lightweight block cipher LED.
This paper proposes an optimized quantum circuit for LED, minimizing the required number of qubits, quantum gates, and circuit depth. Furthermore, we conduct Grover's attack and Search with Two Oracles (STO)...
Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs
Amit Singh Bhati, Elena Andreeva, Simon Müller, Damian Vizar
Secret-key cryptography
Message authentication codes (MACs) are fundamental symmetric key cryptographic functions used to generate a short, secret-key-dependent tag for a given message. This tag ensures both message authenticity and integrity, as computing a valid tag without the secret key is computationally infeasible, thereby revealing any unauthorized modification.
Existing MACs often rely on block ciphers (BCs) and tweakable block ciphers (TBCs). The design of these MACs involves various trade-offs...
uKNIT: Breaking Round-alignment for Cipher Design -- Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher
Kai Hu, Mustafa Khairallah, Thomas Peyrin, Quan Quan Tan
Secret-key cryptography
Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...
Cryptanalysis of BAKSHEESH Block Cipher
Shengyuan Xu, Siwei Chen, Xiutao Feng, Zejun Xiang, Xiangyong Zeng
Attacks and cryptanalysis
BAKSHEESH is a lightweight block cipher following up the well-known cipher GIFT-128, which uses a 4-bit SBox that has a non-trivial Linear Structure (LS). Also, the Sbox requires a low number of AND gates that makes BAKSHEESH stronger to resist the side channel attacks compared to GIFT-128. In this paper, we give the first third-party security analysis of BAKSHEESH from the traditional attacks perspective: integral, differential and linear attacks. Firstly, we propose a framework for...
Generalized Impossible Differential Attacks on Block Ciphers: Application to SKINNY and ForkSKINNY
Ling Song, Qinggan Fu, Qianqian Yang, Yin Lv, Lei Hu
Attacks and cryptanalysis
Impossible differential cryptanalysis is a crucial cryptanalytical method for symmetric ciphers. Given an impossible differential, the key recovery attack typically proceeds in two steps: generating pairs of data and then identifying wrong keys using the guess-and-filtering method. At CRYPTO 2023, Boura \etal first proposed a new key recovery technique - the differential meet-in-the-middle attack, which recovers the key in a meet-in-the-middle manner. Inspired by this technique, we...
Differential MITM attacks on SLIM and LBCIoT
Peter Grochal, Martin Stanek
Attacks and cryptanalysis
SLIM and LBCIoT are lightweight block ciphers proposed for IoT applications. We present differential meet-in-the-middle attacks on these ciphers and discuss several implementation variants and possible improvements of these attacks. Experimental validation also shows some results that may be of independent interest in the cryptanalysis of other ciphers. Namely, the problems with low-probability differentials and the questionable accuracy of standard complexity estimates of using filters.
Tweakable ForkCipher from Ideal Block Cipher
Sougata Mandal
Secret-key cryptography
In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the $\textit{forkcipher}$, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes...
Pushing the QAM method for finding APN functions further
Nadiia Ichanska, Simon Berg, Nikolay S. Kaleyski, Yuyin Yu
Foundations
APN functions offer optimal resistance to differential attacks and are instrumental in the design of block ciphers in cryptography. While finding APN functions is very difficult in general, a promising way to construct APN functions is through symmetric matrices called Quadratic APN matrices (QAM). It is known that the search space for the QAM method can be reduced by means of orbit partitions induced by linear equivalences. This paper builds upon and improves these approaches in the case of...
How Fast Does the Inverse Walk Approximate a Random Permutation?
Tianren Liu, Angelos Pelecanos, Stefano Tessaro, Vinod Vaikuntanathan
Secret-key cryptography
For a finite field $\mathbb{F}$ of size $n$, the (patched) inverse permutation $\operatorname{INV}: \mathbb{F} \to \mathbb{F}$ computes the inverse of $x$ over $\mathbb{F}$ when $x\neq 0$ and outputs $0$ when $x=0$, and the $\operatorname{ARK}_K$ (AddRoundKey) permutation adds a fixed constant $K$ to its input, i.e.,
$$\operatorname{INV}(x) = x^{n-2} \hspace{.1in} \mbox{and} \hspace{.1in}
\operatorname{ARK}_K(x) = x + K \;.$$
We study the process of alternately applying the...
An Efficient and Secure Boolean Function Evaluation Protocol
Sushmita Sarkar, Vikas Srivastava, Tapaswini Mohanty, Nibedita Kundu, Sumit Kumar Debnath
Cryptographic protocols
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
Byte-wise equal property of ARADI
Sunyeop Kim, Insung Kim, Dongjae Lee, Deukjo Hong, Jaechul Sung, Seokhie Hong
Secret-key cryptography
ARADI is a low-latency block cipher proposed by the NSA (National Security Agency) in 2024 for memory encryption. Bellini et al. experimentally demonstrated that in specific cubes of 5-round ARADI, the cube sums are byte-wise equal, for example, to 0x9d9dc5c5. This paper modifies the MILP-based division property algorithm to prove this and observes that the rotation amount of 8 in ARADI causes cancellations of monomials, allowing us to extend the byte-wise equal property up to 8 rounds. As a...
Proving the Security of the Extended Summation-Truncation Hybrid
Avijit Dutta, Eik List
Secret-key cryptography
Since designing a dedicated secure symmetric PRF is difficult, various works studied optimally secure PRFs from the sum of independent permutations (SoP).
At CRYPTO'20, Gunsing and Mennink proposed the Summation-Truncation Hybrid (STH).
While based on SoP, STH releases additional $a \leq n$ bits of the permutation calls and sums $n-a$ bits of them.
Thus, it produces $n+a$ bits at $O(n-a/2)$-bit PRF security.
Both SoP or STH can be used directly in encryption schemes or MACs in place of...
A notion on S-boxes for a partial resistance to some integral attacks
Claude Carlet
Secret-key cryptography
In two recent papers, we introduced and studied the notion of $k$th-order sum-freedom of a vectorial function $F:\mathbb F_2^n\to \mathbb F_2^m$. This notion generalizes that of almost perfect nonlinearity (which corresponds to $k=2$) and has some relation with the resistance to integral attacks of those block ciphers using $F$ as a substitution box (S-box), by preventing the propagation of the division property of $k$-dimensional affine spaces. In the present paper, we show that this...
Commutative Cryptanalysis as a Generalization of Differential Cryptanalysis
Jules Baudrin, Christof Beierle, Patrick Felke, Gregor Leander, Patrick Neumann, Léo Perrin, Lukas Stennes
Secret-key cryptography
Recently, Baudrin et al. analyzed a special case of Wagner's commutative diagram cryptanalysis, referred to as commutative cryptanalysis. For a family $(E_k)_k$ of permutations on a finite vector space $G$, commutative cryptanalysis exploits the existence of affine permutations $A,B \colon G \rightarrow G$, $I \notin \{A,B\}$ such that $E_k \circ A (x) = B \circ E_k(x)$ holds with high probability, taken over inputs $x$, for a significantly large set of weak keys $k$. Several attacks...
Double-Matrix: Complete Diffusion in a Single Round with (small) MDS Matrices
Jorge Nakahara Jr
Secret-key cryptography
This paper describes a simple idea to improve (text) diffusion in block ciphers that use MDS codes but that take more than a single round to achieve full (text) diffusion. The Rijndael cipher family is used as an example since it comprises ciphers with different state sizes.
A drawback of the new approach is the additional computational cost, but it is competitive compared to large MDS matrices used in the Khazad and Kuznyechik ciphers.
Related-Key Cryptanalysis of FUTURE
Amit Jana, Smita Das, Ayantika Chatterjee, Debdeep Mukhopadhyay, Yu Sasaki
Attacks and cryptanalysis
At Africacrypt 2022, Gupta et al. introduced FUTURE, a 64-bit lightweight block cipher based on an MDS matrix and designed in an SPN structure, with a focus on achieving single-cycle encryption and low implementation cost, especially in unrolled architectures. While the designers evaluated its security under various attack models, they did not consider related-key cryptanalysis. In this work, we address this gap by analyzing the security of FUTURE in the related-key setting using techniques...
Block Ciphers in Idealized Models: Automated Proofs and New Security Results
Miguel Ambrona, Pooya Farshim, Patrick Harasser
Implementation
We develop and implement AlgoROM, a tool to systematically analyze the security of a wide class of symmetric primitives in idealized models of computation. The schemes that we consider are those that can be expressed over an alphabet consisting of XOR and function symbols for hash functions, permutations, or block ciphers.
We implement our framework in OCaml and apply it to a number of prominent constructions, which include the Luby–Rackoff (LR), key-alternating Feistel (KAF), and...
Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting
Nicholas Carlini, Jorge Chávez-Saab, Anna Hambitzer, Francisco Rodríguez-Henríquez, Adi Shamir
Attacks and cryptanalysis
Deep neural networks (DNNs) are valuable assets, yet their public accessibility raises security concerns about parameter extraction by malicious actors. Recent work by Carlini et al. (Crypto’20) and Canales- Martínez et al. (Eurocrypt’24) has drawn parallels between this issue and block cipher key extraction via chosen plaintext attacks. Leveraging differential cryptanalysis, they demonstrated that all the weights and biases of black-box ReLU-based DNNs could be inferred using a polynomial...
Mind the Composition of Toffoli Gates: Structural Algebraic Distinguishers of ARADI
Emanuele Bellini, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
Secret-key cryptography
This paper reveals a critical flaw in the design of ARADI, a recently proposed low-latency block cipher by NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks. The weakness exploits the specific composition of Toffoli gates in the round function of ARADI's nonlinear layer, and it allows the extension of a given algebraic distinguisher to one extra round without any change in the data complexity. More precisely, we show that the cube-sum values, though depending on the secret key...
How to Recover the Full Plaintext of XCB
Peng Wang, Shuping Mao, Ruozhou Xu, Jiwu Jing, Yuewu Wang
Attacks and cryptanalysis
XCB, a tweakable enciphering mode, is part of IEEE Std. 1619.2 for shared storage media. We show that all versions of XCB are not secure through three plaintext recovery attacks. A key observation is that XCB behaves like an LRW1-type tweakable block cipher for single-block messages, which lacks CCA security. The first attack targets one-block XCB, using three queries to recover the plaintext. The second one requires four queries to recover the plaintext that excludes one block. The last one...
Mystrium: Wide Block Encryption Efficient on Entry-Level Processors
Parisa Amiri Eliasi, Koustabh Ghosh, Joan Daemen
Secret-key cryptography
We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7.
Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function.
We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...
Providing Integrity for Authenticated Encryption in the Presence of Joint Faults and Leakage
Francesco Berti, Itamar Levi
Secret-key cryptography
Passive (leakage exploitation) and active (fault injection) physical attacks pose a significant threat to cryptographic schemes. Although leakage-resistant cryptography is well studied, there is little work on mode-level security in the presence of joint faults and leakage exploiting adversaries. In this paper, we focus on integrity for authenticated encryption (AE).
First, we point out that there is an inherent attack in the fault-resilience model presented at ToSC 2023. This shows how...
Crooked Indifferentiability of the Feistel Construction
Alexander Russell, Qiang Tang, Jiadong Zhu
Foundations
The Feistel construction is a fundamental technique for building pseudorandom permutations and block ciphers. This paper shows that a simple adaptation of the construction is resistant, even to algorithm substitution attacks---that is, adversarial subversion---of the component round functions. Specifically, we establish that a Feistel-based construction with more than $337n/\log(1/\epsilon)$ rounds can transform a subverted random function---which disagrees with the original one at a small...
Multiple-Tweak Differential Attack Against SCARF
Christina Boura, Shahram Rasoolzadeh, Dhiman Saha, Yosuke Todo
Secret-key cryptography
In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...
Universal Context Commitment without Ciphertext Expansion
Arghya Bhattacharjee, Ritam Bhaumik, Chandranan Dhar
Secret-key cryptography
An ongoing research challenge in symmetric cryptography is to design an authenticated encryption (AE) with a commitment to the secret key or preferably to the entire context. One way to achieve this is to use a transform on an existing AE scheme, if possible with no output length expansion. At EUROCRYPT'22, Bellare and Hoang proposed the HtE transform, which lifts key-commitment to context-commitment. In the same year at ESORICS'22, Chan and Rogaway proposed the CTX transform, which works on...
ML based Improved Differential Distinguisher with High Accuracy: Application to GIFT-128 and ASCON
Tarun Yadav, Manoj Kumar
Attacks and cryptanalysis
In recent years, ML based differential distinguishers have been explored and compared with the classical methods. Complexity of a key recovery attack on block ciphers is calculated using the probability of a differential distinguisher provided by classical methods. Since theoretical computations suffice to calculate the data complexity in these cases, so there seems no restrictions on the practical availability of computational resources to attack a block cipher using classical methods....
Finding Complete Impossible Differential Attacks on AndRX Ciphers and Efficient Distinguishers for ARX Designs
Debasmita Chakraborty, Hosein Hadipour, Phuong Hoa Nguyen, Maria Eichlseder
Attacks and cryptanalysis
The impossible differential (ID) attack is one of the most important cryptanalytic techniques for block ciphers. There are two phases to finding an ID attack: searching for the distinguisher and building a key recovery upon it. Previous works only focused on automated distinguisher discovery, leaving key recovery as a manual post-processing task, which may lead to a suboptimal final complexity. At EUROCRYPT~2023, Hadipour et al. introduced a unified constraint programming (CP) approach based...
Fast Low Level Disk Encryption Using FPGAs
Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas Lopez, Palash Sarkar
Secret-key cryptography
A fixed length tweakable enciphering scheme (TES) is the appropriate cryptographic functionality for low level disk encryption. Research on TES over the last two decades have led to a number of proposals many of which have already been implemented using FPGAs. This paper considers the FPGA implementations of two more recent and promising TESs, namely AEZ and FAST. The relevant architectures are described and simulation results on the Xilinx Virtex 5 and Virtex 7 FPGAs are presented. For...
A Note on ARADI and LLAMA
Roberto Avanzi, Orr Dunkelman, Shibam Ghosh
Secret-key cryptography
Recently, the NSA has proposed a block cipher called ARADI and a mode of operation called LLAMA for memory encryption applications.
In this note, we comment on this proposal, on its suitability for the intended application, and describe an attack on LLAMA that breaks confidentiality of ciphertext and allows a straightforward forgery attack breaking integrity of ciphertext (INT-CTXT) using a related-IV attack.
Both attacks have negligible complexity.
Authenticity in the Presence of Leakage using a Forkcipher
Francesco Berti, François-Xavier Standaert, Itamar Levi
Secret-key cryptography
Robust message authentication codes (MACs) and authenticated encryption (AE) schemes that provide authenticity in the presence of side-channel leakage are essential primitives. These constructions often rely on primitives designed for strong leakage protection, among others including the use of strong-unpredictable (tweakable) block-ciphers.
This paper extends the strong-unpredictability security definition to the versatile and new forkcipher primitive. We show how to construct secure and...
CLAASPing ARADI: Automated Analysis of the ARADI Block Cipher
Emanuele Bellini, Mattia Formenti, David Gérault, Juan Grados, Anna Hambitzer, Yun Ju Huang, Paul Huynh, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
Attacks and cryptanalysis
In early August 2024, three NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks -- published the technical specifications for a new low-latency block cipher, ARADI, along with its corresponding authenticated encryption mode, LLAMA, which is specifically designed for memory encryption applications. Their manuscript offered minimal security analysis of the design, only briefly discussing the differential, linear and algebraic properties of cipher's underlying components. In this...
MAESTRO: Multi-party AES using Lookup Tables
Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, Daniel Tschudi
Cryptographic protocols
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography.
In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our...
Generalized Triangular Dynamical System: An Algebraic System for Constructing Cryptographic Permutations over Finite Fields
Arnab Roy, Matthias Johann Steiner
Secret-key cryptography
In recent years a new class of symmetric-key primitives over $\mathbb{F}_p$ that are essential to Multi-Party Computation and Zero-Knowledge Proofs based protocols has emerged. Towards improving the efficiency of such primitives, a number of new block ciphers and hash functions over $\mathbb{F}_p$ were proposed. These new primitives also showed that following alternative design strategies to the classical Substitution-Permutation Network (SPN) and Feistel Networks leads to more efficient...
On the Effects of Neural Network-based Output Prediction Attacks on the Design of Symmetric-key Ciphers
Hayato Watanabe, Ryoma Ito, Toshihiro Ohigashi
Attacks and cryptanalysis
Proving resistance to conventional attacks, e.g., differential, linear, and integral attacks, is essential for designing a secure symmetric-key cipher. Recent advances in automatic search and deep learning-based methods have made this time-consuming task relatively easy, yet concerns persist over expertise requirements and potential oversights. To overcome these concerns, Kimura et al. proposed neural network-based output prediction (NN) attacks, offering simplicity, generality, and reduced...
Meet-in-the-Middle Attack on 4+4 Rounds of SCARF under Single-Tweak Setting
Siwei Chen, Kai Hu, Guozhen Liu, Zhongfeng Niu, Quan Quan Tan, Shichang Wang
Attacks and cryptanalysis
\scarf, an ultra low-latency tweakable block cipher, is the first cipher designed for cache randomization.
The block cipher design is significantly different from the other common tweakable block ciphers; with a block size of only 10 bits, and yet the input key size is a whopping $240$ bits. Notably, the majority of the round key in its round function is absorbed into the data path through AND operations, rather than the typical XOR operations.
In this paper, we present a key-recovery...
Koala: A Low-Latency Pseudorandom Function
Parisa Amiri Eliasi, Yanis Belkheyar, Joan Daemen, Santosh Ghosh, Daniël Kuijsters, Alireza Mehrdad, Silvia Mella, Shahram Rasoolzadeh, Gilles Van Assche
Secret-key cryptography
This paper introduces the Koala PRF, which maps a variable-length sequence of $64$-bit input blocks to a single $257$-bit output block.
Its design focuses on achieving low latency in its implementation in ASIC.
To construct Koala, we instantiate the recently introduced Kirby construction with the Koala-P permutation and add an input encoding layer.
The Koala-P permutation is obtained as the $8$-fold iteration of a simple round function inspired by that of Subterranean.
Based on...
A Note on the Quasigroup Lai-Massey Structures
George Teseleanu
Secret-key cryptography
In our paper, we explore the consequences of replacing the commutative group operation used in Lai-Massey structures with a quasigroup operation.
We introduce four quasigroup versions of the Lai-Massey structure, and prove that for quasigroups isotopic with a group $\mathbb{G}$, the complexity of launching a differential attack against these variants of the Lai-Massey structure is equivalent to attacking an alternative structure based on $\mathbb{G}$.
Then we provide the conditions needed...
ARADI and LLAMA: Low-Latency Cryptography for Memory Encryption
Patricia Greene, Mark Motley, Bryan Weeks
Secret-key cryptography
In this paper, we describe a low-latency block cipher (ARADI) and authenticated encryption mode (LLAMA) intended to support memory encryption applications.
Efficient Variants of TNT with BBB Security
Ritam Bhaumik, Wonseok Choi, Avijit Dutta, Cuauhtemoc Mancillas López, Hrithik Nandi, Yaobin Shen
Secret-key cryptography
At EUROCRYPT'20, Bao et al. have shown that three-round cascading of $\textsf{LRW1}$ construction, which they dubbed as $\textsf{TNT}$, is a strong tweakable pseudorandom permutation that provably achieves $2n/3$-bit security bound. Jha et al. showed a birthday bound distinguishing attack on $\textsf{TNT}$ and invalidated the proven security bound and proved a tight birthday bound security on the $\textsf{TNT}$ construction in EUROCRYPT'24.
In a recent work, Datta et al. have...
Impossible Boomerang Attacks Revisited: Applications to Deoxys-BC, Joltik-BC and SKINNY
Jianing Zhang, Haoyang Wang, Deng Tang
Attacks and cryptanalysis
The impossible boomerang (IB) attack was first introduced by Lu in his doctoral thesis and subsequently published at DCC in 2011. The IB attack is a variant of the impossible differential (ID) attack by incorporating the idea of the boomerang attack. In this paper, we revisit the IB attack, and introduce the incompatibility of two characteristics in boomerang to the construction of an IB distinguisher. With our methodology, all the constructions of IB distinguisher are represented in a...
Quantum Implementation and Analysis of ARIA
Yujin Oh, Kyungbae Jang, Yujin Yang, Hwajeong Seo
Implementation
The progression of quantum computing is considered a potential threat to traditional cryptography system, highlighting the significance of post-quantum security in cryptographic systems. Regarding symmetric key encryption, the Grover algorithm can approximately halve the search complexity. Despite the absence of fully operational quantum computers at present, the necessity of assessing the security of symmetric key encryption against quantum computing continues to grow. In this paper, we...
Depth Optimized Quantum Circuits for HIGHT and LEA
Kyungbae Jang, Yujin Oh, Minwoo Lee, Dukyoung Kim, Hwajeong Seo
Implementation
Quantum computers can model and solve several problems that have posed challenges for classical super computers, leveraging their natural quantum mechanical characteristics. A large-scale quantum computer is poised to significantly reduce security strength in cryptography. In this context, extensive research has been conducted on quantum cryptanalysis. In this paper, we present optimized quantum circuits for Korean block ciphers, HIGHT and LEA. Our quantum circuits for HIGHT and LEA...
This note gives an explanation for a phenomenon which appeared in the cryptanalysis of the Elisabeth-4 stream cipher, a stream cipher optimized for Torus Fully Homomorphic Encryption (TFHE). This primitive was broken in 2023 by a linearization attack. The authors of this attack made an observation on the rank of the linear system they generated, which was lower than expected. They have provided a partial explanation for it using some properties of the negacyclic lookup tables (NLUT), one of...
This paper studies the security of key derivation functions (KDFs), a central class of cryptographic algorithms used to derive multiple independent-looking keys (each associated with a particular context) from a single secret. The main security requirement is that these keys are pseudorandom (i.e., the KDF is a pseudorandom function). This paper initiates the study of an additional security property, called key control (KC) security, first informally put forward in a recent update to NIST...
The multistep solving strategy consists in a divide-and-conquer approach: when a multivariate polynomial system is computationally infeasible to solve directly, one variable is assigned over the elements of the base finite field, and the procedure is recursively applied to the resulting simplified systems. In a previous work by the same authors (among others), this approach proved effective in the algebraic cryptanalysis of the Trivium cipher. In this paper, we present a new...
The Internet of Things (IoT) has become integral to modern life, enabling smart cities, healthcare, and industrial automation. However, the increasing connectivity of IoT devices exposes them to various cyber threats, necessitating robust encryption methods. The PRESENT cipher, a lightweight block cipher, is well-suited for resource-constrained IoT environments, offering strong security with minimal computational overhead. This paper explores the application of deep learning (DL) techniques...
Synergy is a lightweight block cipher designed for resource-constrained environments such as IoT devices, embedded systems, and mobile applications. Built around a 16-round Feistel network, 8 independent pseudorandom number generators (PRNGs) ensure strong diffusion and confusion through the generation of per-block unique round keys. With a 1024-bit key and a 64-bit block size, Synergy mitigates vulnerabilities to ML-based cryptanalysis by using a large key size in combination with key- and...
Integral attacks exploit structural weaknesses in symmetric cryptographic primitives by analyzing how subsets of inputs propagate to produce outputs with specific algebraic properties. For the case of (XOR) key-alternating block ciphers using (independent) round keys, at ASIACRYPT'21, Hebborn et al. established the first non-trivial lower bounds on the number of rounds required for ensuring integral resistance in a quite general sense. For the case of adding keys by modular addition, no...
\gift, including \gift-64 and \gift-128, is a family of lightweight block ciphers with outstanding implementation performance and high security, which is a popular underlying primitive chosen by many AEADs such as \sundae. Currently, differential cryptanalysis is the best key-recovery attack on both ciphers, but they have stuck at 21 and 27 rounds for \gift-64 and \gift-128, respectively. Recently, Beyne and Rijmen proposed the quasidifferential transition matrix for differential...
Vistrutah is a large block cipher with block sizes of 256 and 512 bits. It iterates a step function that applies two AES rounds to each 128-bit block of the state, followed by a state-wide cell permutation. Like Simpira, Haraka, Pholkos, and ASURA, Vistrutah leverages AES instructions to achieve high performance. For each component of Vistrutah, we conduct a systematic evaluation of functions that can be efficiently implemented on both Intel and Arm architectures. We therefore expect...
In this paper, we propose a new block cipher primitive, based on ring-LWE, which allows key rotation with a possible security update. This makes it possible to double the security of the ciphertext with each key rotation. Our scheme could therefore be used for long-term secret storage, allowing the security of the ciphertext to be adapted to the attacker's computing power, without the need for decryption. We propose an implementation of our cryptographic scheme and prove its security.
Symmetric primitives used in multi-party computation, fully homomorphic encryption, and zero-knowledge proofs are often defined over Finite Field $\mathbb{F}_{q}$ with $q=2^t$ or an odd prime $p$. Integral attack is one of the most effective methods against such primitives due to the common use of low-degree non-linear layers. This in turn highlights the importance of a deeper understanding of degree growth. For ciphers defined over $\mathbb{F}_{2^t}$, numerous works have explored the growth...
$\textsf{GCM}$ and $\textsf{CCM}$ are block cipher (BC) based authenticated encryption modes. In multi-user (mu) security, a total number of BC invocations by all users $\sigma$ and the maximum number of BC invocations per user $\sigma_\mathsf{u}$ are crucial factors. For $\textsf{GCM}$, the tight mu-security bound has been identified as $\frac{\sigma_\mathsf{u} \sigma}{2^n} + \frac{u p + u^2}{2^k}$, where $k$ and $n$ are respectively the key and block sizes, $u$ is the number of users, $p$...
In this work, we study the quantum security of key-alternating ciphers (KAC), a natural multi-round generalization of the Even–Mansour (EM) cipher underlying many block cipher constructions, including AES. While the classical security of KAC and the quantum security of the $1$-round KAC (i.e. Even-Mansour) cipher are well understood, the quantum resistance of multi-round KAC remains largely unexplored. We focus on the $2$-round KAC construction, defined using public $n$-bit permutations...
SPEEDY is a family of lightweight block ciphers designed by Leander et al. Several differential attacks have been reported on the SPEEDY variants. However, nearly all of these attacks are based on differential characteristics with probabilities that differ from their reported values. These discrepancies arise from incorrect calculations of the (key-averaged) probability, particularly in consecutive steps within one round without intermediate key addition. In this paper, we revisit all...
Liskov, Rivest, and Wagner, in their seminal work, formulated tweakable blockciphers and proposed two blockcipher-based design paradigms, LRW1 and LRW2, where the basic design strategy is to xor the masked tweak to the input and output of a blockcipher. The 2-round cascaded LRW2 and 4-round cascaded LRW1 have been proven to be secure up to $\mathcal{O}(2^{3n/4})$ queries, but $n$-bit optimal security still remains elusive for these designs. In their paper, Liskov also posed an open challenge...
We give new constructions of pseudorandom functions (PRFs) computable in $\mathsf{NC}^1$ from (variants of the) Learning Parity with Noise (LPN) assumption. Prior to our work, the only $\mathsf{NC}^1$-computable PRF from LPN-style assumptions was due to Boyle et al. (FOCS 2020) who constructed a weak PRF from a new heuristic variant of LPN called variable-density LPN. We give the following three results: (1) A weak PRF computable in $\mathsf{NC}^1$ from standard LPN. (2) A...
SPEEDY is a family of ultra-low-latency block ciphers designed by Leander et al. in 2021. In 2023, Boura et al. proposed a differential attack on the full 7-round variant, SPEEDY-7-192. However, shortly thereafter, Beyne and Neyt demonstrated that this attack was invalid, as the dominant differential characteristic it relied upon had probability zero. A similar issue affects another differential attack proposed the same year by Wang et al., which also targets SPEEDY-7-192 and suffers from...
The security of block ciphers such as AES-128, AES-192, and AES-256 relies on the assumption that their ciphertext outputs are computationally indistinguishable from random permutations. While distinguishers have been proposed for reduced-round variants or under non-standard models such as known-key or chosen-key settings, no effective distinguisher has been demonstrated for the full-round AES ciphers in the standard secret-key model. This work introduces FESLA (Feature Enhanced...
Lightweight block ciphers such as PIPO and FLY are designed to operate efficiently and securely in constrained environments. While the differential attack on PIPO-64-128 has already been studied by the designers, no concrete differential attack had been conducted for PIPO-64-256 and FLY. Motivated by this gap, we revisit the security of PIPO against differential attacks and generalize the analysis framework to make it applicable to structurally related ciphers. Based on this generalized...
Key derivation functions can be used to derive variable-length random strings that serve as cryptographic keys. They are integral to many widely-used communication protocols such as TLS, IPsec and Signal. NIST SP 800-108 specifies several key derivation functions based on pseudorandom functions such as \mode{CMAC} and \mode{HMAC}, that can be used to derive additional keys from an existing cryptographic key. This standard either explicitly or implicitly requests their KDFs to be variable...
The dream of achieving data privacy during external computations has become increasingly concrete in recent years. Indeed, since the early days of Fully Homomorphic Encryption (FHE) more than a decade ago, new cryptosystems and techniques have constantly optimized the efficiency of computation on encrypted data. However, one of the main disadvantages of FHE, namely its significant ciphertext expansion factor, remains at the center of the efficiency bottleneck of FHE schemes. To tackle the...
AES-GCM has been the status quo for efficient symmetric encryption for decades. As technology and cryptographic applications evolved over time, AES-GCM has posed some challenges to certain use-cases due to its default 96-bit nonce size, 128-bit block size, and lack of key commitment. Nonce-derived schemes are one way of addressing these challenges: Such schemes derive multiple keys from nonce values, then apply standard AES-GCM with the derived keys (and possibly another 96-bit nonce). The...
Differential meet-in-the-middle (MITM) cryptanalysis, introduced by Boura et al. at CRYPTO 2023, has been demonstrated to be an effective technique for analyzing the security of block ciphers. In this paper, we introduce an improved parallel partitioning technique, and incorporate it into a new framework with a flexible key recovery strategy. This framework is applicable to both SPN and Feistel ciphers. We apply the new framework to SIMON and Piccolo-128 for demonstration. In particular, we...
In this paper, we focus on SM4, a widely used and standardized Chinese block cipher. After revisiting the previously proposed optimal 19-round differential characteristic, we observe that its applicability in differential attacks is limited by a reduced pre-sieving probability, causing the time complexity to exceed that of brute force. To overcome this issue, we employ an automated search approach to identify more promising optimal 19-round differential characteristics. By translating key...
At CRYPTO 2019, Gohr pioneered the integration of differential cryptanalysis with neural networks, demonstrating significant advantages over traditional distinguishers. Subsequently, at Inscrypt 2020, Su et al. proposed the concept of constructing polyhedral differential neural distinguishers by leveraging multiple effective input differences. More recently, at FSE 2024, Bellini et al. introduced a general-purpose tool for automating the training of single-key differential neural...
Impossible differential attack is one of the major cryptanalytical methods for symmetric-key block ciphers. In this paper, we evaluate the security of SAND-128 against impossible differential attack. SAND is an AND-RX-based lightweight block cipher proposed by Chen et al. in Designs, Codes and Cryptography 2022. There are two variants of SAND, namely SAND-64 and SAND-128, due to structural differences. In this paper, we search for impossible differential distinguishers of SAND-128 using the...
SAND is an AND-RX-based lightweight block cipher proposed by Chen et al. There are two variants of SAND, namely SAND-64 and SAND-128, due to structural differences. In this paper, we search for impossible differential distinguishers of SAND-64 using the Constraint Programming (CP) and reveal 56 types of impossible differential distinguishers up to 11 rounds. Furthermore, we demonstrate a key recovery attack on 17-round SAND-64. The complexities for the attack require $2^{56}$ data, $2^{127}$...
In 2012, the Tor project expressed the need to upgrade Tor's onion encryption scheme to protect against tagging attacks and thereby strengthen its end-to-end integrity protection. Tor proposal 261, where each encryption layer is processed by a strongly secure, yet relatively expensive tweakable wide-block cipher, is the only concrete candidate replacement to be backed by formal, yet partial, security proofs (Degabriele and Stam, EUROCRYPT 2018, and Rogaway and Zhang, PoPETS 2018). We...
The GCM authenticated encryption (AE) scheme is one of the most widely used AE schemes in the world, while it suffers from risk of nonce misuse, short message length per encryption and an insufficient level of security. The goal of this paper is to design new AE schemes achieving stronger provable security in the standard model and accepting longer nonces (or providing nonce misuse resistance), with the design rationale behind GCM. As a result, we propose two enhanced variants of GCM and...
In recent years, the integration of deep learning with differential cryptanalysis has led to differential neural cryptanalysis, enabling efficient data-driven security evaluation of modern cryptographic algorithms. Compared to traditional differential cryptanalysis, differential neural cryptanalysis enhances the efficiency and automation of the analysis by training neural networks to automatically extract statistical features from ciphertext pairs. As research advances, neural distinguisher...
Efficiently protecting embedded software implementations of standard symmetric cryptographic primitives against side-channel attacks has been shown to be a considerable challenge in practice. This is, in part, due to the most natural countermeasure for such ciphers, namely Boolean masking, not amplifying security well in the absence of sufficient physical noise in the measurements. So-called prime-field masking has been demonstrated to provide improved theoretical guarantees in this context,...
In this paper, we revisit the question of key recovery using side-channel analysis for unrolled, single-cycle block ciphers. In particular, we study the Princev2 cipher. While it has been shown vulnerable in multiple previous studies, those studies were performed on side-channel friendly ASICs or older FPGAs (e.g., Xilinx Virtex II on the SASEBO-G board), and using mostly expensive equipment. We start with the goal of exploiting a cheap modern FPGA and board using power traces from a cheap...
In this paper, we propose a new 10-bit S-box generated from a Feistel construction. The subpermutations are generated by a 5-cell cellular automaton based on a unique well-chosen rule and bijective affine transformations. In particular, the cellular automaton rule is chosen based on empirical tests of its ability to generate good pseudorandom output on a ring cellular automaton. Similarly, Feistel's network layout is based on empirical data regarding the quality of the output S-box. We...
P vs NP problem is the most important unresolved problem in the field of computational complexity. Its impact has penetrated into all aspects of algorithm design, especially in the field of cryptography. The security of cryptographic algorithms based on short keys depends on whether P is equal to NP. In fact, Shannon strictly proved that the one-time-pad system meets unconditional security, but because the one-time-pad system requires the length...
Differential cryptanalysis is a powerful technique for attacking block ciphers, wherein the Markov cipher assumption and stochastic hypothesis are commonly employed to simplify the search and probability estimation of differential trails. However, these assumptions often neglect inherent algebraic constraints, potentially resulting in invalid trails and inaccurate probability estimates. Some studies identified violations of these assumptions and explored how they impose constraints on key...
The Pointer Authentication Code ($\textsf{PAC}$) feature in the Arm architecture is used to enforce the Code Flow Integrity ($\textsf{CFI}$) of running programs. It does so by generating a short $\textsf{MAC}$ - called the $\textsf{PAC}$ - of the return address and some additional context information upon function entry, and checking it upon exit. An attacker that wants to overwrite the stack with manipulated addresses now faces an additional hurdle, as they now have to guess,...
SCARF is a tweakable block cipher dedicated to cache address randomization, proposed at the USENIX Security conference. It has a 10-bit block, 48-bit tweak, and 240-bit key. SCARF is aggressively optimized to meet the harsh latency constraints of cache address randomization, and uses a dedicated model for its security claim. The full version of SCARF has 8 rounds, and its designers claim security up to $2^{40}$ queries and $2^{80}$ computations. In this work we present a distinguisher...
We study the problem of embedded code encryption, i.e., encryption for binary software code for a secure microcontroller that is stored in an insecure external memory. As every single instruction must be decrypted before it can be executed, this scenario requires an extremely low latency decryption. We present a formal treatment of embedded code encryption security definitions, propose three constructions, namely ACE1, ACE2 and ACE3, and analyze their security. Further, we present ChiLow, a...
The wide adoption of deep neural networks (DNNs) raises the question of how can we equip them with a desired cryptographic functionality (e.g, to decrypt an encrypted input, to verify that this input is authorized, or to hide a secure watermark in the output). The problem is that cryptographic primitives are typically designed to run on digital computers that use Boolean gates to map sequences of bits to sequences of bits, whereas DNNs are a special type of analog computer that uses linear...
In block ciphers, the attacker should not be able to distinguish a block cipher from a random permutation; therefore the existence of a distinguisher is important. Cryptanalysis of the reduced-round variants of block ciphers is also important in cryptographic design. AES is the most widely used block cipher, and currently, the best-known distinguisher for 5-round AES has a data and time complexity of $2^{29.95}$ with a success probability of 55\%. In this paper, we propose the massive...
Differential cryptanalysis is one of the main methods of cryptanalysis and has been applied to a wide range of ciphers. While it is very successful, it also relies on certain assumptions that do not necessarily hold in practice. One of these is the hypothesis of stochastic equivalence, which states that the probability of a differential characteristic behaves similarly for all keys. Several works have demonstrated examples where this hypothesis is violated, impacting the attack complexity...
SIMON is a lightweight block cipher proposed by the National Security Agency. According to previous cryptanalytic results on SIMON, differential and linear cryptanalysis are the two most effective attacks on it. Usually, there are many trails sharing the same input and output differences (resp. masks). These trails comprise the differential (resp. linear hull) and can be used together when mounting attacks. In ASIACRYPT 2021, Leurent et al. proposed a matrix-based method on...
Impossible differential (ID) cryptanalysis and impossible boomerang (IB) cryptanalysis are two methods of impossible cryptanalysis against block ciphers. Since the seminal work introduced by Boura et al. in 2014, there have been no substantial advancements in the key recovery process for impossible cryptanalysis, particularly for the IB attack.In this paper, we propose a generic key recovery framework for impossible cryptanalysis that supports arbitrary key-guessing strategies, enabling...
Physical side-channel analysis (SCA) operates on the foundational assumption of access to known plaintext or ciphertext. However, this assumption can be easily invalidated in various scenarios, ranging from common encryption modes like Cipher Block Chaining (CBC) to complex hardware implementations, where such data may be inaccessible. Blind SCA addresses this challenge by operating without the knowledge of plaintext or ciphertext. Unfortunately, prior such approaches have shown limited...
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a...
We propose efficient, post-quantum threshold ring signatures constructed from one-wayness of AES encryption and the VOLE-in-the-Head zero-knowledge proof system. Our scheme scales efficiently to large rings and extends the linkable ring signatures paradigm. We define and construct key-binding deterministic tags for signature linkability, that also enable succinct aggregation with approximate lower bound arguments of knowledge; this allows us to achieve succinct aggregation of our signatures...
Data privacy concerns are sharply rising in the current digital era, hyperdriven by cloud computing, big data analytics, and the Internet of Things. Homomorphic Encryption (HE) has emerged as an ideal technique for computing on encrypted data, but current schemes suffer from slow encryption speed and large ciphertext expansion. Practical implementation is hindered, especially when the client has limited bandwidth, memory, and computing power. In 2011, Naehrig et al. proposed transciphering,...
In this paper, we define the conditional constant function problem (CCFP) and, for a special case of CCFP, we propose a quantum algorithm for solving it efficiently. Such an algorithm enables us to make new evaluations to the quantum security of Feistel block cipher in the case where a quantum adversary only has the ability to make online queries in a classical manner, which is relatively realistic. Specifically, we significantly improved the chosen-plaintext key recovery attacks on two ...
The impossible boomerang attack is a very powerful attack, and the existing results show that it is more effective than the impossible differential attack in the related-key scenario. However, several limitations persist in the current key recovery process: the division of pre-guess keys is rather coarse; the details of S-boxes are ignored in the differential propagation; the complexity estimation and the key guessing order's determination are relatively rough and primitive. These are the...
Shadow is a family of lightweight block ciphers introduced by Guo, Li, and Liu in 2021, with Shadow-32 having a 32-bit block size and a 64-bit key, and Shadow-64 having a 64-bit block size and a 128-bit key. Both variants use a generalized Feistel network with four branches, incorporating the AND-Rotation-XOR operation similar to the Simon family for their bridging function. This paper reveals that the security claims of the Shadow family are not as strong as suggested. We present a key...
The impossible differential (ID) attack is crucial for analyzing the strength of block ciphers. The critical aspect of this technique is to identify IDs, and the researchers introduced several methods to detect them. Recently, the researchers extended the mixed-integer linear programming (MILP) approach by partitioning the input and output differences to identify IDs. The researchers proposed techniques to determine the representative set and partition table of a set over any nonlinear...
The design of tweakable wide block ciphers has advanced significantly over the past two decades. This evolution began with the approach of designing a wide block cipher by Naor and Reingold. Since then, numerous tweakable wide block ciphers have been proposed, many of which build on existing block ciphers and are secure up to the birthday bound for the total number of blocks queried. Although there has been a slowdown in the development of tweakable wide block cipher modes in last couple of...
At FSE'15, Mennink introduced the concept of designing beyond-the-birthday bound secure tweakable block cipher from an ideal block cipher. They proposed two tweakable block ciphers $\widetilde{F}[1]$ and $\widetilde{F}[2]$ that accepts $n$-bit tweak using a block cipher of $n$-bit key and $n$-bit data. Mennink proved that the constructions achieve security up to $2^{2n/3}$ and $2^n$ queries, respectively, assuming the underlying block cipher is ideal. Later, at ASIACRYPT'16, Wang et al....
In this paper, we investigate the security of lightweight block ciphers, focusing on those that utilize the ADD-Rotate-XOR (ARX) and AND-Rotate-XOR (AND-RX) design paradigms. More specifically, we examine their resilience against boomerang-style attacks. First, we propose an automated search strategy that leverages the boomerang connectivity table (BCT) for AND operations ($\wedge BCT$) to conduct a complete search for boomerang and rectangle distinguishers for AND-RX ciphers. The proposed...
We introduce a new approach between classical security proofs of modes of operation and dedicated security analysis for known cryptanalysis families: General Practical Cryptanalysis. This allows us to analyze generically the security of the sum of two keyed permutations against known attacks. In many cases (of course, not all), we show that the security of the sum is strongly linked to that of the composition of the two permutations. This enables the construction of beyond-birthday bound...
The advent of quantum computing has profound implications for current technologies, offering advancements in optimization while posing significant threats to cryptographic algorithms. Public-key cryptosystems relying on prime factorization or discrete logarithms are particularly vulnerable, whereas block ciphers (BCs) remain secure through increased key lengths. In this study, we introduce a novel quantum implementation of SLIM, a lightweight block cipher optimized for 32-bit plaintext and...
In this paper, we aim to enhance and automate advanced techniques for impossible differential attacks. To demonstrate these advancements, we present improved attacks on the LBlock and HIGHT block ciphers. More precisely, we (a) introduce a methodology to automatically invert symmetric ciphers when represented as directed acyclic graphs, a fundamental step in the search for impossible differential trails and in key recovery techniques; (b) automate the search for impossible differential...
This paper studies quantum linear key-recovery attacks on block ciphers. The first such attacks were last-rounds attacks proposed by Kaplan et al. (ToSC 2016), which combine a linear distinguisher with a guess of a partial key. However, the most efficient classical attacks use the framework proposed by Collard et al. (ICISC 2007), which computes experimental correlations using the Fast Walsh-Hadamard Transform. Recently, Schrottenloher (CRYPTO 2023) proposed a quantum version of this...
In this study, we present the first side-channel attack on the ARADI block cipher, exposing its vulnerabilities to physical attacks in non-profiled scenarios. We propose a novel bitwise divide-and-conquer methodology tailored for ARADI, enabling key recovery. Furthermore, based on our attack approach, we present a stepwise method for recovering the full 256-bit master key. Through experiments on power consumption traces from an ARM processor, we demonstrate successful recovery of target key...
Quantum computing has attracted substantial attention from researchers across various fields. In case of the symmetric key cryptography, the main problem is posed by the application of Grover's search. In this work, we focus on quantum analysis of the lightweight block cipher LED. This paper proposes an optimized quantum circuit for LED, minimizing the required number of qubits, quantum gates, and circuit depth. Furthermore, we conduct Grover's attack and Search with Two Oracles (STO)...
Message authentication codes (MACs) are fundamental symmetric key cryptographic functions used to generate a short, secret-key-dependent tag for a given message. This tag ensures both message authenticity and integrity, as computing a valid tag without the secret key is computationally infeasible, thereby revealing any unauthorized modification. Existing MACs often rely on block ciphers (BCs) and tweakable block ciphers (TBCs). The design of these MACs involves various trade-offs...
Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose...
BAKSHEESH is a lightweight block cipher following up the well-known cipher GIFT-128, which uses a 4-bit SBox that has a non-trivial Linear Structure (LS). Also, the Sbox requires a low number of AND gates that makes BAKSHEESH stronger to resist the side channel attacks compared to GIFT-128. In this paper, we give the first third-party security analysis of BAKSHEESH from the traditional attacks perspective: integral, differential and linear attacks. Firstly, we propose a framework for...
Impossible differential cryptanalysis is a crucial cryptanalytical method for symmetric ciphers. Given an impossible differential, the key recovery attack typically proceeds in two steps: generating pairs of data and then identifying wrong keys using the guess-and-filtering method. At CRYPTO 2023, Boura \etal first proposed a new key recovery technique - the differential meet-in-the-middle attack, which recovers the key in a meet-in-the-middle manner. Inspired by this technique, we...
SLIM and LBCIoT are lightweight block ciphers proposed for IoT applications. We present differential meet-in-the-middle attacks on these ciphers and discuss several implementation variants and possible improvements of these attacks. Experimental validation also shows some results that may be of independent interest in the cryptanalysis of other ciphers. Namely, the problems with low-probability differentials and the questionable accuracy of standard complexity estimates of using filters.
In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the $\textit{forkcipher}$, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes...
APN functions offer optimal resistance to differential attacks and are instrumental in the design of block ciphers in cryptography. While finding APN functions is very difficult in general, a promising way to construct APN functions is through symmetric matrices called Quadratic APN matrices (QAM). It is known that the search space for the QAM method can be reduced by means of orbit partitions induced by linear equivalences. This paper builds upon and improves these approaches in the case of...
For a finite field $\mathbb{F}$ of size $n$, the (patched) inverse permutation $\operatorname{INV}: \mathbb{F} \to \mathbb{F}$ computes the inverse of $x$ over $\mathbb{F}$ when $x\neq 0$ and outputs $0$ when $x=0$, and the $\operatorname{ARK}_K$ (AddRoundKey) permutation adds a fixed constant $K$ to its input, i.e., $$\operatorname{INV}(x) = x^{n-2} \hspace{.1in} \mbox{and} \hspace{.1in} \operatorname{ARK}_K(x) = x + K \;.$$ We study the process of alternately applying the...
Boolean functions play an important role in designing and analyzing many cryptographic systems, such as block ciphers, stream ciphers, and hash functions, due to their unique cryptographic properties such as nonlinearity, correlation immunity, and algebraic properties. The secure evaluation of Boolean functions or Secure Boolean Evaluation (SBE) is an important area of research. SBE allows parties to jointly compute Boolean functions without exposing their private inputs. SBE finds...
ARADI is a low-latency block cipher proposed by the NSA (National Security Agency) in 2024 for memory encryption. Bellini et al. experimentally demonstrated that in specific cubes of 5-round ARADI, the cube sums are byte-wise equal, for example, to 0x9d9dc5c5. This paper modifies the MILP-based division property algorithm to prove this and observes that the rotation amount of 8 in ARADI causes cancellations of monomials, allowing us to extend the byte-wise equal property up to 8 rounds. As a...
Since designing a dedicated secure symmetric PRF is difficult, various works studied optimally secure PRFs from the sum of independent permutations (SoP). At CRYPTO'20, Gunsing and Mennink proposed the Summation-Truncation Hybrid (STH). While based on SoP, STH releases additional $a \leq n$ bits of the permutation calls and sums $n-a$ bits of them. Thus, it produces $n+a$ bits at $O(n-a/2)$-bit PRF security. Both SoP or STH can be used directly in encryption schemes or MACs in place of...
In two recent papers, we introduced and studied the notion of $k$th-order sum-freedom of a vectorial function $F:\mathbb F_2^n\to \mathbb F_2^m$. This notion generalizes that of almost perfect nonlinearity (which corresponds to $k=2$) and has some relation with the resistance to integral attacks of those block ciphers using $F$ as a substitution box (S-box), by preventing the propagation of the division property of $k$-dimensional affine spaces. In the present paper, we show that this...
Recently, Baudrin et al. analyzed a special case of Wagner's commutative diagram cryptanalysis, referred to as commutative cryptanalysis. For a family $(E_k)_k$ of permutations on a finite vector space $G$, commutative cryptanalysis exploits the existence of affine permutations $A,B \colon G \rightarrow G$, $I \notin \{A,B\}$ such that $E_k \circ A (x) = B \circ E_k(x)$ holds with high probability, taken over inputs $x$, for a significantly large set of weak keys $k$. Several attacks...
This paper describes a simple idea to improve (text) diffusion in block ciphers that use MDS codes but that take more than a single round to achieve full (text) diffusion. The Rijndael cipher family is used as an example since it comprises ciphers with different state sizes. A drawback of the new approach is the additional computational cost, but it is competitive compared to large MDS matrices used in the Khazad and Kuznyechik ciphers.
At Africacrypt 2022, Gupta et al. introduced FUTURE, a 64-bit lightweight block cipher based on an MDS matrix and designed in an SPN structure, with a focus on achieving single-cycle encryption and low implementation cost, especially in unrolled architectures. While the designers evaluated its security under various attack models, they did not consider related-key cryptanalysis. In this work, we address this gap by analyzing the security of FUTURE in the related-key setting using techniques...
We develop and implement AlgoROM, a tool to systematically analyze the security of a wide class of symmetric primitives in idealized models of computation. The schemes that we consider are those that can be expressed over an alphabet consisting of XOR and function symbols for hash functions, permutations, or block ciphers. We implement our framework in OCaml and apply it to a number of prominent constructions, which include the Luby–Rackoff (LR), key-alternating Feistel (KAF), and...
Deep neural networks (DNNs) are valuable assets, yet their public accessibility raises security concerns about parameter extraction by malicious actors. Recent work by Carlini et al. (Crypto’20) and Canales- Martínez et al. (Eurocrypt’24) has drawn parallels between this issue and block cipher key extraction via chosen plaintext attacks. Leveraging differential cryptanalysis, they demonstrated that all the weights and biases of black-box ReLU-based DNNs could be inferred using a polynomial...
This paper reveals a critical flaw in the design of ARADI, a recently proposed low-latency block cipher by NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks. The weakness exploits the specific composition of Toffoli gates in the round function of ARADI's nonlinear layer, and it allows the extension of a given algebraic distinguisher to one extra round without any change in the data complexity. More precisely, we show that the cube-sum values, though depending on the secret key...
XCB, a tweakable enciphering mode, is part of IEEE Std. 1619.2 for shared storage media. We show that all versions of XCB are not secure through three plaintext recovery attacks. A key observation is that XCB behaves like an LRW1-type tweakable block cipher for single-block messages, which lacks CCA security. The first attack targets one-block XCB, using three queries to recover the plaintext. The second one requires four queries to recover the plaintext that excludes one block. The last one...
We present a tweakable wide block cipher called Mystrium and show it as the fastest such primitive on low-end processors that lack dedicated AES or other cryptographic instructions, such as ARM Cortex-A7. Mystrium is based on the provably secure double-decker mode, that requires a doubly extendable cryptographic keyed (deck) function and a universal hash function. We build a new deck function called Xymmer that for its compression part uses Multimixer-128, the fastest universal hash for...
Passive (leakage exploitation) and active (fault injection) physical attacks pose a significant threat to cryptographic schemes. Although leakage-resistant cryptography is well studied, there is little work on mode-level security in the presence of joint faults and leakage exploiting adversaries. In this paper, we focus on integrity for authenticated encryption (AE). First, we point out that there is an inherent attack in the fault-resilience model presented at ToSC 2023. This shows how...
The Feistel construction is a fundamental technique for building pseudorandom permutations and block ciphers. This paper shows that a simple adaptation of the construction is resistant, even to algorithm substitution attacks---that is, adversarial subversion---of the component round functions. Specifically, we establish that a Feistel-based construction with more than $337n/\log(1/\epsilon)$ rounds can transform a subverted random function---which disagrees with the original one at a small...
In this paper, we present the first third-party cryptanalysis of SCARF, a tweakable low-latency block cipher designed to thwart contention-based cache attacks through cache randomization. We focus on multiple-tweak differential attacks, exploiting biases across multiple tweaks. We establish a theoretical framework explaining biases for any number of rounds and verify this framework experimentally. Then, we use these properties to develop a key recovery attack on 7-round SCARF with a time...
An ongoing research challenge in symmetric cryptography is to design an authenticated encryption (AE) with a commitment to the secret key or preferably to the entire context. One way to achieve this is to use a transform on an existing AE scheme, if possible with no output length expansion. At EUROCRYPT'22, Bellare and Hoang proposed the HtE transform, which lifts key-commitment to context-commitment. In the same year at ESORICS'22, Chan and Rogaway proposed the CTX transform, which works on...
In recent years, ML based differential distinguishers have been explored and compared with the classical methods. Complexity of a key recovery attack on block ciphers is calculated using the probability of a differential distinguisher provided by classical methods. Since theoretical computations suffice to calculate the data complexity in these cases, so there seems no restrictions on the practical availability of computational resources to attack a block cipher using classical methods....
The impossible differential (ID) attack is one of the most important cryptanalytic techniques for block ciphers. There are two phases to finding an ID attack: searching for the distinguisher and building a key recovery upon it. Previous works only focused on automated distinguisher discovery, leaving key recovery as a manual post-processing task, which may lead to a suboptimal final complexity. At EUROCRYPT~2023, Hadipour et al. introduced a unified constraint programming (CP) approach based...
A fixed length tweakable enciphering scheme (TES) is the appropriate cryptographic functionality for low level disk encryption. Research on TES over the last two decades have led to a number of proposals many of which have already been implemented using FPGAs. This paper considers the FPGA implementations of two more recent and promising TESs, namely AEZ and FAST. The relevant architectures are described and simulation results on the Xilinx Virtex 5 and Virtex 7 FPGAs are presented. For...
Recently, the NSA has proposed a block cipher called ARADI and a mode of operation called LLAMA for memory encryption applications. In this note, we comment on this proposal, on its suitability for the intended application, and describe an attack on LLAMA that breaks confidentiality of ciphertext and allows a straightforward forgery attack breaking integrity of ciphertext (INT-CTXT) using a related-IV attack. Both attacks have negligible complexity.
Robust message authentication codes (MACs) and authenticated encryption (AE) schemes that provide authenticity in the presence of side-channel leakage are essential primitives. These constructions often rely on primitives designed for strong leakage protection, among others including the use of strong-unpredictable (tweakable) block-ciphers. This paper extends the strong-unpredictability security definition to the versatile and new forkcipher primitive. We show how to construct secure and...
In early August 2024, three NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks -- published the technical specifications for a new low-latency block cipher, ARADI, along with its corresponding authenticated encryption mode, LLAMA, which is specifically designed for memory encryption applications. Their manuscript offered minimal security analysis of the design, only briefly discussing the differential, linear and algebraic properties of cipher's underlying components. In this...
Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography. In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our...
In recent years a new class of symmetric-key primitives over $\mathbb{F}_p$ that are essential to Multi-Party Computation and Zero-Knowledge Proofs based protocols has emerged. Towards improving the efficiency of such primitives, a number of new block ciphers and hash functions over $\mathbb{F}_p$ were proposed. These new primitives also showed that following alternative design strategies to the classical Substitution-Permutation Network (SPN) and Feistel Networks leads to more efficient...
Proving resistance to conventional attacks, e.g., differential, linear, and integral attacks, is essential for designing a secure symmetric-key cipher. Recent advances in automatic search and deep learning-based methods have made this time-consuming task relatively easy, yet concerns persist over expertise requirements and potential oversights. To overcome these concerns, Kimura et al. proposed neural network-based output prediction (NN) attacks, offering simplicity, generality, and reduced...
\scarf, an ultra low-latency tweakable block cipher, is the first cipher designed for cache randomization. The block cipher design is significantly different from the other common tweakable block ciphers; with a block size of only 10 bits, and yet the input key size is a whopping $240$ bits. Notably, the majority of the round key in its round function is absorbed into the data path through AND operations, rather than the typical XOR operations. In this paper, we present a key-recovery...
This paper introduces the Koala PRF, which maps a variable-length sequence of $64$-bit input blocks to a single $257$-bit output block. Its design focuses on achieving low latency in its implementation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the $8$-fold iteration of a simple round function inspired by that of Subterranean. Based on...
In our paper, we explore the consequences of replacing the commutative group operation used in Lai-Massey structures with a quasigroup operation. We introduce four quasigroup versions of the Lai-Massey structure, and prove that for quasigroups isotopic with a group $\mathbb{G}$, the complexity of launching a differential attack against these variants of the Lai-Massey structure is equivalent to attacking an alternative structure based on $\mathbb{G}$. Then we provide the conditions needed...
In this paper, we describe a low-latency block cipher (ARADI) and authenticated encryption mode (LLAMA) intended to support memory encryption applications.
At EUROCRYPT'20, Bao et al. have shown that three-round cascading of $\textsf{LRW1}$ construction, which they dubbed as $\textsf{TNT}$, is a strong tweakable pseudorandom permutation that provably achieves $2n/3$-bit security bound. Jha et al. showed a birthday bound distinguishing attack on $\textsf{TNT}$ and invalidated the proven security bound and proved a tight birthday bound security on the $\textsf{TNT}$ construction in EUROCRYPT'24. In a recent work, Datta et al. have...
The impossible boomerang (IB) attack was first introduced by Lu in his doctoral thesis and subsequently published at DCC in 2011. The IB attack is a variant of the impossible differential (ID) attack by incorporating the idea of the boomerang attack. In this paper, we revisit the IB attack, and introduce the incompatibility of two characteristics in boomerang to the construction of an IB distinguisher. With our methodology, all the constructions of IB distinguisher are represented in a...
The progression of quantum computing is considered a potential threat to traditional cryptography system, highlighting the significance of post-quantum security in cryptographic systems. Regarding symmetric key encryption, the Grover algorithm can approximately halve the search complexity. Despite the absence of fully operational quantum computers at present, the necessity of assessing the security of symmetric key encryption against quantum computing continues to grow. In this paper, we...
Quantum computers can model and solve several problems that have posed challenges for classical super computers, leveraging their natural quantum mechanical characteristics. A large-scale quantum computer is poised to significantly reduce security strength in cryptography. In this context, extensive research has been conducted on quantum cryptanalysis. In this paper, we present optimized quantum circuits for Korean block ciphers, HIGHT and LEA. Our quantum circuits for HIGHT and LEA...