Dates are inconsistent

Dates are inconsistent

601 results sorted by ID

2024/1969 (PDF) Last updated: 2024-12-05
SoK: Security of the Ascon Modes
Charlotte Lefevre, Bart Mennink
Secret-key cryptography

The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of...

2024/1907 (PDF) Last updated: 2024-11-23
Towards Optimal Garbled Circuits in the Standard Model
Ruiyang Li, Chun Guo, Xiao Wang
Applications

State-of-the-art garbling schemes for boolean circuits roughly consist of two families, i.e., ideal model garbling that combines linear operations and ideal blockciphers (aiming at maximizing performance), and PRF-based garbling that insists on using theoretically sound assumptions. In the linear garbling framework introduced by Zahur, Rosulek, and Evans (Eurocrypt 2015), it was established that garbling an AND gate requires at least $2(\kappa +1)$ bits of ciphertext, with $\kappa$ as the...

2024/1865 (PDF) Last updated: 2024-11-14
Tightly-Secure Group Key Exchange with Perfect Forward Secrecy
Emanuele Di Giandomenico, Doreen Riepel, Sven Schäge
Public-key cryptography

In this work, we present a new paradigm for constructing Group Authenticated Key Exchange (GAKE). This result is the first tightly secure GAKE scheme in a strong security model that allows maximum exposure attacks (MEX) where the attacker is allowed to either reveal the secret session state or the long-term secret of all communication partners. Moreover, our protocol features the strong and realistic notion of (full) perfect forward secrecy (PFS), that allows the attacker to actively modify...

2024/1830 (PDF) Last updated: 2024-11-07
A Tight Analysis of GHOST Consistency
Peter Gaži, Zahra Motaqy, Alexander Russell
Cryptographic protocols

The GHOST protocol has been proposed as an improvement to the Nakamoto consensus mechanism that underlies Bitcoin. In contrast to the Nakamoto fork-choice rule, the GHOST rule justifies selection of a chain with weights computed over subtrees rather than individual paths. This mechanism has been adopted by a variety of consensus protocols, and is a part of the currently deployed protocol supporting Ethereum. We establish an exact characterization of the security region of the GHOST...

2024/1826 (PDF) Last updated: 2024-11-07
Cloning Games, Black Holes and Cryptography
Alexander Poremba, Seyoon Ragavan, Vinod Vaikuntanathan
Foundations

The no-cloning principle has played a foundational role in quantum information and cryptography. Following a long-standing tradition of studying quantum mechanical phenomena through the lens of interactive games, Broadbent and Lord (TQC 2020) formalized cloning games in order to quantitatively capture no-cloning in the context of unclonable encryption schemes. The conceptual contribution of this paper is the new, natural, notion of Haar cloning games together with two applications. In the...

2024/1794 (PDF) Last updated: 2024-11-02
How Much Public Randomness Do Modern Consensus Protocols Need?
Joseph Bonneau, Benedikt Bünz, Miranda Christ, Yuval Efron
Cryptographic protocols

Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication and round complexity) while maintaining security against adaptive adversaries. These goals are usually achieved using a public randomness beacon to select roles for each participant. We examine to what extent this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive...

2024/1765 (PDF) Last updated: 2024-10-31
Compact and Tightly Secure (Anonymous) IBE from Module LWE in the QROM
Toi Tomita, Junji Shikata
Public-key cryptography

We present a new compact and tightly secure (anonymous) identity-based encryption (IBE) scheme based on structured lattices. This is the first IBE scheme that is (asymptotically) as compact as the most practical NTRU-based schemes and tightly secure under the module learning with errors (MLWE) assumption, known as the standard lattice assumption, in the (quantum) random oracle model. In particular, our IBE scheme is the most compact lattice-based scheme (except for NTRU-based schemes). We...

2024/1751 (PDF) Last updated: 2024-10-26
Offline-Online Indifferentiability of Cryptographic Systems
Ashrujit Ghoshal, Ilan Komargodski, Gil Segev
Foundations

The indifferentiability framework has become a standard methodology that enables us to study the security of cryptographic constructions in idealized models of computation. Unfortunately, while indifferentiability provides strong guarantees whenever the security of a construction is captured by a ``single-stage'' security game, it may generally provide no meaningful guarantees when the security is captured by a ``multi-stage'' one. In particular, the indifferentiability framework does not...

2024/1727 (PDF) Last updated: 2024-10-22
(Quantum) Indifferentiability and Pre-Computation
Joseph Carolan, Alexander Poremba, Mark Zhandry
Foundations

Indifferentiability is a popular cryptographic paradigm for analyzing the security of ideal objects---both in a classical as well as in a quantum world. It is typically stated in the form of a composable and simulation-based definition, and captures what it means for a construction (e.g., a cryptographic hash function) to be ``as good as'' an ideal object (e.g., a random oracle). Despite its strength, indifferentiability is not known to offer security against pre-processin} attacks in which...

2024/1625 (PDF) Last updated: 2024-10-11
On the Tight Security of the Double Ratchet
Daniel Collins, Doreen Riepel, Si An Oliver Tran
Cryptographic protocols

The Signal Protocol is a two-party secure messaging protocol used in applications such as Signal, WhatsApp, Google Messages and Facebook Messenger and is used by billions daily. It consists of two core components, one of which is the Double Ratchet protocol that has been the subject of a line of work that aims to understand and formalise exactly what security it provides. Existing models capture strong guarantees including resilience to state exposure in both forward security (protecting...

2024/1607 (PDF) Last updated: 2024-10-09
Tighter Proofs for PKE-to-KEM Transformation in the Quantum Random Oracle Model
Jinrong Chen, Yi Wang, Rongmao Chen, Xinyi Huang, Wei Peng
Public-key cryptography

In this work, we provide new, tighter proofs for the $T_{RH}$-transformation by Jiang et al. (ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA security, a variant of typical IND-CCA security where only a single decapsulation query is allowed. Such KEMs are efficient and have been shown sufficient for real-world applications by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.'s $T_{RH}$-transformation in both the random oracle model (ROM) and...

2024/1581 (PDF) Last updated: 2024-10-07
$\mathsf{Protoss}$ Protocol for Tight Optimal Symmetric Security
Emanuele Di Giandomenico, Yong Li, Sven Schäge
Cryptographic protocols

We present $\mathsf{Protoss}$, a new balanced PAKE protocol with optimal communication efficiency. Messages are only 160 bits long and the computational complexity is lower than all previous approaches. Our protocol is proven secure in the random oracle model and features a security proof in a strong security model with multiple parties and multiple sessions, while allowing for generous attack queries including multiple $\mathsf{Test}$-queries. Moreover, the proof is in the practically...

2024/1557 (PDF) Last updated: 2024-10-03
Tightly Secure Threshold Signatures over Pairing-Free Groups
Renas Bacho, Benedikt Wagner
Cryptographic protocols

Threshold signatures have been drawing lots of attention in recent years. Of particular interest are threshold signatures that are proven secure under adaptive corruptions (NIST Call 2023). Sadly, existing constructions with provable adaptive security suffer from at least one of the following drawbacks: (i) strong idealizations such as the algebraic group model (AGM), (ii) an unnatural restriction on the corruption threshold being $t/2$ where $t$ is the signing threshold, or (iii)...

2024/1528 (PDF) Last updated: 2024-11-14
Schnorr Signatures are Tightly Secure in the ROM under a Non-interactive Assumption
Gavin Cho, Georg Fuchsbauer, Adam O'Neill
Public-key cryptography

We show that the widely-used Schnorr signature scheme meets existential unforgeability under chosen-message attack (EUF-CMA) in the random oracle model (ROM) if the circular discrete-logarithm (CDL) assumption, a new, non-interactive and falsifiable variant of the discrete-log (DL) problem we introduce, holds in the underlying group. Notably, our reduction is tight, meaning the constructed adversary against CDL has essentially the same running time and success probability as the assumed...

2024/1506 (PDF) Last updated: 2024-09-25
Bit Security: optimal adversaries, equivalence results, and a toolbox for computational-statistical security analysis
Daniele Micciancio, Mark Schultz-Wu
Foundations

We investigate the notion of bit-security for decisional cryptographic properties, as originally proposed in (Micciancio & Walter, Eurocrypt 2018), and its main variants and extensions, with the goal clarifying the relation between different definitions, and facilitating their use. Specific contributions of this paper include: (1) identifying the optimal adversaries achieving the highest possible MW advantage, showing that they are deterministic and have a very simple threshold...

2024/1497 (PDF) Last updated: 2024-09-24
Low-degree Security of the Planted Random Subgraph Problem
Andrej Bogdanov, Chris Jones, Alon Rosen, Ilias Zadik
Foundations

The planted random subgraph detection conjecture of Abram et al. (TCC 2023) asserts the pseudorandomness of a pair of graphs $(H, G)$, where $G$ is an Erdos-Renyi random graph on $n$ vertices, and $H$ is a random induced subgraph of $G$ on $k$ vertices. Assuming the hardness of distinguishing these two distributions (with two leaked vertices), Abram et al. construct communication-efficient, computationally secure (1) 2-party private simultaneous messages (PSM) and (2) secret sharing for...

2024/1489 (PDF) Last updated: 2024-09-23
Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC
Nishanth Chandran, Juan Garay, Ankit Kumar Misra, Rafail Ostrovsky, Vassilis Zikas
Cryptographic protocols

The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties...

2024/1481 (PDF) Last updated: 2024-09-23
Tighter Adaptive IBEs and VRFs: Revisiting Waters' Artificial Abort
Goichiro Hanaoka, Shuichi Katsumata, Kei Kimura, Kaoru Takemure, Shota Yamada
Public-key cryptography

One of the most popular techniques to prove adaptive security of identity-based encryptions (IBE) and verifiable random functions (VRF) is the partitioning technique. Currently, there are only two methods to relate the adversary's advantage and runtime $(\epsilon, {\sf T})$ to those of the reduction's ($\epsilon_{\sf proof}, {\sf T}_{\sf proof}$) using this technique: One originates to Waters (Eurocrypt 2005) who introduced the famous artificial abort step to prove his IBE, achieving...

2024/1476 (PDF) Last updated: 2024-09-21
The Concrete Security of Two-Party Computation: Simple Definitions, and Tight Proofs for PSI and OPRFs
Mihir Bellare, Rishabh Ranjan, Doreen Riepel, Ali Aldakheel
Cryptographic protocols

This paper initiates a concrete-security treatment of two-party secure computation. The first step is to propose, as target, a simple, indistinguishability-based definition that we call InI. This could be considered a poor choice if it were weaker than standard simulation-based definitions, but it is not; we show that for functionalities satisfying a condition called invertibility, that we define and show is met by functionalities of practical interest like PSI and its variants, the two...

2024/1434 (PDF) Last updated: 2024-09-13
Untangling the Security of Kilian's Protocol: Upper and Lower Bounds
Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nicholas Spooner, Eylon Yogev
Foundations

Sigma protocols are elegant cryptographic proofs that have become a cornerstone of modern cryptography. A notable example is Schnorr's protocol, a zero-knowledge proof-of-knowledge of a discrete logarithm. Despite extensive research, the security of Schnorr's protocol in the standard model is not fully understood. In this paper we study Kilian's protocol, an influential public-coin interactive protocol that, while not a sigma protocol, shares striking similarities with sigma protocols....

2024/1421 (PDF) Last updated: 2024-09-19
Provable Security of Linux-DRBG in the Seedless Robustness Model
Woohyuk Chung, Hwigyeom Kim, Jooyoung Lee, Yeongmin Lee
Secret-key cryptography

This paper studies the provable security of the deterministic random bit generator~(DRBG) utilized in Linux 6.4.8, marking the first analysis of Linux-DRBG from a provable security perspective since its substantial structural changes in Linux 4 and Linux 5.17. Specifically, we prove its security up to $O(\min\{2^{\frac{n}{2}},2^{\frac{\lambda}{2}}\})$ queries in the seedless robustness model, where $n$ is the output size of the internal primitives and $\lambda$ is the min-entropy of the...

2024/1400 (PDF) Last updated: 2024-09-07
Efficient Asymmetric PAKE Compiler from KEM and AE
You Lyu, Shengli Liu, Shuai Han
Cryptographic protocols

Password Authenticated Key Exchange (PAKE) allows two parties to establish a secure session key with a shared low-entropy password pw. Asymmetric PAKE (aPAKE) extends PAKE in the client-server setting, and the server only stores a password file instead of the plain password so as to provide additional security guarantee when the server is compromised. In this paper, we propose a novel generic compiler from PAKE to aPAKE in the Universal Composable (UC) framework by making use of Key...

2024/1368 (PDF) Last updated: 2024-08-30
Tightly Secure Non-Interactive BLS Multi-Signatures
Renas Bacho, Benedikt Wagner
Public-key cryptography

Due to their simplicity, compactness, and algebraic structure, BLS signatures are among the most widely used signatures in practice. For example, used as multi-signatures, they are integral in Ethereum's proof-of-stake consensus. From the perspective of concrete security, however, BLS (multi-)signatures suffer from a security loss linear in the number of signing queries. It is well-known that this loss can not be avoided using current proof techniques. In this paper, we introduce a new...

2024/1360 (PDF) Last updated: 2024-09-25
CPA-secure KEMs are also sufficient for Post-Quantum TLS 1.3
Biming Zhou, Haodong Jiang, Yunlei Zhao
Cryptographic protocols

In the post-quantum migration of TLS 1.3, an ephemeral Diffie-Hellman must be replaced with a post-quantum key encapsulation mechanism (KEM). At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [EC:HugVau22] demonstrated that KEMs with standard CPA security are sufficient for the security of the TLS1.3 handshake. However, their result is only proven in the random oracle model (ROM), and as the authors comment, their reduction is very much non-tight and not sufficient to guarantee security in...

2024/1286 (PDF) Last updated: 2024-08-15
Towards a Tightly Secure Signature in Multi-User Setting with Corruptions Based on Search Assumptions
Hirofumi Yoshioka, Wakaha Ogata, Keitaro Hashimoto
Foundations

This paper is a report on how we tackled constructing a digital signature scheme whose multi-user security with corruption can be tightly reduced to search assumptions. We fail to (dis)prove the statement but obtain the following new results: - We reveal two new properties of signature schemes whose security cannot be tightly reduced to standard assumptions. - We construct a new signature scheme. Its multi-user security with corruption is reduced to the CDH assumption (in the ROM), and...

2024/1258 (PDF) Last updated: 2024-10-07
Count Corruptions, Not Users: Improved Tightness for Signatures, Encryption and Authenticated Key Exchange
Mihir Bellare, Doreen Riepel, Stefano Tessaro, Yizhao Zhang
Public-key cryptography

In the multi-user with corruptions (muc) setting there are $n\geq 1$ users, and the goal is to prove that, even in the face of an adversary that adaptively corrupts users to expose their keys, un-corrupted users retain security. This can be considered for many primitives including signatures and encryption. Proofs of muc security, while possible, generally suffer a factor n loss in tightness, which can be large. This paper gives new proofs where this factor is reduced to the number c of...

2024/1237 (PDF) Last updated: 2024-08-05
Efficient Variants of TNT with BBB Security
Ritam Bhaumik, Wonseok Choi, Avijit Dutta, Cuauhtemoc Mancillas López, Hrithik Nandi, Yaobin Shen
Secret-key cryptography

At EUROCRYPT'20, Bao et al. have shown that three-round cascading of $\textsf{LRW1}$ construction, which they dubbed as $\textsf{TNT}$, is a strong tweakable pseudorandom permutation that provably achieves $2n/3$-bit security bound. Jha et al. showed a birthday bound distinguishing attack on $\textsf{TNT}$ and invalidated the proven security bound and proved a tight birthday bound security on the $\textsf{TNT}$ construction in EUROCRYPT'24. In a recent work, Datta et al. have...

2024/1215 (PDF) Last updated: 2024-09-17
Falsifiability, Composability, and Comparability of Game-based Security Models for Key Exchange Protocols
Chris Brzuska, Cas Cremers, Håkon Jacobsen, Douglas Stebila, Bogdan Warinschi
Cryptographic protocols

A security proof for a key exchange protocol requires writing down a security definition. Authors typically have a clear idea of the level of security they aim to achieve, e.g., forward secrecy. Defining the model formally additionally requires making choices on games vs. simulation-based models, partnering, on having one or more Test queries and on adopting a style of avoiding trivial attacks: exclusion, penalizing or filtering. We elucidate the consequences, advantages and disadvantages of...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1171 (PDF) Last updated: 2024-07-19
Tight Time-Space Tradeoffs for the Decisional Diffie-Hellman Problem
Akshima, Tyler Besselman, Siyao Guo, Zhiye Xie, Yuping Ye
Foundations

In the (preprocessing) Decisional Diffie-Hellman (DDH) problem, we are given a cyclic group $G$ with a generator $g$ and a prime order $N$, and we want to prepare some advice of size $S$, such that we can efficiently distinguish $(g^{x},g^{y},g^{xy})$ from $(g^{x},g^{y},g^{z})$ in time $T$ for uniformly and independently chosen $x,y,z$ from $\mathbb{Z}_N$. This is a central cryptographic problem whose computational hardness underpins many widely deployed schemes, such as the Diffie–Hellman...

2024/1163 (PDF) Last updated: 2024-08-01
On the Number of Restricted Solutions to Constrained Systems and their Applications
Benoît Cogliati, Jordan Ethan, Ashwin Jha, Mridul Nandi, Abishanka Saha
Secret-key cryptography

In this paper, we formulate a special class of systems of linear equations over finite fields that appears naturally in the provable security analysis of several MAC and PRF modes of operation. We derive lower bounds on the number of solutions for such systems adhering to some predefined restrictions, and apply these lower bounds to derive tight PRF security for several constructions. We show security up to $2^{3n/4}$ queries for the single-keyed variant of the Double-block Hash-then-Sum...

2024/1162 (PDF) Last updated: 2024-07-17
Practical Traceable Receipt-Free Encryption
Henri Devillez, Olivier Pereira, Thomas Peters
Public-key cryptography

Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...

2024/1098 (PDF) Last updated: 2024-07-05
Limits of Black-Box Anamorphic Encryption
Dario Catalano, Emanuele Giunta, Francesco Migliaro
Public-key cryptography

(Receiver) Anamorphic encryption, introduced by Persiano $ \textit{et al.}$ at Eurocrypt 2022, considers the question of achieving private communication in a world where secret decryption keys are under the control of a dictator. The challenge here is to be able to establish a secret communication channel to exchange covert (i.e. anamorphic) messages on top of some already deployed public key encryption scheme. Over the last few years several works addressed this challenge by showing...

2024/1081 (PDF) Last updated: 2024-07-07
Practical Non-interactive Multi-signatures, and a Multi-to-Aggregate Signatures Compiler
Matthieu Rambaud, Christophe Levrat
Public-key cryptography

In a fully non-interactive multi-signature, resp. aggregate-signature scheme (fNIM, resp. fNIA), signatures issued by many signers on the same message, resp. on different messages, can be succinctly ``combined'', resp. ``aggregated''. fNIMs are used in the Ethereum consensus protocol, to produce the certificates of validity of blocks which are to be verified by billions of clients. fNIAs are used in some PBFT-like consensus protocols, such as the production version of Diem by Aptos, to...

2024/1057 (PDF) Last updated: 2024-06-28
Password-authenticated Key Exchange and Applications
Kristian Gjøsteen
Cryptographic protocols

We analyse a two password-authenticated key exchange protocols, a variant of CPace and a protocol related to the well-known SRP protocol. Our security results are tight. The first result gives us some information about trade-offs for design choices in CPace. The second result provides information about the security of SRP. Our analysis is done in a new game-based security definition for password-authenticated key exchange. Our definition accomodates arbitrary password sampling...

2024/990 (PDF) Last updated: 2024-06-19
Perfectly-secure Network-agnostic MPC with Optimal Resiliency
Shravani Patil, Arpita Patra
Cryptographic protocols

We study network-agnostic secure multiparty computation with perfect security. Traditionally MPC is studied assuming the underlying network is either synchronous or asynchronous. In a network-agnostic setting, the parties are unaware of whether the underlying network is synchronous or asynchronous. The feasibility of perfectly-secure MPC in synchronous and asynchronous networks has been settled a long ago. The landmark work of [Ben-Or, Goldwasser, and Wigderson, STOC'88] shows that $n...

2024/929 (PDF) Last updated: 2024-06-10
Combining Outputs of a Random Permutation: New Constructions and Tight Security Bounds by Fourier Analysis
Itai Dinur
Secret-key cryptography

We consider constructions that combine outputs of a single permutation $\pi:\{0,1\}^n \rightarrow \{0,1\}^n$ using a public function. These are popular constructions for achieving security beyond the birthday bound when implementing a pseudorandom function using a block cipher (i.e., a pseudorandom permutation). One of the best-known constructions (denoted SXoP$[2,n]$) XORs the outputs of 2 domain-separated calls to $\pi$. Modeling $\pi$ as a uniformly chosen permutation, several previous...

2024/910 (PDF) Last updated: 2024-06-07
A Tight Security Proof for $\mathrm{SPHINCS^{+}}$, Formally Verified
Manuel Barbosa, François Dupressoir, Andreas Hülsing, Matthias Meijers, Pierre-Yves Strub
Public-key cryptography

$\mathrm{SPHINCS^{+}}$ is a post-quantum signature scheme that, at the time of writing, is being standardized as $\mathrm{SLH\text{-}DSA}$. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed—as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for $\mathrm{SPHINCS^{+}}$ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the...

2024/904 (PDF) Last updated: 2024-06-06
On round elimination for special-sound multi-round identification and the generality of the hypercube for MPCitH
Andreas Hülsing, David Joseph, Christian Majenz, Anand Kumar Narayanan
Public-key cryptography

A popular way to build post-quantum signature schemes is by first constructing an identification scheme (IDS) and applying the Fiat-Shamir transform to it. In this work we tackle two open questions related to the general applicability of techniques around this approach that together allow for efficient post-quantum signatures with optimal security bounds in the QROM. First we consider a recent work by Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue (Asiacrypt'23) that showed...

2024/853 (PDF) Last updated: 2024-05-30
Practical q-IND-CPA-D-Secure Approximate Homomorphic Encryption
Jean-Philippe Bossuat, Anamaria Costache, Christian Mouchet, Lea Nürnberger, Juan Ramón Troncoso-Pastoriza
Public-key cryptography

At Eurocrypt $2021$, Li and Micciancio demonstrated that the IND-CPA notion of security is not sufficient to cover the passive security of approximate homomorphic encryption schemes, by outlining a key recovery attack against the CKKS scheme (Cheon, Kim, Kim, Seong, Asiacrypt $2017$). They proposed the notion of $q$-IND-CPA-D security, which allows an adversary to make $q$ calls to a restricted decryption oracle. Li and Micciancio left achieving $q$-IND-CPA-D security as an open problem, but...

2024/831 (PDF) Last updated: 2024-05-28
Tight Characterizations for Preprocessing against Cryptographic Salting
Fangqi Dong, Qipeng Liu, Kewen Wu
Foundations

Cryptography often considers the strongest yet plausible attacks in the real world. Preprocessing (a.k.a. non-uniform attack) plays an important role in both theory and practice: an efficient online attacker can take advantage of advice prepared by a time-consuming preprocessing stage. Salting is a heuristic strategy to counter preprocessing attacks by feeding a small amount of randomness to the cryptographic primitive. We present general and tight characterizations of preprocessing...

2024/830 (PDF) Last updated: 2024-05-28
How (not) to Build Quantum PKE in Minicrypt
Longcheng Li, Qian Li, Xingjian Li, Qipeng Liu
Foundations

The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF? A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat --- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we...

2024/681 (PDF) Last updated: 2024-07-10
HRA-Secure Homomorphic Lattice-Based Proxy Re-Encryption with Tight Security
Aloni Cohen, David Bruce Cousins, Nicholas Genise, Erik Kline, Yuriy Polyakov, Saraswathy RV
Cryptographic protocols

We construct an efficient proxy re-encryption (PRE) scheme secure against honest re-encryption attacks (HRA-secure) with precise concrete security estimates. To get these precise concrete security estimates, we introduce the tight, fine-grained noise-flooding techniques of Li et al. (CRYPTO'22) to RLWE-based (homomorphic) PRE schemes, as well as a mixed statistical-computational security to HRA security analysis. Our solution also supports homomorphic operations on the ciphertexts. Such...

2024/658 (PDF) Last updated: 2024-06-07
Information-theoretic security with asymmetries
Tim Beyne, Yu Long Chen
Secret-key cryptography

In this paper, we study the problem of lower bounding any given cost function depending on the false positive and false negative probabilities of adversaries against indistinguishability security notions in symmetric-key cryptography. We take the cost model as an input, so that this becomes a purely information-theoretical question. We propose power bounds as an easy-to-use alternative for advantage bounds in the context of indistinguishability with asymmetric cost functions. We show that...

2024/609 (PDF) Last updated: 2024-04-20
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes
Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, Brice Minaud
Public-key cryptography

Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm. As many attacks...

2024/605 (PDF) Last updated: 2024-04-19
Security Analysis of XHASH8/12
Léo Perrin
Secret-key cryptography

We have investigated both the padding scheme and the applicability of algebraic attacks to both XHash8 and XHash12. The only vulnerability of the padding scheme we can find is plausibly applicable only in the multi-rate setting---for which the authors make no claim---and is safe otherwise. For algebraic attack relying on the computation and exploitation of a Gröbner basis, our survey of the literature suggests to base a security argument on the complexity of the variable elimination step...

2024/603 (PDF) Last updated: 2024-09-23
Worst-Case to Average-Case Hardness of LWE: An Alternative Perspective
Divesh Aggarwal, Leong Jin Ming, Alexandra Veliche
Foundations

In this work, we study the worst-case to average-case hardness of the Learning with Errors problem (LWE) under an alternative measure of hardness $−$ the maximum success probability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-case reductions from lattice problems to LWE, specifically from the approximate decision variant of the...

2024/579 (PDF) Last updated: 2024-04-15
Tight Multi-user Security of Ascon and Its Large Key Extension
Bishwajit Chakraborty, Chandranan Dhar, Mridul Nandi
Secret-key cryptography

The Ascon cipher suite has recently become the preferred standard in the NIST Lightweight Cryptography standardization process. Despite its prominence, the initial dedicated security analysis for the Ascon mode was conducted quite recently. This analysis demonstrated that the Ascon AEAD mode offers superior security compared to the generic Duplex mode, but it was limited to a specific scenario: single-user nonce-respecting, with a capacity strictly larger than the key size. In this paper, we...

2024/566 (PDF) Last updated: 2024-07-03
A $3$-Round Near-Linear Third-Party Private Set Intersection Protocol
Foo Yee Yeo, Jason H. M. Ying
Cryptographic protocols

Third-party private set intersection (PSI) enables two parties, each holding a private set to compute their intersection and reveal the result only to an inputless third party. In this paper, we present an efficient third-party PSI protocol requiring only 3 communication rounds, while significantly lowering the computational workload compared to prior work. Our work is motivated by real-world applications such as contact tracing whereby expedition is essential while concurrently preserving...

2024/414 (PDF) Last updated: 2024-07-18
Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations
Joseph Carolan, Alexander Poremba
Foundations

Sponge hashing is a widely used class of cryptographic hash algorithms which underlies the current international hash function standard SHA-3. In a nutshell, a sponge function takes as input a bit-stream of any length and processes it via a simple iterative procedure: it repeatedly feeds each block of the input into a so-called block function, and then produces a digest by once again iterating the block function on the final output bits. While much is known about the post-quantum security of...

2024/407 (PDF) Last updated: 2024-03-06
Permutation-Based Hashing Beyond the Birthday Bound
Charlotte Lefevre, Bart Mennink
Secret-key cryptography

It is known that the sponge construction is tightly indifferentiable from a random oracle up to around $2^{c/2}$ queries, where $c$ is the capacity. In particular, it cannot provide generic security better than half of the underlying permutation size. In this paper, we aim to achieve hash function security beating this barrier. We present a hashing mode based on two $b$-bit permutations named the double sponge. The double sponge can be seen as the sponge embedded within the double block...

2024/361 (PDF) Last updated: 2024-02-28
Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation
Jiaxin Pan, Doreen Riepel, Runzhi Zeng
Public-key cryptography

Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if...

2024/360 (PDF) Last updated: 2024-02-28
The NISQ Complexity of Collision Finding
Yassine Hamoudi, Qipeng Liu, Makrand Sinha
Foundations

Collision-resistant hashing, a fundamental primitive in modern cryptography, ensures that there is no efficient way to find distinct inputs that produce the same hash value. This property underpins the security of various cryptographic applications, making it crucial to understand its complexity. The complexity of this problem is well-understood in the classical setting and $\Theta(N^{1/2})$ queries are needed to find a collision. However, the advent of quantum computing has introduced new...

2024/348 (PDF) Last updated: 2024-02-27
A Computational Tsirelson's Theorem for the Value of Compiled XOR Games
David Cui, Giulio Malavolta, Arthur Mehta, Anand Natarajan, Connor Paddock, Simon Schmidt, Michael Walter, Tina Zhang

Nonlocal games are a foundational tool for understanding entanglement and constructing quantum protocols in settings with multiple spatially separated quantum devices. In this work, we continue the study initiated by Kalai et al. (STOC '23) of compiled nonlocal games, played between a classical verifier and a single cryptographically limited quantum device. Our main result is that the compiler proposed by Kalai et al. is sound for any two-player XOR game. A celebrated theorem of Tsirelson...

2024/339 (PDF) Last updated: 2024-03-04
From Random Probing to Noisy Leakages Without Field-Size Dependence
Gianluca Brian, Stefan Dziembowski, Sebastian Faust
Foundations

Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing...

2024/338 (PDF) Last updated: 2024-04-15
Tight Indistinguishability Bounds for the XOR of Independent Random Permutations by Fourier Analysis
Itai Dinur
Secret-key cryptography

The XOR of two independent permutations (XoP) is a well-known construction for achieving security beyond the birthday bound when implementing a pseudorandom function using a block cipher (i.e., a pseudorandom permutation). The idealized construction (where the permutations are uniformly chosen and independent) and its variants have been extensively analyzed over nearly 25 years. The best-known asymptotic information-theoretic indistinguishability bound for the XoP construction is...

2024/209 (PDF) Last updated: 2024-02-15
General Adversary Structures in Byzantine Agreement and Multi-Party Computation with Active and Omission Corruption
Konstantinos Brazitikos, Vassilis Zikas
Foundations

Typical results in multi-party computation (in short, MPC) capture faulty parties by assuming a threshold adversary corrupting parties actively and/or fail-corrupting. These corruption types are, however, inadequate for capturing correct parties that might suffer temporary network failures and/or localized faults - these are particularly relevant for MPC over large, global scale networks. Omission faults and general adversary structures have been proposed as more suitable alternatives....

2024/145 (PDF) Last updated: 2024-02-01
Practical Batch Proofs of Exponentiation
Charlotte Hoffmann, Pavel Hubáček, Svetlana Ivanova
Cryptographic protocols

A Proof of Exponentiation (PoE) allows a prover to efficiently convince a verifier that $y=x^e$ in some group of unknown order. PoEs are the basis for practical constructions of Verifiable Delay Functions (VDFs), which, in turn, are important for various higher-level protocols in distributed computing. In applications such as distributed consensus, many PoEs are generated regularly, motivating protocols for secure aggregation of batches of statements into a few statements to improve the...

2024/135 (PDF) Last updated: 2024-11-19
A Closer Look at the Belief Propagation Algorithm in Side-Channel-Assisted Chosen-Ciphertext Attacks
Kexin Qiao, Zhaoyang Wang, Heng Chang, Siwei Sun, Zehan Wu, Junjie Cheng, Changhai Ou, An Wang, Liehuang Zhu
Attacks and cryptanalysis

The implementation security of post-quantum cryptography (PQC) algorithms has emerged as a critical concern with the PQC standardization process reaching its end. In a side-channel-assisted chosen-ciphertext attack, the attacker builds linear inequalities on secret key components and uses the belief propagation (BP) algorithm to solve. The number of inequalities leverages the query complexity of the attack, so the fewer the better. In this paper, we use the PQC standard algorithm...

2024/123 (PDF) Last updated: 2024-01-27
Memory Checking Requires Logarithmic Overhead
Elette Boyle, Ilan Komargodski, Neekon Vafa
Foundations

We study the complexity of memory checkers with computational security and prove the first general tight lower bound. Memory checkers, first introduced over 30 years ago by Blum, Evans, Gemmel, Kannan, and Naor (FOCS '91, Algorithmica '94), allow a user to store and maintain a large memory on a remote and unreliable server by using small trusted local storage. The user can issue instructions to the server and after every instruction, obtain either the correct value or a failure (but not...

2024/023 (PDF) Last updated: 2024-03-27
CCA Security with Short AEAD Tags
Mustafa Khairallah
Secret-key cryptography

The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security...

2023/1911 (PDF) Last updated: 2023-12-13
Non-Interactive Classical Verification of Quantum Depth: A Fine-Grained Characterization
Nai-Hui Chia, Shih-Han Hung
Cryptographic protocols

We introduce protocols for classical verification of quantum depth (CVQD). These protocols enable a classical verifier to differentiate between devices of varying quantum circuit depths, even in the presence of classical computation. The goal is to demonstrate that a classical verifier can reject a device with a quantum circuit depth of no more than $d$, even if the prover employs additional polynomial-time classical computation to deceive. Conversely, the verifier accepts a device with a...

2023/1819 (PDF) Last updated: 2024-02-18
Beyond MPC-in-the-Head: Black-Box Constructions of Short Zero-Knowledge Proofs
Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, Mor Weiss
Foundations

In their seminal work, Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC`07) presented the MPC-in-the-Head paradigm, which shows how to design Zero-Knowledge Proofs (ZKPs) from secure Multi-Party Computation (MPC) protocols. This paradigm has since then revolutionized and modularized the design of efficient ZKP systems, with far-reaching applications beyond ZKPs. However, to the best of our knowledge, all previous instantiations relied on fully-secure MPC protocols, and have not been able to...

2023/1783 (PDF) Last updated: 2024-04-16
An efficient quantum parallel repetition theorem and applications
John Bostanci, Luowen Qian, Nicholas Spooner, Henry Yuen
Foundations

We prove a tight parallel repetition theorem for $3$-message computationally-secure quantum interactive protocols between an efficient challenger and an efficient adversary. We also prove under plausible assumptions that the security of $4$-message computationally secure protocols does not generally decrease under parallel repetition. These mirror the classical results of Bellare, Impagliazzo, and Naor [BIN97]. Finally, we prove that all quantum argument systems can be generically compiled...

2023/1757 (PDF) Last updated: 2023-11-19
Adaptively Secure Consensus with Linear Complexity and Constant Round under Honest Majority in the Bare PKI Model, and Separation Bounds from the Idealized Message-Authentication Model
Matthieu Rambaud
Foundations

We consider the mainstream model in secure computation known as the bare PKI setup, also as the {bulletin-board PKI}. It allows players to broadcast once and non-interactively before they receive their inputs and start the execution. A bulletin-board PKI is essentially the minimum setup known so far to implement the model known as {messages-authentication}, i.e., when $P$ is forwarded a signed message, it considers it to be issued by $R$ if and only if $R$ signed it. It is known since...

2023/1739 (PDF) Last updated: 2023-11-10
Broadcast-Optimal Four-Round MPC in the Plain Model
Michele Ciampi, Ivan Damgård, Divya Ravi, Luisa Siniscalchi, Yu Xia, Sophia Yakoubov
Foundations

Motivated by the fact that broadcast is an expensive, but useful, resource for the realization of multi-party computation protocols (MPC), Cohen, Garay, and Zikas (Eurocrypt 2020), and subsequently Damgård, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021), and, Damgård, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023), focused on 𝘴𝘰-𝘤𝘢𝘭𝘭𝘦𝘥 𝘣𝘳𝘰𝘢𝘥𝘤𝘢𝘴𝘵 𝘰𝘱𝘵𝘪𝘮𝘢𝘭 𝘔𝘗𝘊. In particular, the authors focus on two-round MPC protocols (in the CRS model), and give tight characterizations of which...

2023/1734 (PDF) Last updated: 2024-06-07
Signatures with Memory-Tight Security in the Quantum Random Oracle Model
Keita Xagawa
Public-key cryptography

Memory tightness of reductions in cryptography, in addition to the standard tightness related to advantage and running time, is important when the underlying problem can be solved efficiently with large memory, as discussed in Auerbach, Cash, Fersch, and Kiltz (CRYPTO 2017). Diemert, Geller, Jager, and Lyu (ASIACRYPT 2021) and Ghoshal, Ghosal, Jaeger, and Tessaro (EUROCRYPT 2022) gave memory-tight proofs for the multi-challenge security of digital signatures in the random oracle model....

2023/1692 (PDF) Last updated: 2023-11-01
Traitor Tracing Revisited: New Attackers, Stronger Security Model and New Construction
Xu An Wang, Lunhai Pan, Hao Liu, Xiaoyuan Yang
Public-key cryptography

In Crypto 94, Chor, Fiat, and Naor first introduced the traitor tracing (TT) systems, which aim at helping content distributors identify pirates. Since its introduction, many traitor tracing schemes have been proposed. However, we observe until now almost all the traitor tracing systems using probabilistic public key (and secret key) encryption as the the content distribution algorithm, they do not consider this basic fact: the malicious encrypter can plant some trapdoor in the randomness...

2023/1682 (PDF) Last updated: 2023-10-30
Selective Opening Security in the Quantum Random Oracle Model, Revisited
Jiaxin Pan, Runzhi Zeng
Public-key cryptography

We prove that two variants of the Fujisaki-Okamoto (FO) transformations are selective opening secure (SO) against chosen-ciphertext attacks in the quantum random oracle model (QROM), assuming that the underlying public-key encryption scheme is one-way secure against chosen-plaintext attacks (OW-CPA). The two variants we consider are $\mathsf{FO}^{\not{\bot}}$ (Hofheinz, Hövelmanns, and Kiltz, TCC 2017) and $\mathsf{U}^{\not{\bot}}_\mathsf{m}$ (Jiang et al., CRYPTO 2018). This is the first...

2023/1613 (PDF) Last updated: 2024-02-26
Toothpicks: More Efficient Fork-Free Two-Round Multi-Signatures
Jiaxin Pan, Benedikt Wagner
Public-key cryptography

Tightly secure cryptographic schemes can be implemented with standardized parameters, while still having a sufficiently high security level backed up by their analysis. In a recent work, Pan and Wagner (Eurocrypt 2023) presented the first tightly secure two-round multi-signature scheme without pairings, called Chopsticks. While this is an interesting first theoretical step, Chopsticks is much less efficient than its non-tight counterparts. In this work, we close this gap by proposing a...

2023/1538 (PDF) Last updated: 2024-09-25
Unclonable Commitments and Proofs
Vipul Goyal, Giulio Malavolta, Justin Raizes
Foundations

Non-malleable cryptography, proposed by Dolev, Dwork, and Naor (SICOMP '00), has numerous applications in protocol composition. In the context of proofs, it guarantees that an adversary who receives a proof cannot maul it into another valid proof. However, non-malleable cryptography (particularly in the non-interactive setting) suffers from an important limitation: An attacker can always copy the proof and resubmit it to another verifier (or even multiple verifiers). In this work, we...

2023/1520 (PDF) Last updated: 2024-04-09
Kirby: A Robust Permutation-Based PRF Construction
Charlotte Lefevre, Yanis Belkheyar, Joan Daemen
Secret-key cryptography

We present a construction, called Kirby, for building a variable-input-length pseudorandom function (VIL-PRF) from a $b$-bit permutation. For this construction we prove a tight bound of $b/2$ bits of security on the PRF distinguishing advantage in the random permutation model and in the multi-user setting. Similar to full-state keyed sponge/duplex, it supports full-state absorbing and additionally supports full-state squeezing, while the sponge/duplex can squeeze at most $b-c$ bits per...

2023/1422 (PDF) Last updated: 2023-09-20
Tight Security Bound of 2k-LightMAC Plus
Nilanjan Datta, Avijit Dutta, Samir Kundu
Secret-key cryptography

In ASIACRYPT'17, Naito proposed a beyond-birthday-bound variant of the LightMAC construction, called LightMAC_Plus, which is built on three independently keyed $n$-bit block ciphers, and showed that the construction achieves $2n/3$-bits PRF security. Later, Kim et al. claimed (without giving any formal proof) its security bound to $2^{3n/4}$. In FSE'18, Datta et al. have proposed a two-keyed variant of the LightMAC_Plus construction, called 2k-LightMAC_Plus, which is built on two...

2023/1420 (PDF) Last updated: 2023-09-20
Rogue-Instance Security for Batch Knowledge Proofs
Gil Segev, Amit Sharabi, Eylon Yogev
Foundations

We propose a new notion of knowledge soundness, denoted rogue-instance security, for interactive and non-interactive batch knowledge proofs. Our notion, inspired by the standard notion of rogue-key security for multi-signature schemes, considers a setting in which a malicious prover is provided with an honestly-generated instance $x_1$, and may then be able to maliciously generate related "rogue" instances $x_2,\ldots,x_k$ for convincing a verifier in a batch knowledge proof of corresponding...

2023/1380 (PDF) Last updated: 2023-09-14
Tighter Security for Generic Authenticated Key Exchange in the QROM
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We give a tighter security proof for authenticated key exchange (AKE) protocols that are generically constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model (QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss in the number of users and total sessions. Our proof is much tighter and does not have square-root loss. Namely, it only...

2023/1368 (PDF) Last updated: 2024-07-24
Towards post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model
Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, Alexander Wiesmaier
Cryptographic protocols

We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs), to allow instantiations with post-quantums KEM like KYBER. The ACNS23 paper left as an open problem to argue security against quantum attackers, with its security proof being in the universal composability (UC) framework. This is common for PAKE, however, at the time of this submission’s writing, it was not known how to prove (computational)...

2023/1355 (PDF) Last updated: 2023-09-11
Security Proofs for Key-Alternating Ciphers with Non-Independent Round Permutations
Liqing Yu, Yusai Wu, Yu Yu, Zhenfu Cao, Xiaolei Dong
Secret-key cryptography

This work studies the key-alternating ciphers (KACs) whose round permutations are not necessarily independent. We revisit existing security proofs for key-alternating ciphers with a single permutation (KACSPs), and extend their method to an arbitrary number of rounds. In particular, we propose new techniques that can significantly simplify the proofs, and also remove two unnatural restrictions in the known security bound of 3-round KACSP (Wu et al., Asiacrypt 2020). With these techniques, we...

2023/1334 (PDF) Last updated: 2023-09-07
A Generic Construction of Tightly Secure Password-based Authenticated Key Exchange
Jiaxin Pan, Runzhi Zeng
Public-key cryptography

We propose a generic construction of password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-checkable attacks (OW-PCA), we prove that our PAKE protocol is \textit{tightly secure} in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with the Diffie-Hellman...

2023/1321 (PDF) Last updated: 2023-09-05
Generic Constructions of Compact and Tightly Selective-Opening Secure Public-key Encryption Schemes
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We propose two generic constructions of public-key encryption (PKE) with tight simulation-based selective-opening security against chosen-ciphertext attacks (SIM-SO-CCA) in the random oracle model. Our constructions can be instantiated with a small constant number of elements in the ciphertext, ignoring smaller contributions from symmetric-key encryption. That is, they have compact ciphertexts. Furthermore, three of our instantiations have compact public keys as well. Known (almost)...

2023/1316 (PDF) Last updated: 2023-09-04
Communication Lower Bounds for Cryptographic Broadcast Protocols
Erica Blum, Elette Boyle, Ran Cohen, Chen-Da Liu-Zhang
Cryptographic protocols

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most...

2023/1305 (PDF) Last updated: 2023-09-01
About “$k$-bit security” of MACs based on hash function Streebog
Vitaly Kiryukhin
Secret-key cryptography

Various message authentication codes (MACs), including HMAC-Streebog and Streebog-K, are based on the keyless hash function Streebog. Under the assumption that the compression function of Streebog is resistant to the related key attacks, the security proofs of these algorithms were recently presented at CTCrypt 2022. We carefully detail the resources of the adversary in the related key settings, revisit the proof, and obtain tight security bounds. Let $n$ be the bit length of the hash...

2023/1280 (PDF) Last updated: 2023-08-31
Quantum Security of TNT
Shuping Mao, Zhiyu Zhang, Lei Hu, Luying Li, Peng Wang
Secret-key cryptography

Many classical secure structures are broken by quantum attacks. Evaluating the quantum security of a structure and providing a tight security bound is a challenging research area. As a tweakable block cipher structure based on block ciphers, $\mathsf{TNT}$ was proven to have $O(2^{3n/4})$ CPA and $O(2^{n/2})$ CCA security in the classical setting. We prove that $\mathsf{TNT}$ is a quantum-secure tweakable block cipher with a bound of $O(2^{n/6})$. In addition, we show the tight quantum PRF...

2023/1272 (PDF) Last updated: 2024-04-25
Tight Security of TNT and Beyond: Attacks, Proofs and Possibilities for the Cascaded LRW Paradigm
Ashwin Jha, Mustafa Khairallah, Mridul Nandi, Abishanka Saha
Secret-key cryptography

Liskov, Rivest and Wagner laid the theoretical foundations for tweakable block ciphers (TBC). In a seminal paper, they proposed two (up to) birthday-bound secure design strategies --- LRW1 and LRW2 --- to convert any block cipher into a TBC. Several of the follow-up works consider cascading of LRW-type TBCs to construct beyond-the-birthday bound (BBB) secure TBCs. Landecker et al. demonstrated that just two-round cascading of LRW2 can already give a BBB security. Bao et al. undertook a...

2023/1258 (PDF) Last updated: 2023-08-20
Efficient Oblivious Sorting and Shuffling for Hardware Enclaves
Tianyao Gu, Yilei Wang, Bingnan Chen, Afonso Tinoco, Elaine Shi, Ke Yi
Applications

Oblivious sorting is arguably the most important building block in the design of efficient oblivious algorithms. We propose new oblivious sorting algorithms for hardware enclaves. Our algorithms achieve asymptotic optimality in terms of both computational overhead and the number of page swaps the enclave has to make to fetch data from insecure memory or disk. We also aim to minimize the concrete constants inside the big-O. One of our algorithms achieve bounds tight to the constant in terms...

2023/1256 (PDF) Last updated: 2024-03-05
On Soundness Notions for Interactive Oracle Proofs
Alexander R. Block, Albert Garreta, Pratyush Ranjan Tiwari, Michał Zając
Cryptographic protocols

Interactive oracle proofs (IOPs) (Ben-Sasson et al., TCC 2016; Reingold et al., SICOMP 2021) have emerged as a powerful model for proof systems combining IP and PCP. While IOPs are not any more powerful than PCPs from a complexity theory perspective, their potential to create succinct proofs and arguments has been demonstrated by many recent constructions achieving better parameters such as total proof length, alphabet size, and query complexity. In this work, we establish new results on the...

2023/1233 (PDF) Last updated: 2023-08-24
Tight Security of TNT: Reinforcing Khairallah's Birthday-bound Attack
Ashwin Jha, Mridul Nandi, Abishanka Saha
Secret-key cryptography

In a recent paper, Khairallah demonstrated a birthday-bound attack on TNT, thereby invalidating its (beyond-the-birthday-bound) CCA security claims. In this short note, we reestablish a birthday-bound CCA security bound for TNT. Furthermore, using a minor variant of Khairallah's attack, we show that our security bound is tight. We provide a rigorous and complete attack advantage calculations to further enhance the confidence in Khairallah's proposed attack strategy.

2023/1230 (PDF) Last updated: 2023-08-14
Almost Tight Multi-User Security under Adaptive Corruptions from LWE in the Standard Model
Shuai Han, Shengli Liu, Zhedong Wang, Dawu Gu
Public-key cryptography

In this work, we construct the first digital signature (SIG) and public-key encryption (PKE) schemes with almost tight multi-user security under adaptive corruptions based on the learning-with-errors (LWE) assumption in the standard model. Our PKE scheme achieves almost tight IND-CCA security and our SIG scheme achieves almost tight strong EUF-CMA security, both in the multi-user setting with adaptive corruptions. The security loss is quadratic in the security parameter, and independent of...

2023/1041 (PDF) Last updated: 2023-07-04
Random Oracle Combiners: Breaking the Concatenation Barrier for Collision-Resistance
Yevgeniy Dodis, Niels Ferguson, Eli Goldin, Peter Hall, Krzysztof Pietrzak
Secret-key cryptography

Suppose two parties have hash functions $h_1$ and $h_2$ respectively, but each only trusts the security of their own. We wish to build a hash combiner $C^{h_1, h_2}$ which is secure so long as either one of the underlying hash functions is. This question has been well-studied in the regime of collision resistance. In this case, concatenating the two hash outputs clearly works. Unfortunately, a long series of works (Boneh and Boyen, CRYPTO'06; Pietrzak, Eurocrypt'07; Pietrzak, CRYPTO'08)...

2023/1026 (PDF) Last updated: 2023-07-02
Implementation and performance of a RLWE-based commitment scheme and ZKPoK for its linear and multiplicative relations
Ramiro Martínez, Paz Morillo, Sergi Rovira
Implementation

In this paper we provide the implementation details and performance analysis of the lattice-based post-quantum commitment scheme introduced by Martínez and Morillo in their work titled «RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations» together with the corresponding Zero-Knowledge Proofs of Knowledge (ZKPoK) of valid openings, linear and multiplicative relations among committed elements. We bridge the gap between the existing theoretical proposals and practical...

2023/1004 (PDF) Last updated: 2023-06-28
On the Non-Malleability of ECVRF in the Algebraic Group Model
Willow Barkan-Vered, Franklin Harding, Jonathan Keller, Jiayu Xu

ECVRF is a verifiable random function (VRF) scheme used in multiple cryptocurrency systems. It has recently been proven to satisfy the notion of non-malleability which is useful in applications to blockchains (Peikert and Xu, CT-RSA 2023); however, the existing proof uses the rewinding technique and has a quadratic security loss. In this work, we re-analyze the non-malleability of ECVRF in the algebraic group model (AGM) and give a tight proof. We also compare our proof with the...

2023/932 (PDF) Last updated: 2023-06-14
On the (Im)possibility of Time-Lock Puzzles in the Quantum Random Oracle Model
Abtin Afshar, Kai-Min Chung, Yao-Ching Hsieh, Yao-Ting Lin, Mohammad Mahmoody
Foundations

Time-lock puzzles wrap a solution $\mathrm{s}$ inside a puzzle $\mathrm{P}$ in such a way that ``solving'' $\mathrm{P}$ to find $\mathrm{s}$ requires significantly more time than generating the pair $(\mathrm{s},\mathrm{P})$, even if the adversary has access to parallel computing; hence it can be thought of as sending a message $\mathrm{s}$ to the future. It is known [Mahmoody, Moran, Vadhan, Crypto'11] that when the source of hardness is only a random oracle, then any puzzle generator with...

2023/883 (PDF) Last updated: 2024-03-21
Prouff & Rivain’s Formal Security Proof of Masking, Revisited: Tight Bounds in the Noisy Leakage Model
Loïc Masure, François-Xavier Standaert
Implementation

Masking is a counter-measure that can be incorporated to software and hardware implementations of block ciphers to provably se- cure them against side-channel attacks. The security of masking can be proven in different types of threat models. In this paper, we are interested in directly proving the security in the most realistic threat model, the so-called noisy leakage adversary, that captures well how real-world side- channel adversaries operate. Direct proofs in this leakage model...

2023/877 (PDF) Last updated: 2023-09-21
Public-Key Encryption with Quantum Keys
Khashayar Barooti, Alex B. Grilo, Loïs Huguenin-Dumittan, Giulio Malavolta, Or Sattath, Quoc-Huy Vu, Michael Walter
Foundations

In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum information is taken into account. Recent work has shown that quantum variants of oblivious transfer and multi-party computation, both primitives that are classically in Cryptomania, can be constructed from one-way...

2023/862 (PDF) Last updated: 2023-06-07
Tighter QCCA-Secure Key Encapsulation Mechanism with Explicit Rejection in the Quantum Random Oracle Model
Jiangxia Ge, Tianshu Shan, Rui Xue
Public-key cryptography

Hofheinz et al. (TCC 2017) proposed several key encapsulation mechanism (KEM) variants of Fujisaki-Okamoto (\textsf{FO}) transformation, including $\textsf{FO}^{\slashed{\bot}}$, $\textsf{FO}_m^{\slashed{\bot}}$, $\textsf{QFO}_m^{\slashed{\bot}}$, $\textsf{FO}^{\bot}$, $\textsf{FO}_m^\bot$ and $\textsf{QFO}_m^\bot$, and they are widely used in the post-quantum cryptography standardization launched by NIST. These transformations are divided into two types, the implicit and explicit rejection...

2023/854 (PDF) Last updated: 2024-02-21
On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
Kai Gellert, Kristian Gjøsteen, Håkon Jacobsen, Tibor Jager
Public-key cryptography

A standard paradigm for building key exchange protocols with full forward secrecy (and explicit authentication) is to add key confirmation messages to an underlying protocol having only weak forward secrecy (and implicit authentication). Somewhat surprisingly, we show through an impossibility result that this simple trick must nevertheless incur a linear tightness loss in the number of parties for many natural protocols. This includes Krawczyk's HMQV protocol (CRYPTO 2005) and the protocol...

2023/848 (PDF) Last updated: 2023-06-06
Extending Updatable Encryption: Public Key, Tighter Security and Signed Ciphertexts
Chen Qian, Yao Jiang Galteland, Gareth T. Davies
Cryptographic protocols

Updatable encryption is a useful primitive that enables key rotation for storing data on an untrusted storage provider without the leaking anything about the plaintext or the key. In this work, we make two contributions. Firstly, we extend updatable encryption to the public-key setting, providing its security model and three different efficient constructions. Using a public-key updatable encryption scheme, a user can receive messages directly in the cloud from multiple senders without...

2023/835 (PDF) Last updated: 2023-06-05
Unifying Freedom and Separation for Tight Probing-Secure Composition
Sonia Belaïd, Gaëtan Cassiers, Matthieu Rivain, Abdul Rahman Taleb

The masking countermeasure is often analyzed in the probing model. Proving the probing security of large circuits at high masking orders is achieved by composing gadgets that satisfy security definitions such as non-interference (NI), strong non-interference (SNI) or free SNI. The region probing model is a variant of the probing model, where the probing capabilities of the adversary scale with the number of regions in a masked circuit. This model is of interest as it allows better reductions...

2023/823 (PDF) Last updated: 2023-06-07
Lattice-based Authenticated Key Exchange with Tight Security
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng
Public-key cryptography

We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices. Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is the first construction with tight security from a post-quantum assumption. Our AKE protocol is constructed tightly from a new security notion for key encapsulation mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW- ChCCA). We show how an OW-ChCCA secure KEM...

2023/775 (PDF) Last updated: 2023-10-27
Exact Security Analysis of ASCON
Bishwajit Chakraborty, Chandranan Dhar, Mridul Nandi
Secret-key cryptography

The Ascon cipher suite, offering both authenticated encryption with associated data (AEAD) and hashing functionality, has recently emerged as the winner of the NIST Lightweight Cryptography (LwC) standardization process. The AEAD schemes within Ascon, namely Ascon-128 and Ascon-128a, have also been previously selected as the preferred lightweight authenticated encryption solutions in the CAESAR competition. In this paper, we present a tight and comprehensive security analysis of the Ascon...

2023/774 (PDF) Last updated: 2024-01-21
Tagged Chameleon Hash from Lattices and Application to Redactable Blockchain
Yiming Li, Shengli Liu
Public-key cryptography

Chameleon hash (CH) is a trapdoor hash function. Generally it is hard to find collisions, but with the help of a trapdoor, finding collisions becomes easy. CH plays an important role in converting a conventional blockchain to a redactable one. However, most of existing CH schemes are too weak to support redactable blockchains. The currently known CH schemes serving for redactable blockchains have the best security of so-called ``full collision resistance (f-CR)'', but they are built either...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.