372 results sorted by ID
Security Analysis of ASCON Cipher under Persistent Faults
Madhurima Das, Bodhisatwa Mazumdar
Attacks and cryptanalysis
This work investigates persistent fault analysis on ASCON
cipher that has been recently standardized by NIST USA for lightweight
cryptography applications. In persistent fault, the fault once injected
through RowHammer injection techniques, exists in the system during
the entire encryption phase. In this work, we propose a model to mount
persistent fault analysis (PFA) on ASCON cipher. In the finalization
round of the ASCON cipher, we identify that the fault-injected S-Box
operation...
A Framework for Generating S-Box Circuits with Boyer-Peralta Algorithm-Based Heuristics, and Its Applications to AES, SNOW3G, and Saturnin
Yongjin Jeon, Seungjun Baek, Giyoon Kim, Jongsung Kim
Secret-key cryptography
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyer-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
New Results in Quantum Analysis of LED: Featuring One and Two Oracle Attacks
Siyi Wang, Kyungbae Jang, Anubhab Baksi, Sumanta Chakraborty, Bryan Lee, Anupam Chattopadhyay, Hwajeong Seo
Secret-key cryptography
Quantum computing has attracted substantial attention from researchers across various fields. In case of the symmetric key cryptography, the main problem is posed by the application of Grover's search. In this work, we focus on quantum analysis of the lightweight block cipher LED.
This paper proposes an optimized quantum circuit for LED, minimizing the required number of qubits, quantum gates, and circuit depth. Furthermore, we conduct Grover's attack and Search with Two Oracles (STO)...
SoK: Security of the Ascon Modes
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of...
A Fault Analysis on SNOVA
Gustavo Banegas, Ricardo Villanueva-Polanco
Attacks and cryptanalysis
SNOVA is a post-quantum cryptographic signature scheme known for its efficiency and compact key sizes, making it a second-round candidate in the NIST post-quantum cryptography standardization process. This paper presents a comprehensive fault analysis of SNOVA, focusing on both permanent and transient faults during signature generation. We introduce several fault injection strategies that exploit SNOVA's structure to recover partial or complete secret keys with limited faulty signatures. Our...
Resilience-Optimal Lightweight High-threshold Asynchronous Verifiable Secret Sharing
Hao Cheng, Jiliang Li, Yizhong Liu, Yuan Lu, Weizhi Meng, Zhenfeng Zhang
Cryptographic protocols
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
Practical Asynchronous MPC from Lightweight Cryptography
Atsuki Momose
Cryptographic protocols
We present an asynchronous secure multi-party computation (MPC) protocol that is practically efficient. Our protocol can evaluate any arithmetic circuit with linear communication in the number of parties per multiplication gate, while relying solely on computationally lightweight cryptography such as hash function and symmetric encryption. Our protocol is optimally resilient and tolerates $t$ malicious parties among $n = 3t+1$ parties.
At the technical level, we manage to apply the...
Proteus: A Fully Homomorphic Authenticated Transciphering Protocol
Lars Wolfgang Folkerts, Nektarios Georgios Tsoutsos
Cryptographic protocols
Fully Homomorphic Encryption (FHE) is a powerful technology that allows a cloud server to perform computations directly on ciphertexts. To overcome the overhead of sending and storing large FHE ciphertexts, the concept of FHE transciphering was introduced, allowing symmetric key encrypted ciphertexts to be transformed into FHE ciphertexts by deploying symmetric key decryption homomorphically. However, existing FHE transciphering schemes remain unauthenticated and malleable, allowing...
Concretely Efficient Asynchronous MPC from Lightweight Cryptography
Akhil Bandarupalli, Xiaoyu Ji, Aniket Kate, Chen-Da Liu-Zhang, Yifan Song
Cryptographic protocols
We consider the setting of asynchronous multi-party computation (AMPC) with optimal resilience $n=3t+1$ and linear communication complexity, and employ only ``lightweight'' cryptographic primitives, such as random oracle hash.
In this model, we introduce two concretely efficient AMPC protocols for a circuit with $|C|$ multiplication gates: a protocol achieving fairness with $\mathcal{O}(|C|\cdot n + n^3)$ field elements of communication, and a protocol achieving guaranteed output delivery...
Private Laconic Oblivious Transfer with Preprocessing
Rishabh Bhadauria, Nico Döttling, Carmit Hazay, Chuanwei Lin
Cryptographic protocols
Laconic cryptography studies two-message protocols that securely compute on large amounts of data with minimal communication cost. Laconic oblivious transfer (OT) is a central primitive where the receiver's input is a large database $\mathsf{DB}$ and the sender's inputs are two messages $m_0$, $m_1$ along with an index $i$, such that the receiver learns the message determined by the choice bit $\mathsf{DB}_i$. OT becomes even more useful for secure computation when considering its laconic...
TentLogiX: 5-bit Chaos-Driven S-Boxes for Lightweight Cryptographic Systems
Maha Allouzi, Arefeh Rahaei
Cryptographic protocols
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC).
In...
A Note on ARADI and LLAMA
Roberto Avanzi, Orr Dunkelman, Shibam Ghosh
Secret-key cryptography
Recently, the NSA has proposed a block cipher called ARADI and a mode of operation called LLAMA for memory encryption applications.
In this note, we comment on this proposal, on its suitability for the intended application, and describe an attack on LLAMA that breaks confidentiality of ciphertext and allows a straightforward forgery attack breaking integrity of ciphertext (INT-CTXT) using a related-IV attack.
Both attacks have negligible complexity.
Scloud+: a Lightweight LWE-based KEM without Ring/Module Structure
Anyu Wang, Zhongxiang Zheng, Chunhuan Zhao, Zhiyuan Qiu, Guang Zeng, Ye Yuan, Changchun Mu, Xiaoyun Wang
Public-key cryptography
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
Lightweight Dynamic Linear Components for Symmetric Cryptography
S. M. Dehnavi, M. R. Mirzaee Shamsabad
Foundations
In this paper, using the concept of equivalence of mappings we characterize all of the one-XOR matrices which are used in hardware applications and propose a family of lightweight linear mappings for software-oriented applications in symmetric cryptography. Then, we investigate interleaved linear mappings and based upon this study, we present generalized dynamic primitive LFSRs along with dynamic linear components for construction of diffusion layers.
From the mathematical...
MATTER: A Wide-Block Tweakable Block Cipher
Roberto Avanzi, Orr Dunkelman, Kazuhiko Minematsu
Secret-key cryptography
In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software.
MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function.
The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key.
Key and tweak are...
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, Sacha Servan-Schreiber
Cryptographic protocols
Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension.
A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads.
Specifically, traditional OT...
Side-Channel and Fault Resistant ASCON Implementation: A Detailed Hardware Evaluation (Extended Version)
Aneesh Kandi, Anubhab Baksi, Peizhou Gan, Sylvain Guilley, Tomáš Gerlich, Jakub Breier, Anupam Chattopadhyay, Ritu Ranjan Shrivastwa, Zdeněk Martinásek, Shivam Bhasin
Implementation
In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption + tag generation and decryption + tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...
Ascon-Keccak AEAD Algorithm
Stephan Müller
Secret-key cryptography
The Ascon specification defines among others an encryption scheme offering authenticated encryption with associated data (AEAD) which is based on a duplex mode of a sponge. With that it is the first of such algorithm selected and about to be standardized by NIST.
The sponge size is comparatively small, 320 bits, as expected for lightweight cryptography. With that, the strength of the defined AEAD algorithm is limited to 128 bits. Albeit, the definition of the Ascon AEAD algorithm integrates...
Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice
Barbara Gigerl, Florian Mendel, Martin Schläffer, Robert Primas
Implementation
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography.
Our implementations target theoretical and practical security against second-order power analysis attacks.
First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness.
The extension...
Tight Multi-user Security of Ascon and Its Large Key Extension
Bishwajit Chakraborty, Chandranan Dhar, Mridul Nandi
Secret-key cryptography
The Ascon cipher suite has recently become the preferred standard in the NIST Lightweight Cryptography standardization process. Despite its prominence, the initial dedicated security analysis for the Ascon mode was conducted quite recently. This analysis demonstrated that the Ascon AEAD mode offers superior security compared to the generic Duplex mode, but it was limited to a specific scenario: single-user nonce-respecting, with a capacity strictly larger than the key size. In this paper, we...
Permutation-Based Hashing Beyond the Birthday Bound
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...
Preimage Attacks on Reduced-Round Ascon-Xof
Seungjun Baek, Giyoon Kim, Jongsung Kim
Attacks and cryptanalysis
Ascon, a family of algorithms that supports authenticated encryption and hashing, has been selected as the new standard for lightweight cryptography in the NIST Lightweight Cryptography Project. Ascon’s permutation and authenticated encryption have been actively analyzed, but there are relatively few analyses on the hashing. In this paper, we concentrate on preimage attacks on Ascon-Xof. We focus on linearizing the polynomials leaked by the hash value to find its inverse. In an attack on...
Implementation of Cryptanalytic Programs Using ChatGPT
Nobuyuki Sugio
Secret-key cryptography
Large language models (LLMs), exemplified by the advanced AI tool ChatGPT in 2023, have demonstrated remarkable capabilities in generating sentences, images, and program codes, driven by their development from extensive datasets. With over 100 million users worldwide, ChatGPT stands out as a leader among LLMs. Previous studies have shown its proficiency in generating program source codes for the symmetric-key block ciphers AES, CHAM, and ASCON. This study ventures into the implementation of...
Need for Speed: Leveraging the Power of Functional Encryption for Resource-Constrained Devices
Eugene Frimpong, Alexandros Bakas, Camille Foucault, Antonis Michalas
Cryptographic protocols
Functional Encryption (FE) is a cutting-edge cryptographic technique that enables a user with a specific functional decryption key to determine a certain function of encrypted data without gaining access to the underlying data. Given its potential and the fact that FE is still a relatively new field, we set out to investigate how it could be applied to resource-constrained environments. This work presents what we believe to be the first lightweight FE scheme explicitly designed for...
OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element
Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain, Aleksei Udovenko
Applications
Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice.
This work...
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for Extendable and Deeply Embedded Processors
Oren Ganon, Itamar Levi
Implementation
The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge...
CCA Security with Short AEAD Tags
Mustafa Khairallah
Secret-key cryptography
The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security...
One for All, All for Ascon: Ensemble-based Deep Learning Side-channel Analysis
Azade Rezaeezade, Abraham Basurto-Becerra, Léo Weissbart, Guilherme Perin
Attacks and cryptanalysis
In recent years, deep learning-based side-channel analysis (DLSCA) has become an active research topic within the side-channel analysis community. The well-known challenge of hyperparameter tuning in DLSCA encouraged the community to use methods that reduce the effort required to identify an optimal model. One of the successful methods is ensemble learning. While ensemble methods have demonstrated their effectiveness in DLSCA, particularly with AES-based datasets, their efficacy in analyzing...
Algebraic properties of the maps $\chi_n$
Jan Schoone, Joan Daemen
Foundations
The Boolean map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n,\ x \mapsto y$ defined by $y_i = x_i + (x_{i+1}+1)x_{i+2}$ (where $i\in \mathbb{Z}/n\mathbb{Z}$) is used in various permutations that are part of cryptographic schemes, e.g., Keccak-f (the SHA-3-permutation), ASCON (the winner of the NIST Lightweight competition), Xoodoo, Rasta and Subterranean (2.0).
In this paper, we study various algebraic properties of this map.
We consider $\chi_n$ (through vectorial isomorphism) as a...
Lightweight but Not Easy: Side-channel Analysis of the Ascon Authenticated Cipher on a 32-bit Microcontroller
Léo Weissbart, Stjepan Picek
Attacks and cryptanalysis
Ascon is a recently standardized suite of symmetric cryptography for authenticated encryption and hashing algorithms designed to be lightweight.
The Ascon scheme has been studied since it was introduced in 2015 for the CAESAR competition, and many efforts have been made to transform this hardware-oriented scheme to work with any embedded device architecture.
Ascon is designed with side-channel resistance in mind and can also be protected with countermeasures against side-channel...
Committing AE from Sponges: Security Analysis of the NIST LWC Finalists
Juliane Krämer, Patrick Struck, Maximiliane Weishäupl
Secret-key cryptography
Committing security has gained considerable attention in the field of authenticated encryption (AE). This can be traced back to a line of recent attacks, which entail that AE schemes used in practice should not only provide confidentiality and authenticity, but also committing security. Roughly speaking, a committing AE scheme guarantees that ciphertexts will decrypt only for one key. Despite the recent research effort in this area, the finalists of the NIST lightweight cryptography...
Kirby: A Robust Permutation-Based PRF Construction
Charlotte Lefevre, Yanis Belkheyar, Joan Daemen
Secret-key cryptography
We present a construction, called Kirby, for building a variable-input-length pseudorandom function (VIL-PRF) from a $b$-bit permutation. For this construction we prove a tight bound of $b/2$ bits of security on the PRF distinguishing advantage in the random permutation model and in the multi-user setting. Similar to full-state keyed sponge/duplex, it supports full-state absorbing and additionally supports full-state squeezing, while the sponge/duplex can squeeze at most $b-c$ bits per...
PQ.V.ALU.E: Post-Quantum RISC-V Custom ALU Extensions on Dilithium and Kyber
Konstantina Miteloudi, Joppe Bos, Olivier Bronchain, Björn Fay, Joost Renes
Implementation
This paper explores the challenges and potential solutions of implementing the recommended upcoming post-quantum cryptography standards (the CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms) on resource constrained devices.
The high computational cost of polynomial operations, fundamental to cryptography based on ideal lattices, presents significant challenges in an efficient implementation.
This paper proposes a hardware/software co-design strategy using RISC-V extensions to optimize...
Preimage and Collision Attacks on Reduced Ascon Using Algebraic Strategies
Qinggan Fu, Ye Luo, Qianqian Yang, Ling Song
Attacks and cryptanalysis
Ascon, a family of algorithms that supports hashing and authenticated encryption, is the winner of the NIST Lightweight Cryptography Project. In this paper, we propose an improved preimage attack against 2-round Ascon-XOF-64 with a complexity of $2^{32}$ via a better guessing strategy. Furthermore, in order to find a good guessing strategy efficiently, we build a MILP model and successfully extend the attack to 3 rounds. The time complexity is $2^{53}$ when $IV=0$, while for the real $IV$,...
Improving the Rectangle Attack on GIFT-64
Yincen Chen, Nana Zhang, Xuanyu Liang, Ling Song, Qianqian Yang, Zhuohui Feng
Attacks and cryptanalysis
GIFT is a family of lightweight block ciphers based on SPN structure and composed of two versions named GIFT-64 and GIFT-128. In this paper, we reevaluate the security of GIFT-64 against the rectangle attack under the related-key setting. Investigating the previous rectangle key recovery attack on GIFT-64, we obtain the core idea of improving the attack——trading off the time complexity of each attack phase. We flexibly guess part of the involved subkey bits to balance the time cost of each...
Comparative Analysis of ResNet and DenseNet for Differential Cryptanalysis of SPECK 32/64 Lightweight Block Cipher
Ayan Sajwan, Girish Mishra
Attacks and cryptanalysis
This research paper explores the vulnerabilities of the lightweight block cipher SPECK 32/64 through the application of differential analysis and deep learning techniques. The primary objectives of the study are to investigate the cipher’s weaknesses and to compare the effectiveness of ResNet as used by Aron Gohr at Crypto2019 and DenseNet . The methodology involves conducting an analysis of differential characteristics to identify potential weaknesses in the cipher’s structure. Experimental...
Automatic Preimage Attack Framework on \ascon Using a Linearize-and-Guess Approach
Huina Li, Le He, Shiyao Chen, Jian Guo, Weidong Qiu
Attacks and cryptanalysis
\ascon is the final winner of the lightweight cryptography standardization competition $(2018-2023)$.
In this paper, we focus on preimage attacks against round-reduced \ascon.
The preimage attack framework, utilizing the linear structure with the allocating model, was initially proposed by Guo \textit{et al.} at ASIACRYPT 2016 and subsequently improved by Li \textit{et al.} at EUROCRYPT 2019, demonstrating high effectiveness in breaking the preimage resistance of \keccak.
In this...
Authentica: A Secure Authentication Mechanism using a Software-defined Unclonable Function
Ripon Patgiri, Laiphrakpam Dolendro Singh
Applications
Password-based authentication is an extensively used method to authenticate users. It uses cryptography to communicate the authentication process. On the contrary, the physically unclonable function (PUF)-based authentication mechanism is also gaining popularity rapidly due to its usability in IoT devices. It is a lightweight authentication mechanism that does not use cryptography protocol. PUF-based authentication mechanisms cannot authenticate users. To overcome the drawback of PUF, we...
HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme
Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, Jean-Pierre Seifert
Implementation
MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures...
Optimized stream-cipher-based transciphering by means of functional-bootstrapping
Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey
Applications
Fully homomorphic encryption suffers from a large expansion in the size of encrypted data, which makes FHE impractical for low-bandwidth networks. Fortunately, transciphering allows to circumvent this issue by involving a symmetric cryptosystem which does not carry the disadvantage of a large expansion factor, and maintains the ability to recover an FHE ciphertext with the cost of extra homomorphic computations on the receiver side. Recent works have started to investigate the efficiency of...
OWF Candidates Based on: Xors, Error Detection Codes, Permutations, Polynomials, Interaction and Nesting
Paweł Cyprys, Shlomi Dolev, Oded Margalit
Foundations
Our research focuses on designing efficient commitment schemes by drawing inspiration from (perfect) information-theoretical secure primitives, e.g., the one-time pad and secret sharing. We use a random input as a mask for the committed value, outputting a function on the random input. Then, couple the output with the committed value xored with folded random input.
First, we explore the potential of leveraging the unique properties of the one-time pad to design effective one-way functions....
Depth-Optimized Implementation of ASCON Quantum Circuit
Yujin Oh, Kyungbae Jang, Anubhab Baksi, Hwajeong Seo
Implementation
The development of quantum computers, which employ a different paradigm of computation, is posing a threat to the security of cryptography. Narrowing down the scope to symmetric-key cryptography, the Grover search algorithm is probably the most influential in terms of its impact on security. Recently, there have been efforts to estimate the complexity of the Grover’s key search for symmetric key ciphers and evaluate their post-quantum security. In this paper, we present a depth-optimized...
An STP-based model toward designing S-boxes with good cryptographic properties
Zhenyu Lu, Sihem Mesnager, Tingting Cui, Yanhong Fan, Meiqin Wang
Secret-key cryptography
The substitution box (S-box) is an important nonlinear component in most symmetric cryptosystems and thus should have good properties. Its difference distribution table (DDT) and linear approximation table (LAT) affect the security of the cipher against differential and linear cryptanalysis. In most previous work, differential uniformity and linearity of an S-box are two primary cryptographic properties to impact the resistance against differential and linear attacks. In some cases, the...
On the Hardness of Scheme-Switching Between SIMD FHE Schemes
Karim Eldefrawy, Nicholas Genise, Nathan Manohar
Public-key cryptography
Fully homomorphic encryption (FHE) schemes are either lightweight and can evaluate boolean circuits or are relatively heavy and can evaluate arithmetic circuits on encrypted vectors, i.e., they perform single
instruction multiple data operations (SIMD). SIMD FHE schemes can either perform exact modular arithmetic in the case of the Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV) schemes or approximate arithmetic in the case of the Cheon-Kim-Kim-Song (CKKS) scheme....
Beyond-Full-Round Integral Distinguisher of NIST Lightweight Cryptography Competition Finalist TinyJAMBU
Akram Khalesi, Zahra Ahmadian
Attacks and cryptanalysis
TinyJAMBU is one of the ten finalists of the NIST lightweight cryptography competition, announced in March 2021. It proposes a lightweight authenticated encryption scheme based on a lightweight 128-bit keyed permutation. TinyJAMBU supports three key lengths 128, 192, and 256 denoted by TinyJambu-128, TinyJambu192, and TinyJambu-256, respectively. The scheme as well as the permutation is well studied by the designers and third parties. The most relevant work to ours is the full-round zero-sum...
Conditional Cube Key Recovery Attack on Round-Reduced Xoodyak
Mohammad Vaziri, Vesselin Velichkov
Attacks and cryptanalysis
Since the announcement of the NIST call for a new lightweight
cryptographic standard, a lot of schemes have been proposed in response. Xoodyak is one of these schemes and is among the finalists of the NIST competition with a sponge structure very similar to the Keccak hash function – the winner of the SHA3 NIST competition. In this paper with conditional cube attack technique, we fully recover the key of Xoodyak reduced to 6 and 7 rounds with time complexity resp. 2^{42.58} and 2^{76.003}...
The QARMAv2 Family of Tweakable Block Ciphers
Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam Ghosh, Marcel Nageler, Francesco Regazzoni
Secret-key cryptography
We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks, while keeping similar latency and area.
The wider tweak input caters to both specific use cases and the design of modes of operation with higher security bounds. This is achieved through new key and tweak schedules, revised S-Box and linear layer choices, and a more comprehensive security analysis. QARMAv2 offers competitive...
A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH
Xiaorui Yu, Fukang Liu, Gaoli Wang, Siwei Sun, Willi Meier
Attacks and cryptanalysis
ASCON, a lightweight permutation-based primitive, has been
selected as NIST’s lightweight cryptography standard. ASCON-HASH is one of the hash functions provided by the cipher suite ASCON. At ToSC 2021, the collision attack on 2-round ASCON-HASH with time complexity 2^{103} was proposed. Due to its small rate, it is always required to utilize at least 2 message blocks to mount a collision attack because each message block is only of size 64 bits. This significantly increases the difficulty...
Securing IoT Devices with Fast and Energy Efficient Implementation of PRIDE and PRESENT Ciphers
Vijay Dahiphale, Hrishikesh Raut, Gaurav Bansod, Devendra Dahiphale
Implementation
The rise of low-power, cost-efficient internet-connected devices has led to a need for lightweight cryptography. The lightweight block cipher PRIDE, designed by Martin R. Albrecht, is one of the most efficient ciphers designed for IoT-constrained environments. It is useful for connected devices, requires fewer resources to implement, and has high performance. PRIDE is a software-oriented lightweight cipher optimized for microcontrollers. This paper focuses on the FPGA implementation of the...
Generic Security of the Ascon Mode: On the Power of Key Blinding
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
The Ascon authenticated encryption scheme has recently been selected as winner of the NIST Lightweight Cryptography competition. Despite its fame, however, there is no known overall generic security treatment of its mode: most importantly, all earlier related generic security results only use the key to initialize the state and do not take into account key blinding internally and at the end. In this work we present a thorough security analysis of the Ascon mode: we consider multi-user and...
Exact Security Analysis of ASCON
Bishwajit Chakraborty, Chandranan Dhar, Mridul Nandi
Secret-key cryptography
The Ascon cipher suite, offering both authenticated encryption with associated data (AEAD) and hashing functionality, has recently emerged as the winner of the NIST Lightweight Cryptography (LwC) standardization process. The AEAD schemes within Ascon, namely Ascon-128 and Ascon-128a, have also been previously selected as the preferred lightweight authenticated encryption solutions in the CAESAR competition. In this paper, we present a tight and comprehensive security analysis of the Ascon...
BAKSHEESH: Similar Yet Different From GIFT
Anubhab Baksi, Jakub Breier, Anupam Chattopadhyay, Tomáš Gerlich, Sylvain Guilley, Naina Gupta, Takanori Isobe, Arpan Jati, Petr Jedlicka, Hyunjun Kim, Fukang Liu, Zdeněk Martinásek, Kosei Sakamoto, Hwajeong Seo, Rentaro Shiba, Ritu Ranjan Shrivastwa
Secret-key cryptography
We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular cipher GIFT-128 (CHES'17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks.
The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox with one or more non-trivial LS has not been used in a cipher construction until DEFAULT...
From Substitution Box To Threshold
Anubhab Baksi, Sylvain Guilley, Ritu-Ranjan Shrivastwa, Sofiane Takarabt
Secret-key cryptography
With the escalating demand for lightweight ciphers as well as side channel protected implementation of those ciphers in recent times, this work focuses on two related aspects. First, we present a tool for automating the task of finding a Threshold Implementation (TI) of a given Substitution Box (SBox). Our tool returns `with decomposition' and `without decomposition' based TI. The `with decomposition' based implementation returns a combinational SBox; whereas we get a sequential SBox from...
Cryptanalysis of SPEEDY
Jinliang Wang, Chao Niu, Qun Liu, Muzhou Li, Bart Preneel, Meiqin Wang
Secret-key cryptography
SPEEDY is a family of ultra-lightweight block ciphers designed by Leander et al. at CHES 2021. There are three recommended variants denoted as SPEEDY-$r$-192 with $r$∈{5,6,7}. All of them support the 192-bit block and the 192-bit key. The main focus during its design is to ensure hardware-aware low latency, thus, whether it is designed to have enough security is worth to be studied. Recently, the full-round security of SPEEDY-7-192 is announced to be broken by Boura et al. at EUROCRYPT 2023...
Cryptanalysis of Strong Physically Unclonable Functions
Liliya Kraleva, Mohammad Mahzoun, Raluca Posteuca, Dilara Toprakhisar, Tomer Ashur, Ingrid Verbauwhede
Attacks and cryptanalysis
Physically Unclonable Functions (PUFs) are being proposed as a low cost alternative to permanently store secret keys or provide device authentication without requiring non-volatile memory, large e-fuses or other dedicated processing steps. In the literature, PUFs are split into two main categories. The so-called strong PUFs are mainly used for authentication purposes, hence also called authentication PUFs. They promise to be lightweight by avoiding extensive digital post-processing and...
Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography
Aikata Aikata, Andrea Basso, Gaetan Cassiers, Ahmet Can Mert, Sujoy Sinha Roy
Public-key cryptography
Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations...
Automated Detection of Underconstrained Circuits for Zero-Knowledge Proofs
Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodríguez, Jacob Van Gaffen, Jason Morton, Michael Chu, Brian Gu, Yu Feng, Isil Dillig
Applications
As zero-knowledge proofs gain increasing adoption, the cryptography community has designed domain-specific languages (DSLs) that facilitate the construction of zero-knowledge proofs (ZKPs). Many of these DSLs, such as Circom, facilitate the construction of arithmetic circuits, which are essentially polynomial equations over a finite field. In particular, given a program in a zero-knowledge proof DSL, the compiler automatically produces the corresponding arithmetic circuit. However, a...
SCA Evaluation and Benchmarking of Finalists in the NIST Lightweight Cryptography Standardization Process
Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Ferrufino, Jens-Peter Kaps, Kris Gaj
Implementation
Side-channel resistance is one of the primary criteria identified by NIST for use in evaluating candidates in the Lightweight Cryptography (LWC) Standardization process. In Rounds 1 and 2 of this process, when the number of candidates was still substantial (56 and 32, respectively), evaluating this feature was close to impossible. With ten finalists remaining, side-channel resistance and its effect on the performance and cost of practical implementations became of utmost importance. In this...
Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation
Mingxun Zhou, Andrew Park, Elaine Shi, Wenting Zheng
Cryptographic protocols
We construct a sublinear-time single-server pre-processing Private Information Retrieval
(PIR) scheme with optimal client storage and server computation (up to poly-logarithmic factors), only relying on the assumption of the existence of One Way Functions (OWF). Our scheme achieves amortized $\tilde{O}(\sqrt{n})$ online server computation and client computation and $O(\sqrt{n})$
online communication per query, and requires $\widetilde{O}_\lambda(\sqrt{n})$ client storage. Unlike prior...
Additional Modes for ASCON
Rhys Weatherley
Secret-key cryptography
NIST selected the A SCON family of cryptographic primitives for standardization in February 2023 as the final step in the Lightweight Cryptography Competition. The ASCON submission to the competition provided Authenticated Encryption with Associated Data (AEAD), hashing, and Extensible Output Function (XOF) modes. Real world cryptography systems often need more than packet encryption and simple hashing. Keyed message authentication, key derivation, cryptographically secure pseudo-random...
2023/355
Last updated: 2023-04-06
Improved Differential Analysis of MIBS Based on Greedy Algorithm
Jian Liu, Yanjun Li, Runyi Liu, Jian Zou, Zhiqiang Wang
Attacks and cryptanalysis
MIBS is a 32-round lightweight block cipher following a Feistel structure with the block length of 64-bit and the key length of 64 or 80 bits. In this paper, the properties of the key scheduling algorithm are investigated and lots of repeated bits among the different round keys are found. Moreover, the optimal guessing order of the unknown key bits is obtained by using the greedy algorithm. At last, combined with the early abort technique, the differential cryptanalyses are improved to 15...
An Analysis of the Post Quantum and Classical Security of 4x4 and 16x4 S-Boxes and Their Implementations in Simplified-AES
Christopher Dunne
Secret-key cryptography
Grover’s algorithm is a quantum searching algorithm that poses a threat to symmetric cryptography. Due to their smaller key sizes, lightweight cryptographic algorithms such as Simplified-AES face a much more immediate threat from Grover’s algorithm than traditional cryptographic algorithms. By analyzing different S-boxes, it was discovered that the S-box 946C753AE8FBD012 may be more quantum resistant than the S-box that Simplified-AES uses, 94ABD1856203CEF7. In addition to this, 16x4 S-boxes...
Caveat Implementor! Key Recovery Attacks on MEGA
Martin R. Albrecht, Miro Haller, Lenka Mareková, Kenneth G. Paterson
Attacks and cryptanalysis
MEGA is a large-scale cloud storage and communication platform that aims to provide end-to-end encryption for stored data. A recent analysis by Backendal, Haller and Paterson (IEEE S&P 2023) invalidated these security claims by presenting practical attacks against MEGA that could be mounted by the MEGA service provider. In response, the MEGA developers added lightweight sanity checks on the user RSA private keys used in MEGA, sufficient to prevent the previous attacks.
We analyse these...
The state diagram of $\chi$
Jan Schoone, Joan Daemen
Secret-key cryptography
In symmetric cryptography, block ciphers, stream ciphers and permutations often make use of a round function and many round functions consist of a linear and a non-linear layer.
One that is often used is based on the cellular automaton that is denoted by $\chi$ as a Boolean map on bi-infinite sequences, $\mathbb{F}^{\mathbb{Z}}$.
It is defined by $\sigma \mapsto \nu$ where each $\nu_i = \sigma_i + (\sigma_{i+1}+1)\sigma_{i+2}$.
A map $\chi_n$ is a map that operatos on $n$-bit arrays...
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable Blockcipher
Munawar Hasan, Donghoon Chang
Secret-key cryptography
The widespread deployment of low-power and handheld devices opens an opportunity to design lightweight authenticated encryption schemes. The schemes so proposed must also prove their resilience under various security notions. Romulus-N1 is an authenticated encryption scheme with associated data based on a tweakable blockcipher, a primary variant of Romulus-N family which is NIST (National Institute of Standards and Technology) lightweight cryptography competition finalist; provides beyond...
A Lightweight Identification Protocol Based on Lattices
Samed Düzlü, Juliane Krämer, Thomas Pöppelmann, Patrick Struck
Cryptographic protocols
In this work we present a lightweight lattice-based identification protocol based on the CPA-secured public key encryption scheme Kyber. It is designed as a replacement for existing classical ECC- or RSA-based identification protocols in IoT, smart card applications, or for device authentication. The proposed protocol is simple, efficient, and implementations are supposed to be easy to harden against side-channel attacks. Compared to standard constructions for identification protocols based...
Indifferentiability of the Sponge Construction with a Restricted Number of Message Blocks
Charlotte Lefevre
Secret-key cryptography
The sponge construction is a popular method for hashing. Quickly after its introduction, the sponge was proven to be tightly indifferentiable from a random oracle up to $ \approx 2^{c/2}$ queries, where $c$ is the capacity. However, this bound is not tight when the number of message blocks absorbed is restricted to $\ell <\lceil \frac{c}{2(b-c)}\rceil + 1$ (but still an arbitrary number of blocks can be squeezed). In this work, we show that this restriction leads to indifferentiability from...
TS-Hash: a lightweight cryptographic hash family based on Galois LFSRs
Itay Bookstein, Boaz Tsaban
Applications
We study a novel family of cryptographic hash functions based on Galois linear feedback shift registers (LFSRs),
and identify initial guidelines for choosing secure parameters for this family.
These hash functions are extremely simple, efficient, and suitable for implementation in
constrained environments.
Improved Heuristics for Low-latency Implementations of Linear Layers
Qun Liu, Zheng Zhao, Meiqin Wang
In many applications, low area and low latency are required for the chip-level implementation of cryptographic primitives. The low-cost implementations of linear layers usually play a crucial role for symmetric ciphers. Some heuristic methods, such as the forward search and the backward search, minimize the number of XOR gates of the linear layer under the minimum latency limitation.
For the sake of achieving further optimization for such implementation of the linear layer, we put forward...
An Attack on the LILLE Stream Cipher
Vahid Amin-Ghafari, Mohammad Ali Orumiehchiha, Saeed Rostami
A few small-state stream ciphers (SSCs) were proposed for constrained environments. All of the SSCs before the LILLE stream cipher suffered from distinguishing attacks and fast correlation attacks. The designers of LILLE claimed that it is based on the well-studied two-key Even-Mansour scheme and so is resistant to various types of attacks. This paper proposes a distinguishing attack on LILLE, the first attack since 2018. The data and time complexities to attack LILLE-40 are 2^(50.7) and...
Side-Channel Resistant Implementation Using Arbiter PUF
Raja Adhithan RadhaKrishnan
Implementation
The goals of cryptography are achieved using mathematically strong crypto-algorithms, which are adopted for securing data and
communication. Even though the algorithms are mathematically
secure, the implementation of these algorithms may be vulnerable to
side-channel attacks such as timing and power analysis attacks. One
of the effective countermeasures against such attacks is Threshold Implementation(TI). However, TI realization in crypto-device introduces
hardware complexity, so it...
Area-time Efficient Implementation of NIST Lightweight Hash Functions Targeting IoT Applications
Safiullah Khan, Wai-Kong Lee, Angshuman Karmakar, Jose Maria Bermudo Mera, Abdul Majeed, Seong Oun Hwang
Implementation
To mitigate cybersecurity breaches, secure communication is crucial for the Internet of Things (IoT) environment. Data integrity is one of the most significant characteristics of security, which can be achieved by employing cryptographic hash functions. In view of the demand from IoT applications, the National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight hash functions. This work presents field-programmable gate array (FPGA) implementations...
RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography
Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham
Implementation
The NIST LightWeight Cryptography (LWC) selection process aims to standardise cryptographic functionality which is suitable for resource-constrained devices. Since the outcome is likely to have significant, long-lived impact, careful evaluation of each submission with respect to metrics explicitly outlined in the call is imperative. Beyond the robustness of submissions against cryptanalytic attack, metrics related to their implementation (e.g., execution latency and memory footprint) form an...
LUNA: Quasi-Optimally Succinct Designated-Verifier Zero-Knowledge Arguments from Lattices
Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, Raymond K. Zhao
Cryptographic protocols
We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...
Finding Collisions for Round-Reduced Romulus-H
Marcel Nageler, Felix Pallua, Maria Eichlseder
Attacks and cryptanalysis
The hash function Romulus-H is a finalist in the NIST Lightweight Cryptography competition. It is based on the Hirose double block-length (DBL) construction which is provably secure when used with an ideal block cipher. However, in practice, ideal block ciphers can only be approximated. Therefore, the security of concrete instantiations must be cryptanalyzed carefully; the security margin may be higher or lower than in the secret-key setting. So far, the Hirose DBL construction has been...
Ligero: Lightweight Sublinear Arguments Without a Trusted Setup
Scott Ames, Carmit Hazay, Yuval Ishai, Muthuramakrishnan Venkitasubramaniam
Cryptographic protocols
We design and implement a simple zero-knowledge argument protocol for $\mathsf{NP}$ whose communication complexity is proportional to the square-root of the verification circuit size. The protocol can be based on any collision-resistant hash function. Alternatively, it can be made non-interactive in the random oracle model, yielding concretely efficient zk-SNARKs that do not require a trusted setup or public-key cryptography. Our protocol is obtained by applying an optimized version of the...
ISAP+: ISAP with Fast Authentication
Arghya Bhattacharjee, Avik Chakraborti, Nilanjan Datta, Cuauhtemoc Mancillas-López, Mridul Nandi
Secret-key cryptography
This paper analyses the lightweight, sponge-based NAEAD mode $\textsf{ISAP}$, one of the finalists of the NIST Lightweight Cryptography (LWC) standardisation project, that achieves high-throughput with inherent protection against differential power analysis (DPA). We observe that $\textsf{ISAP}$ requires $256$-bit capacity in the authentication module to satisfy the NIST LWC security criteria. In this paper, we study the analysis carefully and observe that this is primarily due to the...
Resistance of Ascon Family against Conditional Cube Attacks in Nonce-Misuse Setting
Donghoon Chang, Deukjo Hong, Jinkeon Kang, Meltem Sönmez Turan
Secret-key cryptography
Ascon family is one of the finalists of the National Institute of Standards and Technology (NIST) lightweight cryptography standardization process. The family includes three Authenticated Encryption with Associated Data (AEAD) schemes: Ascon-128 (primary), Ascon-128a, and Ascon-80pq. In this paper, we study the resistance of the Ascon~family against conditional cube attacks in nonce-misuse setting, and present new state- and key-recovery attacks. Our attack recovers the full state...
Low-latency implementation of the GIFT cipher on RISC-V architectures
Gheorghe Pojoga, Kostas Papagiannopoulos
Implementation
Lightweight cryptography is a viable solution for constrained computational environments that require a secure communication channel. To standardize lightweight primitives, NIST has published a call for algorithms that address needs like compactness, low-latency, low-power/energy, etc. Among the candidates, the GIFT family of block ciphers was utilized in various NIST candidates due to its high-security margin and small gate footprint. As a result of their hardware-oriented design, software...
Improved Differential and Linear Trail Bounds for ASCON
Solane El Hirch, Silvia Mella, Alireza Mehrdad, Joan Daemen
Attacks and cryptanalysis
ASCON is a family of cryptographic primitives for authenticated encryption and hashing introduced in 2015. It is selected as one of the ten finalists in the NIST Lightweight Cryptography competition. Since its introduction, ASCON has been extensively cryptanalyzed, and the results of these analyses can indicate the good resistance of this family of cryptographic primitives against known attacks, like differential and linear cryptanalysis.
Proving upper bounds for the differential...
Disorientation faults in CSIDH
Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny, Krijn Reijnders, Jana Sotáková, Monika Trimoska
Public-key cryptography
We investigate a new class of fault-injection attacks against the CSIDH family of cryptographic group actions. Our disorientation attacks effectively flip the direction of some isogeny steps. We achieve this by faulting a specific subroutine, connected to the Legendre symbol or Elligator computations performed during the evaluation of the group action. These subroutines are present in almost all known CSIDH implementations. Post-processing a set of faulty samples allows us to infer...
Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256
Orr Dunkelman, Eran Lambooij, Shibam Ghosh
Attacks and cryptanalysis
TinyJambu is one of the finalists in the NIST lightweight cryptography competition. It has undergone extensive analysis in the recent years as both the keyed permutation as well as the mode are new designs. In this paper we present a related-key forgery attackon the updated TinyJambu scheme with 256- and 192-bit keys. We introduce a high probability related-key differential attack were the differences are only introduced into the key state. Therefore, the characteristic is applicable to the...
Post-Quantum Security of Tweakable Even-Mansour, and Applications
Gorjan Alagic, Chen Bai, Jonathan Katz, Christian Majenz, Patrick Struck
Secret-key cryptography
The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour when attackers have quantum access to the random permutation but only classical access to the secretly-keyed construction, the relevant setting for most real-world applications. We then use our results to prove post-quantum security—in the same model—of the symmetric-key schemes Chaskey (an ISO-standardized MAC), Elephant (an AEAD...
Tighter trail bounds for Xoodoo
Joan Daemen, Silvia Mella, Gilles Van Assche
Attacks and cryptanalysis
Determining bounds on the differential probability of differential trails and
the squared correlation contribution of linear trails forms an important part of the
security evaluation of a permutation. For Xoodoo such bounds were proven with a
dedicated tool (XooTools), that scans the space of all r-round trails with weight
below a given threshold $T_r$. The search space grows exponentially with the value of
$T_r$ and XooTools appeared to have reached its limit, requiring huge amounts...
Performance Evaluation of NIST LWC Finalists on AVR ATmega and ARM Cortex-M3 Microcontrollers
Yuhei Watanabe, Hideki Yamamoto, Hirotaka Yoshida
Implementation
This paper presents results of performance evaluation of NIST Lightweight Cryptography standardization finalists which are implemented by us. Our implementation method puts on the target to reduce RAM consumption on embedded devices. Our target microcontrollers are AVR ATmega 128 and ARM Cortex-M3. We apply our implementation method to five AEAD schemes which include four finalists of the NIST lightweight cryptography standardization and demonstrate the performance evaluation on target...
Weak Subtweakeys in SKINNY
Daniël Kuijsters, Denise Verbakel, Joan Daemen
Secret-key cryptography
Lightweight cryptography is characterized by the need for low implementation cost, while still providing sufficient security. This requires careful analysis of building blocks and their composition.
SKINNY is an ISO/IEC standardized family of tweakable block ciphers and is used in the NIST lightweight cryptography standardization process finalist Romulus. We present non-trivial linear approximations of two- round SKINNY that have correlation one or minus one and that hold for a large...
Nonce-Misuse Resilience of Romulus-N and GIFT-COFB
Akiko Inoue, Chun Guo, Kazuhiko Minematsu
Secret-key cryptography
We analyze nonce-misuse resilience (NMRL) security of Romulus-N and GIFT-COFB, the two finalists of NIST Lightweight Cryptography project for standardizing lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security notion from a stronger, nonce-misuse resistance notion. We proved that Romulus-N and GIFT-COFB have nonce-misuse resilience. For Romulus-N, we showed the perfect privacy (NMRL-PRIV) and n/2-bit authenticity (NMRL-AUTH) with...
A Small GIFT-COFB: Lightweight Bit-Serial Architectures
Andrea Caforio, Daniel Collins, Subhadeep Banik, Francesco Regazzoni
Implementation
GIFT-COFB is a lightweight AEAD scheme and a submission
to the ongoing NIST lightweight cryptography standardization process
where it currently competes as a finalist. The construction processes
128-bit blocks with a key and nonce of the same size and has a small
register footprint, only requiring a single additional 64-bit register. Be-
sides the block cipher, the mode of operation uses a bit permutation and
finite field multiplication with different constants. It is a well-known...
Deep Learning based Cryptanalysis of Lightweight Block Ciphers, Revisited
Hyunji Kim, Sejin Lim, Yeajun Kang, Wonwoong Kim, Hwajeong Seo
Attacks and cryptanalysis
Cryptanalysis is to infer the secret key of cryptography algorithm. There are brute-force attack, differential attack, linear attack, and chosen plaintext attack.
With the development of artificial intelligence, deep learning-based cryptanalysis has been actively studied. There are works in which known-plaintext attacks against lightweight block ciphers, such as S-DES, have been performed. In this paper, we propose a cryptanalysis method based on the-state-of-art deep learning technologies...
Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking
Yusuke Naito, Yu Sasaki, Takeshi Sugawara
Secret-key cryptography
We propose a new AEAD mode of operation for an efficient countermeasure against side-channel attacks. Our mode achieves the smallest memory with high-order masking, by minimizing the states that are duplicated in masking. An $s$-bit key-dependent state is necessary for achieving $s$-bit security, and the conventional schemes always protect the entire $s$ bits with masking. We reduce the protected state size by introducing an unprotected state in the key-dependent state: we protect only a...
Review of the White-Box Encodability of NIST Lightweight Finalists
Alex Charlès, Chloé Gravouil
Attacks and cryptanalysis
One of the main challenges cryptography needs to deal with
is balancing the performances of a cryptographic primitive with its security. That is why in 2015, the National Institute of Standards and
Technologies (NIST) has begun a standardization process to solicit the
creation of new lightweight cryptographic algorithms. We then wondered
which of this standardization finalists would suit the best to a white-box
implementation.
To this end, we studied different algorithms structures on...
More Inputs Makes Difference: Implementations of Linear Layers Using Gates with More Than Two Inputs
Qun Liu, Weijia Wang, Ling Sun, Yanhong Fan, Lixuan Wu, Meiqin Wang
Implementation
Lightweight cryptography ensures cryptography applications to devices with limited resources. Low-area implementations of linear layers usually play an essential role in lightweight cryptography.
The previous works have provided plenty of methods to generate low-area implementations using 2-input xor gates for various linear layers.
However, it is still challenging to search for smaller implementations using two or more inputs xor gates.
This paper, inspired by Banik et al., proposes a...
Throwing Boomerangs into Feistel Structures: Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE
Hosein Hadipour, Marcel Nageler, Maria Eichlseder
Attacks and cryptanalysis
Automatic tools to search for boomerang distinguishers have seen significant advances over the past few years. However, most previous work has focused on ciphers based on a Substitution Permutation Network (SPN), while analyzing the Feistel structure is of great significance. Boukerrou et al. recently provided a theoretical framework to formulate the boomerang switch over multiple Feistel rounds, but they did not provide an automatic tool to find distinguishers. In this paper, by enhancing...
Tight Preimage Resistance of the Sponge Construction
Charlotte Lefevre, Bart Mennink
Secret-key cryptography
The cryptographic sponge is a popular method for hash function design. The construction is in the ideal permutation model proven to be indifferentiable from a random oracle up to the birthday bound in the capacity of the sponge. This result in particular implies that, as long as the attack complexity does not exceed this bound, the sponge construction achieves a comparable level of collision, preimage, and second preimage resistance as a random oracle. We investigate these state-of-the-art...
Integral Cryptanalysis of WARP based on Monomial Prediction
Hosein Hadipour, Maria Eichlseder
Attacks and cryptanalysis
WARP is a 128-bit block cipher published by Banik et al. at SAC 2020 as a lightweight alternative to AES. It is based on a generalized Feistel network and achieves the smallest area footprint among 128-bit block ciphers in many settings. Previous analysis results include integral key-recovery attacks on 21 out of 41 rounds.
In this paper, we propose integral key-recovery attacks on up to 32 rounds by improving both the integral distinguisher and the key-recovery approach substantially....
Software Evaluation for Second Round Candidates in NIST Lightweight Cryptography
Ryota Hira, Tomoaki Kitahara, Daiki Miyahara, Yuko Hara-Azumi, Yang Li, Kazuo Sakiyama
Implementation
Lightweight cryptography algorithms are increasing in value because they can enhance security under limited resources. National Institute of Standards and Technology is working on standardising lightweight authenticated encryption with associated data. Thirty-two candidates are included in the second round of the NIST selection process, and their specifications differ with respect to various points. Therefore, for each algorithm, the differences in specifications are expected to affect the...
Construction of generalized-involutory MDS matrices
Xuting Zhou, Tianshuo Cong
Secret-key cryptography
Maximum Distance Separable (MDS) matrices are usually used to be diffusion
layers in cryptographic designs. The main advantage of involutory MDS matrices lies in
that both encryption and decryption share the same matrix-vector product. In this paper,
we present a new type of MDS matrices called generalized-involutory MDS matrices, implementation
of whose inverse matrix-vector products in decryption is the combination of the
matrix-vector products in encryption plus a few extra XOR gates. For...
Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Nonce-misuse Setting
Donghoon Chang, Deukjo Hong, Jinkeon Kang
Secret-key cryptography
Ascon-128 and Ascon-80pq use 12-round Ascon permutation for initialization and finalization phases and 6-round Ascon permutation for processing associate data and message. In a nonce-misuse setting, we present a new partial-state-recovery conditional-cube attack on Ascon-128 and Ascon-80pq, where 192 bits out of 320-bit state are recovered. For our partial state-recovery attack, its required data complexity, \(D\), is about \(2^{44.8}\) and its required memory complexity, \(M\), is...
Lightweight Hardware Accelerator for Post-Quantum Digital Signature CRYSTALS-Dilithium
Naina Gupta, Arpan Jati, Anupam Chattopadhyay, Gautam Jha
Implementation
The looming threat of an adversary with Quantum computing capability led to a worldwide research effort towards identifying and standardizing novel post-quantum cryptographic primitives. Post-standardization, all existing security protocols will need to support efficient implementation of these primitives. In this work, we contribute to these efforts by reporting the smallest implementation of CRYSTALS-Dilithium, a finalist candidate for post-quantum digital signature.
By invoking multiple...
This work investigates persistent fault analysis on ASCON cipher that has been recently standardized by NIST USA for lightweight cryptography applications. In persistent fault, the fault once injected through RowHammer injection techniques, exists in the system during the entire encryption phase. In this work, we propose a model to mount persistent fault analysis (PFA) on ASCON cipher. In the finalization round of the ASCON cipher, we identify that the fault-injected S-Box operation...
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyer-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential...
Quantum computing has attracted substantial attention from researchers across various fields. In case of the symmetric key cryptography, the main problem is posed by the application of Grover's search. In this work, we focus on quantum analysis of the lightweight block cipher LED. This paper proposes an optimized quantum circuit for LED, minimizing the required number of qubits, quantum gates, and circuit depth. Furthermore, we conduct Grover's attack and Search with Two Oracles (STO)...
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of...
SNOVA is a post-quantum cryptographic signature scheme known for its efficiency and compact key sizes, making it a second-round candidate in the NIST post-quantum cryptography standardization process. This paper presents a comprehensive fault analysis of SNOVA, focusing on both permanent and transient faults during signature generation. We introduce several fault injection strategies that exploit SNOVA's structure to recover partial or complete secret keys with limited faulty signatures. Our...
Shoup and Smart (SS24) recently introduced a lightweight asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience directly from cryptographic hash functions (JoC 2024), offering plausible quantum resilience and computational efficiency. However, SS24 AVSS only achieves standard secrecy to keep the secret confidential against $n/3$ corrupted parties \textit{if no honest party publishes its share}. In contrast, from ``heavyweight'' public-key cryptography, one can...
We present an asynchronous secure multi-party computation (MPC) protocol that is practically efficient. Our protocol can evaluate any arithmetic circuit with linear communication in the number of parties per multiplication gate, while relying solely on computationally lightweight cryptography such as hash function and symmetric encryption. Our protocol is optimally resilient and tolerates $t$ malicious parties among $n = 3t+1$ parties. At the technical level, we manage to apply the...
Fully Homomorphic Encryption (FHE) is a powerful technology that allows a cloud server to perform computations directly on ciphertexts. To overcome the overhead of sending and storing large FHE ciphertexts, the concept of FHE transciphering was introduced, allowing symmetric key encrypted ciphertexts to be transformed into FHE ciphertexts by deploying symmetric key decryption homomorphically. However, existing FHE transciphering schemes remain unauthenticated and malleable, allowing...
We consider the setting of asynchronous multi-party computation (AMPC) with optimal resilience $n=3t+1$ and linear communication complexity, and employ only ``lightweight'' cryptographic primitives, such as random oracle hash. In this model, we introduce two concretely efficient AMPC protocols for a circuit with $|C|$ multiplication gates: a protocol achieving fairness with $\mathcal{O}(|C|\cdot n + n^3)$ field elements of communication, and a protocol achieving guaranteed output delivery...
Laconic cryptography studies two-message protocols that securely compute on large amounts of data with minimal communication cost. Laconic oblivious transfer (OT) is a central primitive where the receiver's input is a large database $\mathsf{DB}$ and the sender's inputs are two messages $m_0$, $m_1$ along with an index $i$, such that the receiver learns the message determined by the choice bit $\mathsf{DB}_i$. OT becomes even more useful for secure computation when considering its laconic...
Cryptography is a crucial method for ensuring the security of communication and data transfers across networks. While it excels on devices with abundant resources, such as PCs, servers, and smartphones, it may encounter challenges when applied to resource-constrained Internet of Things (IoT) devices like Radio Frequency Identification (RFID) tags and sensors. To address this issue, a demand arises for a lightweight variant of cryptography known as lightweight cryptography (LWC). In...
Recently, the NSA has proposed a block cipher called ARADI and a mode of operation called LLAMA for memory encryption applications. In this note, we comment on this proposal, on its suitability for the intended application, and describe an attack on LLAMA that breaks confidentiality of ciphertext and allows a straightforward forgery attack breaking integrity of ciphertext (INT-CTXT) using a related-IV attack. Both attacks have negligible complexity.
We present Scloud+, an LWE-based key encapsulation mechanism (KEM). The key feature of Scloud+ is its use of the unstructured-LWE problem (i.e., without algebraic structures such as rings or modules) and its incorporation of ternary secrets and lattice coding to enhance performance. A notable advantage of the unstructured-LWE problem is its resistance to potential attacks exploiting algebraic structures, making it a conservative choice for constructing high-security schemes. However, a...
In this paper, using the concept of equivalence of mappings we characterize all of the one-XOR matrices which are used in hardware applications and propose a family of lightweight linear mappings for software-oriented applications in symmetric cryptography. Then, we investigate interleaved linear mappings and based upon this study, we present generalized dynamic primitive LFSRs along with dynamic linear components for construction of diffusion layers. From the mathematical...
In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software. MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function. The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key. Key and tweak are...
Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...
Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT...
In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption + tag generation and decryption + tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...
The Ascon specification defines among others an encryption scheme offering authenticated encryption with associated data (AEAD) which is based on a duplex mode of a sponge. With that it is the first of such algorithm selected and about to be standardized by NIST. The sponge size is comparatively small, 320 bits, as expected for lightweight cryptography. With that, the strength of the defined AEAD algorithm is limited to 128 bits. Albeit, the definition of the Ascon AEAD algorithm integrates...
In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography. Our implementations target theoretical and practical security against second-order power analysis attacks. First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness. The extension...
The Ascon cipher suite has recently become the preferred standard in the NIST Lightweight Cryptography standardization process. Despite its prominence, the initial dedicated security analysis for the Ascon mode was conducted quite recently. This analysis demonstrated that the Ascon AEAD mode offers superior security compared to the generic Duplex mode, but it was limited to a specific scenario: single-user nonce-respecting, with a capacity strictly larger than the key size. In this paper, we...
It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...
Ascon, a family of algorithms that supports authenticated encryption and hashing, has been selected as the new standard for lightweight cryptography in the NIST Lightweight Cryptography Project. Ascon’s permutation and authenticated encryption have been actively analyzed, but there are relatively few analyses on the hashing. In this paper, we concentrate on preimage attacks on Ascon-Xof. We focus on linearizing the polynomials leaked by the hash value to find its inverse. In an attack on...
Large language models (LLMs), exemplified by the advanced AI tool ChatGPT in 2023, have demonstrated remarkable capabilities in generating sentences, images, and program codes, driven by their development from extensive datasets. With over 100 million users worldwide, ChatGPT stands out as a leader among LLMs. Previous studies have shown its proficiency in generating program source codes for the symmetric-key block ciphers AES, CHAM, and ASCON. This study ventures into the implementation of...
Functional Encryption (FE) is a cutting-edge cryptographic technique that enables a user with a specific functional decryption key to determine a certain function of encrypted data without gaining access to the underlying data. Given its potential and the fact that FE is still a relatively new field, we set out to investigate how it could be applied to resource-constrained environments. This work presents what we believe to be the first lightweight FE scheme explicitly designed for...
Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice. This work...
The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge...
The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security...
In recent years, deep learning-based side-channel analysis (DLSCA) has become an active research topic within the side-channel analysis community. The well-known challenge of hyperparameter tuning in DLSCA encouraged the community to use methods that reduce the effort required to identify an optimal model. One of the successful methods is ensemble learning. While ensemble methods have demonstrated their effectiveness in DLSCA, particularly with AES-based datasets, their efficacy in analyzing...
The Boolean map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n,\ x \mapsto y$ defined by $y_i = x_i + (x_{i+1}+1)x_{i+2}$ (where $i\in \mathbb{Z}/n\mathbb{Z}$) is used in various permutations that are part of cryptographic schemes, e.g., Keccak-f (the SHA-3-permutation), ASCON (the winner of the NIST Lightweight competition), Xoodoo, Rasta and Subterranean (2.0). In this paper, we study various algebraic properties of this map. We consider $\chi_n$ (through vectorial isomorphism) as a...
Ascon is a recently standardized suite of symmetric cryptography for authenticated encryption and hashing algorithms designed to be lightweight. The Ascon scheme has been studied since it was introduced in 2015 for the CAESAR competition, and many efforts have been made to transform this hardware-oriented scheme to work with any embedded device architecture. Ascon is designed with side-channel resistance in mind and can also be protected with countermeasures against side-channel...
Committing security has gained considerable attention in the field of authenticated encryption (AE). This can be traced back to a line of recent attacks, which entail that AE schemes used in practice should not only provide confidentiality and authenticity, but also committing security. Roughly speaking, a committing AE scheme guarantees that ciphertexts will decrypt only for one key. Despite the recent research effort in this area, the finalists of the NIST lightweight cryptography...
We present a construction, called Kirby, for building a variable-input-length pseudorandom function (VIL-PRF) from a $b$-bit permutation. For this construction we prove a tight bound of $b/2$ bits of security on the PRF distinguishing advantage in the random permutation model and in the multi-user setting. Similar to full-state keyed sponge/duplex, it supports full-state absorbing and additionally supports full-state squeezing, while the sponge/duplex can squeeze at most $b-c$ bits per...
This paper explores the challenges and potential solutions of implementing the recommended upcoming post-quantum cryptography standards (the CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms) on resource constrained devices. The high computational cost of polynomial operations, fundamental to cryptography based on ideal lattices, presents significant challenges in an efficient implementation. This paper proposes a hardware/software co-design strategy using RISC-V extensions to optimize...
Ascon, a family of algorithms that supports hashing and authenticated encryption, is the winner of the NIST Lightweight Cryptography Project. In this paper, we propose an improved preimage attack against 2-round Ascon-XOF-64 with a complexity of $2^{32}$ via a better guessing strategy. Furthermore, in order to find a good guessing strategy efficiently, we build a MILP model and successfully extend the attack to 3 rounds. The time complexity is $2^{53}$ when $IV=0$, while for the real $IV$,...
GIFT is a family of lightweight block ciphers based on SPN structure and composed of two versions named GIFT-64 and GIFT-128. In this paper, we reevaluate the security of GIFT-64 against the rectangle attack under the related-key setting. Investigating the previous rectangle key recovery attack on GIFT-64, we obtain the core idea of improving the attack——trading off the time complexity of each attack phase. We flexibly guess part of the involved subkey bits to balance the time cost of each...
This research paper explores the vulnerabilities of the lightweight block cipher SPECK 32/64 through the application of differential analysis and deep learning techniques. The primary objectives of the study are to investigate the cipher’s weaknesses and to compare the effectiveness of ResNet as used by Aron Gohr at Crypto2019 and DenseNet . The methodology involves conducting an analysis of differential characteristics to identify potential weaknesses in the cipher’s structure. Experimental...
\ascon is the final winner of the lightweight cryptography standardization competition $(2018-2023)$. In this paper, we focus on preimage attacks against round-reduced \ascon. The preimage attack framework, utilizing the linear structure with the allocating model, was initially proposed by Guo \textit{et al.} at ASIACRYPT 2016 and subsequently improved by Li \textit{et al.} at EUROCRYPT 2019, demonstrating high effectiveness in breaking the preimage resistance of \keccak. In this...
Password-based authentication is an extensively used method to authenticate users. It uses cryptography to communicate the authentication process. On the contrary, the physically unclonable function (PUF)-based authentication mechanism is also gaining popularity rapidly due to its usability in IoT devices. It is a lightweight authentication mechanism that does not use cryptography protocol. PUF-based authentication mechanisms cannot authenticate users. To overcome the drawback of PUF, we...
MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures...
Fully homomorphic encryption suffers from a large expansion in the size of encrypted data, which makes FHE impractical for low-bandwidth networks. Fortunately, transciphering allows to circumvent this issue by involving a symmetric cryptosystem which does not carry the disadvantage of a large expansion factor, and maintains the ability to recover an FHE ciphertext with the cost of extra homomorphic computations on the receiver side. Recent works have started to investigate the efficiency of...
Our research focuses on designing efficient commitment schemes by drawing inspiration from (perfect) information-theoretical secure primitives, e.g., the one-time pad and secret sharing. We use a random input as a mask for the committed value, outputting a function on the random input. Then, couple the output with the committed value xored with folded random input. First, we explore the potential of leveraging the unique properties of the one-time pad to design effective one-way functions....
The development of quantum computers, which employ a different paradigm of computation, is posing a threat to the security of cryptography. Narrowing down the scope to symmetric-key cryptography, the Grover search algorithm is probably the most influential in terms of its impact on security. Recently, there have been efforts to estimate the complexity of the Grover’s key search for symmetric key ciphers and evaluate their post-quantum security. In this paper, we present a depth-optimized...
The substitution box (S-box) is an important nonlinear component in most symmetric cryptosystems and thus should have good properties. Its difference distribution table (DDT) and linear approximation table (LAT) affect the security of the cipher against differential and linear cryptanalysis. In most previous work, differential uniformity and linearity of an S-box are two primary cryptographic properties to impact the resistance against differential and linear attacks. In some cases, the...
Fully homomorphic encryption (FHE) schemes are either lightweight and can evaluate boolean circuits or are relatively heavy and can evaluate arithmetic circuits on encrypted vectors, i.e., they perform single instruction multiple data operations (SIMD). SIMD FHE schemes can either perform exact modular arithmetic in the case of the Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV) schemes or approximate arithmetic in the case of the Cheon-Kim-Kim-Song (CKKS) scheme....
TinyJAMBU is one of the ten finalists of the NIST lightweight cryptography competition, announced in March 2021. It proposes a lightweight authenticated encryption scheme based on a lightweight 128-bit keyed permutation. TinyJAMBU supports three key lengths 128, 192, and 256 denoted by TinyJambu-128, TinyJambu192, and TinyJambu-256, respectively. The scheme as well as the permutation is well studied by the designers and third parties. The most relevant work to ours is the full-round zero-sum...
Since the announcement of the NIST call for a new lightweight cryptographic standard, a lot of schemes have been proposed in response. Xoodyak is one of these schemes and is among the finalists of the NIST competition with a sponge structure very similar to the Keccak hash function – the winner of the SHA3 NIST competition. In this paper with conditional cube attack technique, we fully recover the key of Xoodyak reduced to 6 and 7 rounds with time complexity resp. 2^{42.58} and 2^{76.003}...
We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks, while keeping similar latency and area. The wider tweak input caters to both specific use cases and the design of modes of operation with higher security bounds. This is achieved through new key and tweak schedules, revised S-Box and linear layer choices, and a more comprehensive security analysis. QARMAv2 offers competitive...
ASCON, a lightweight permutation-based primitive, has been selected as NIST’s lightweight cryptography standard. ASCON-HASH is one of the hash functions provided by the cipher suite ASCON. At ToSC 2021, the collision attack on 2-round ASCON-HASH with time complexity 2^{103} was proposed. Due to its small rate, it is always required to utilize at least 2 message blocks to mount a collision attack because each message block is only of size 64 bits. This significantly increases the difficulty...
The rise of low-power, cost-efficient internet-connected devices has led to a need for lightweight cryptography. The lightweight block cipher PRIDE, designed by Martin R. Albrecht, is one of the most efficient ciphers designed for IoT-constrained environments. It is useful for connected devices, requires fewer resources to implement, and has high performance. PRIDE is a software-oriented lightweight cipher optimized for microcontrollers. This paper focuses on the FPGA implementation of the...
The Ascon authenticated encryption scheme has recently been selected as winner of the NIST Lightweight Cryptography competition. Despite its fame, however, there is no known overall generic security treatment of its mode: most importantly, all earlier related generic security results only use the key to initialize the state and do not take into account key blinding internally and at the end. In this work we present a thorough security analysis of the Ascon mode: we consider multi-user and...
The Ascon cipher suite, offering both authenticated encryption with associated data (AEAD) and hashing functionality, has recently emerged as the winner of the NIST Lightweight Cryptography (LwC) standardization process. The AEAD schemes within Ascon, namely Ascon-128 and Ascon-128a, have also been previously selected as the preferred lightweight authenticated encryption solutions in the CAESAR competition. In this paper, we present a tight and comprehensive security analysis of the Ascon...
We propose a lightweight block cipher named BAKSHEESH, which follows up on the popular cipher GIFT-128 (CHES'17). BAKSHEESH runs for 35 rounds, which is 12.50 percent smaller compared to GIFT-128 (runs for 40 rounds) while maintaining the same security claims against the classical attacks. The crux of BAKSHEESH is to use a 4-bit SBox that has a non-trivial Linear Structure (LS). An SBox with one or more non-trivial LS has not been used in a cipher construction until DEFAULT...
With the escalating demand for lightweight ciphers as well as side channel protected implementation of those ciphers in recent times, this work focuses on two related aspects. First, we present a tool for automating the task of finding a Threshold Implementation (TI) of a given Substitution Box (SBox). Our tool returns `with decomposition' and `without decomposition' based TI. The `with decomposition' based implementation returns a combinational SBox; whereas we get a sequential SBox from...
SPEEDY is a family of ultra-lightweight block ciphers designed by Leander et al. at CHES 2021. There are three recommended variants denoted as SPEEDY-$r$-192 with $r$∈{5,6,7}. All of them support the 192-bit block and the 192-bit key. The main focus during its design is to ensure hardware-aware low latency, thus, whether it is designed to have enough security is worth to be studied. Recently, the full-round security of SPEEDY-7-192 is announced to be broken by Boura et al. at EUROCRYPT 2023...
Physically Unclonable Functions (PUFs) are being proposed as a low cost alternative to permanently store secret keys or provide device authentication without requiring non-volatile memory, large e-fuses or other dedicated processing steps. In the literature, PUFs are split into two main categories. The so-called strong PUFs are mainly used for authentication purposes, hence also called authentication PUFs. They promise to be lightweight by avoiding extensive digital post-processing and...
Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations...
As zero-knowledge proofs gain increasing adoption, the cryptography community has designed domain-specific languages (DSLs) that facilitate the construction of zero-knowledge proofs (ZKPs). Many of these DSLs, such as Circom, facilitate the construction of arithmetic circuits, which are essentially polynomial equations over a finite field. In particular, given a program in a zero-knowledge proof DSL, the compiler automatically produces the corresponding arithmetic circuit. However, a...
Side-channel resistance is one of the primary criteria identified by NIST for use in evaluating candidates in the Lightweight Cryptography (LWC) Standardization process. In Rounds 1 and 2 of this process, when the number of candidates was still substantial (56 and 32, respectively), evaluating this feature was close to impossible. With ten finalists remaining, side-channel resistance and its effect on the performance and cost of practical implementations became of utmost importance. In this...
We construct a sublinear-time single-server pre-processing Private Information Retrieval (PIR) scheme with optimal client storage and server computation (up to poly-logarithmic factors), only relying on the assumption of the existence of One Way Functions (OWF). Our scheme achieves amortized $\tilde{O}(\sqrt{n})$ online server computation and client computation and $O(\sqrt{n})$ online communication per query, and requires $\widetilde{O}_\lambda(\sqrt{n})$ client storage. Unlike prior...
NIST selected the A SCON family of cryptographic primitives for standardization in February 2023 as the final step in the Lightweight Cryptography Competition. The ASCON submission to the competition provided Authenticated Encryption with Associated Data (AEAD), hashing, and Extensible Output Function (XOF) modes. Real world cryptography systems often need more than packet encryption and simple hashing. Keyed message authentication, key derivation, cryptographically secure pseudo-random...
MIBS is a 32-round lightweight block cipher following a Feistel structure with the block length of 64-bit and the key length of 64 or 80 bits. In this paper, the properties of the key scheduling algorithm are investigated and lots of repeated bits among the different round keys are found. Moreover, the optimal guessing order of the unknown key bits is obtained by using the greedy algorithm. At last, combined with the early abort technique, the differential cryptanalyses are improved to 15...
Grover’s algorithm is a quantum searching algorithm that poses a threat to symmetric cryptography. Due to their smaller key sizes, lightweight cryptographic algorithms such as Simplified-AES face a much more immediate threat from Grover’s algorithm than traditional cryptographic algorithms. By analyzing different S-boxes, it was discovered that the S-box 946C753AE8FBD012 may be more quantum resistant than the S-box that Simplified-AES uses, 94ABD1856203CEF7. In addition to this, 16x4 S-boxes...
MEGA is a large-scale cloud storage and communication platform that aims to provide end-to-end encryption for stored data. A recent analysis by Backendal, Haller and Paterson (IEEE S&P 2023) invalidated these security claims by presenting practical attacks against MEGA that could be mounted by the MEGA service provider. In response, the MEGA developers added lightweight sanity checks on the user RSA private keys used in MEGA, sufficient to prevent the previous attacks. We analyse these...
In symmetric cryptography, block ciphers, stream ciphers and permutations often make use of a round function and many round functions consist of a linear and a non-linear layer. One that is often used is based on the cellular automaton that is denoted by $\chi$ as a Boolean map on bi-infinite sequences, $\mathbb{F}^{\mathbb{Z}}$. It is defined by $\sigma \mapsto \nu$ where each $\nu_i = \sigma_i + (\sigma_{i+1}+1)\sigma_{i+2}$. A map $\chi_n$ is a map that operatos on $n$-bit arrays...
The widespread deployment of low-power and handheld devices opens an opportunity to design lightweight authenticated encryption schemes. The schemes so proposed must also prove their resilience under various security notions. Romulus-N1 is an authenticated encryption scheme with associated data based on a tweakable blockcipher, a primary variant of Romulus-N family which is NIST (National Institute of Standards and Technology) lightweight cryptography competition finalist; provides beyond...
In this work we present a lightweight lattice-based identification protocol based on the CPA-secured public key encryption scheme Kyber. It is designed as a replacement for existing classical ECC- or RSA-based identification protocols in IoT, smart card applications, or for device authentication. The proposed protocol is simple, efficient, and implementations are supposed to be easy to harden against side-channel attacks. Compared to standard constructions for identification protocols based...
The sponge construction is a popular method for hashing. Quickly after its introduction, the sponge was proven to be tightly indifferentiable from a random oracle up to $ \approx 2^{c/2}$ queries, where $c$ is the capacity. However, this bound is not tight when the number of message blocks absorbed is restricted to $\ell <\lceil \frac{c}{2(b-c)}\rceil + 1$ (but still an arbitrary number of blocks can be squeezed). In this work, we show that this restriction leads to indifferentiability from...
We study a novel family of cryptographic hash functions based on Galois linear feedback shift registers (LFSRs), and identify initial guidelines for choosing secure parameters for this family. These hash functions are extremely simple, efficient, and suitable for implementation in constrained environments.
In many applications, low area and low latency are required for the chip-level implementation of cryptographic primitives. The low-cost implementations of linear layers usually play a crucial role for symmetric ciphers. Some heuristic methods, such as the forward search and the backward search, minimize the number of XOR gates of the linear layer under the minimum latency limitation. For the sake of achieving further optimization for such implementation of the linear layer, we put forward...
A few small-state stream ciphers (SSCs) were proposed for constrained environments. All of the SSCs before the LILLE stream cipher suffered from distinguishing attacks and fast correlation attacks. The designers of LILLE claimed that it is based on the well-studied two-key Even-Mansour scheme and so is resistant to various types of attacks. This paper proposes a distinguishing attack on LILLE, the first attack since 2018. The data and time complexities to attack LILLE-40 are 2^(50.7) and...
The goals of cryptography are achieved using mathematically strong crypto-algorithms, which are adopted for securing data and communication. Even though the algorithms are mathematically secure, the implementation of these algorithms may be vulnerable to side-channel attacks such as timing and power analysis attacks. One of the effective countermeasures against such attacks is Threshold Implementation(TI). However, TI realization in crypto-device introduces hardware complexity, so it...
To mitigate cybersecurity breaches, secure communication is crucial for the Internet of Things (IoT) environment. Data integrity is one of the most significant characteristics of security, which can be achieved by employing cryptographic hash functions. In view of the demand from IoT applications, the National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight hash functions. This work presents field-programmable gate array (FPGA) implementations...
The NIST LightWeight Cryptography (LWC) selection process aims to standardise cryptographic functionality which is suitable for resource-constrained devices. Since the outcome is likely to have significant, long-lived impact, careful evaluation of each submission with respect to metrics explicitly outlined in the call is imperative. Beyond the robustness of submissions against cryptanalytic attack, metrics related to their implementation (e.g., execution latency and memory footprint) form an...
We introduce the first candidate Lattice-based designated verifier (DV) zero knowledge sUccinct Non-interactive Argument (ZK-SNARG) protocol, LUNA, with quasi-optimal proof length (quasi-linear in the security/privacy parameter). By simply relying on mildly stronger security assumptions, LUNA is also a candidate ZK-SNARK (i.e. argument of knowledge). LUNA achieves significant improvements in concrete proof sizes, reaching below 6 KB (compared to >32 KB in prior work) for 128-bit...
The hash function Romulus-H is a finalist in the NIST Lightweight Cryptography competition. It is based on the Hirose double block-length (DBL) construction which is provably secure when used with an ideal block cipher. However, in practice, ideal block ciphers can only be approximated. Therefore, the security of concrete instantiations must be cryptanalyzed carefully; the security margin may be higher or lower than in the secret-key setting. So far, the Hirose DBL construction has been...
We design and implement a simple zero-knowledge argument protocol for $\mathsf{NP}$ whose communication complexity is proportional to the square-root of the verification circuit size. The protocol can be based on any collision-resistant hash function. Alternatively, it can be made non-interactive in the random oracle model, yielding concretely efficient zk-SNARKs that do not require a trusted setup or public-key cryptography. Our protocol is obtained by applying an optimized version of the...
This paper analyses the lightweight, sponge-based NAEAD mode $\textsf{ISAP}$, one of the finalists of the NIST Lightweight Cryptography (LWC) standardisation project, that achieves high-throughput with inherent protection against differential power analysis (DPA). We observe that $\textsf{ISAP}$ requires $256$-bit capacity in the authentication module to satisfy the NIST LWC security criteria. In this paper, we study the analysis carefully and observe that this is primarily due to the...
Ascon family is one of the finalists of the National Institute of Standards and Technology (NIST) lightweight cryptography standardization process. The family includes three Authenticated Encryption with Associated Data (AEAD) schemes: Ascon-128 (primary), Ascon-128a, and Ascon-80pq. In this paper, we study the resistance of the Ascon~family against conditional cube attacks in nonce-misuse setting, and present new state- and key-recovery attacks. Our attack recovers the full state...
Lightweight cryptography is a viable solution for constrained computational environments that require a secure communication channel. To standardize lightweight primitives, NIST has published a call for algorithms that address needs like compactness, low-latency, low-power/energy, etc. Among the candidates, the GIFT family of block ciphers was utilized in various NIST candidates due to its high-security margin and small gate footprint. As a result of their hardware-oriented design, software...
ASCON is a family of cryptographic primitives for authenticated encryption and hashing introduced in 2015. It is selected as one of the ten finalists in the NIST Lightweight Cryptography competition. Since its introduction, ASCON has been extensively cryptanalyzed, and the results of these analyses can indicate the good resistance of this family of cryptographic primitives against known attacks, like differential and linear cryptanalysis. Proving upper bounds for the differential...
We investigate a new class of fault-injection attacks against the CSIDH family of cryptographic group actions. Our disorientation attacks effectively flip the direction of some isogeny steps. We achieve this by faulting a specific subroutine, connected to the Legendre symbol or Elligator computations performed during the evaluation of the group action. These subroutines are present in almost all known CSIDH implementations. Post-processing a set of faulty samples allows us to infer...
TinyJambu is one of the finalists in the NIST lightweight cryptography competition. It has undergone extensive analysis in the recent years as both the keyed permutation as well as the mode are new designs. In this paper we present a related-key forgery attackon the updated TinyJambu scheme with 256- and 192-bit keys. We introduce a high probability related-key differential attack were the differences are only introduced into the key state. Therefore, the characteristic is applicable to the...
The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour when attackers have quantum access to the random permutation but only classical access to the secretly-keyed construction, the relevant setting for most real-world applications. We then use our results to prove post-quantum security—in the same model—of the symmetric-key schemes Chaskey (an ISO-standardized MAC), Elephant (an AEAD...
Determining bounds on the differential probability of differential trails and the squared correlation contribution of linear trails forms an important part of the security evaluation of a permutation. For Xoodoo such bounds were proven with a dedicated tool (XooTools), that scans the space of all r-round trails with weight below a given threshold $T_r$. The search space grows exponentially with the value of $T_r$ and XooTools appeared to have reached its limit, requiring huge amounts...
This paper presents results of performance evaluation of NIST Lightweight Cryptography standardization finalists which are implemented by us. Our implementation method puts on the target to reduce RAM consumption on embedded devices. Our target microcontrollers are AVR ATmega 128 and ARM Cortex-M3. We apply our implementation method to five AEAD schemes which include four finalists of the NIST lightweight cryptography standardization and demonstrate the performance evaluation on target...
Lightweight cryptography is characterized by the need for low implementation cost, while still providing sufficient security. This requires careful analysis of building blocks and their composition. SKINNY is an ISO/IEC standardized family of tweakable block ciphers and is used in the NIST lightweight cryptography standardization process finalist Romulus. We present non-trivial linear approximations of two- round SKINNY that have correlation one or minus one and that hold for a large...
We analyze nonce-misuse resilience (NMRL) security of Romulus-N and GIFT-COFB, the two finalists of NIST Lightweight Cryptography project for standardizing lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security notion from a stronger, nonce-misuse resistance notion. We proved that Romulus-N and GIFT-COFB have nonce-misuse resilience. For Romulus-N, we showed the perfect privacy (NMRL-PRIV) and n/2-bit authenticity (NMRL-AUTH) with...
GIFT-COFB is a lightweight AEAD scheme and a submission to the ongoing NIST lightweight cryptography standardization process where it currently competes as a finalist. The construction processes 128-bit blocks with a key and nonce of the same size and has a small register footprint, only requiring a single additional 64-bit register. Be- sides the block cipher, the mode of operation uses a bit permutation and finite field multiplication with different constants. It is a well-known...
Cryptanalysis is to infer the secret key of cryptography algorithm. There are brute-force attack, differential attack, linear attack, and chosen plaintext attack. With the development of artificial intelligence, deep learning-based cryptanalysis has been actively studied. There are works in which known-plaintext attacks against lightweight block ciphers, such as S-DES, have been performed. In this paper, we propose a cryptanalysis method based on the-state-of-art deep learning technologies...
We propose a new AEAD mode of operation for an efficient countermeasure against side-channel attacks. Our mode achieves the smallest memory with high-order masking, by minimizing the states that are duplicated in masking. An $s$-bit key-dependent state is necessary for achieving $s$-bit security, and the conventional schemes always protect the entire $s$ bits with masking. We reduce the protected state size by introducing an unprotected state in the key-dependent state: we protect only a...
One of the main challenges cryptography needs to deal with is balancing the performances of a cryptographic primitive with its security. That is why in 2015, the National Institute of Standards and Technologies (NIST) has begun a standardization process to solicit the creation of new lightweight cryptographic algorithms. We then wondered which of this standardization finalists would suit the best to a white-box implementation. To this end, we studied different algorithms structures on...
Lightweight cryptography ensures cryptography applications to devices with limited resources. Low-area implementations of linear layers usually play an essential role in lightweight cryptography. The previous works have provided plenty of methods to generate low-area implementations using 2-input xor gates for various linear layers. However, it is still challenging to search for smaller implementations using two or more inputs xor gates. This paper, inspired by Banik et al., proposes a...
Automatic tools to search for boomerang distinguishers have seen significant advances over the past few years. However, most previous work has focused on ciphers based on a Substitution Permutation Network (SPN), while analyzing the Feistel structure is of great significance. Boukerrou et al. recently provided a theoretical framework to formulate the boomerang switch over multiple Feistel rounds, but they did not provide an automatic tool to find distinguishers. In this paper, by enhancing...
The cryptographic sponge is a popular method for hash function design. The construction is in the ideal permutation model proven to be indifferentiable from a random oracle up to the birthday bound in the capacity of the sponge. This result in particular implies that, as long as the attack complexity does not exceed this bound, the sponge construction achieves a comparable level of collision, preimage, and second preimage resistance as a random oracle. We investigate these state-of-the-art...
WARP is a 128-bit block cipher published by Banik et al. at SAC 2020 as a lightweight alternative to AES. It is based on a generalized Feistel network and achieves the smallest area footprint among 128-bit block ciphers in many settings. Previous analysis results include integral key-recovery attacks on 21 out of 41 rounds. In this paper, we propose integral key-recovery attacks on up to 32 rounds by improving both the integral distinguisher and the key-recovery approach substantially....
Lightweight cryptography algorithms are increasing in value because they can enhance security under limited resources. National Institute of Standards and Technology is working on standardising lightweight authenticated encryption with associated data. Thirty-two candidates are included in the second round of the NIST selection process, and their specifications differ with respect to various points. Therefore, for each algorithm, the differences in specifications are expected to affect the...
Maximum Distance Separable (MDS) matrices are usually used to be diffusion layers in cryptographic designs. The main advantage of involutory MDS matrices lies in that both encryption and decryption share the same matrix-vector product. In this paper, we present a new type of MDS matrices called generalized-involutory MDS matrices, implementation of whose inverse matrix-vector products in decryption is the combination of the matrix-vector products in encryption plus a few extra XOR gates. For...
Ascon-128 and Ascon-80pq use 12-round Ascon permutation for initialization and finalization phases and 6-round Ascon permutation for processing associate data and message. In a nonce-misuse setting, we present a new partial-state-recovery conditional-cube attack on Ascon-128 and Ascon-80pq, where 192 bits out of 320-bit state are recovered. For our partial state-recovery attack, its required data complexity, \(D\), is about \(2^{44.8}\) and its required memory complexity, \(M\), is...
The looming threat of an adversary with Quantum computing capability led to a worldwide research effort towards identifying and standardizing novel post-quantum cryptographic primitives. Post-standardization, all existing security protocols will need to support efficient implementation of these primitives. In this work, we contribute to these efforts by reporting the smallest implementation of CRYSTALS-Dilithium, a finalist candidate for post-quantum digital signature. By invoking multiple...